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Transcendence in Simultaneous Stabilization
�

Daniel Bertilsson Vincent Blondel

Abstract

We show that the simultaneous stabilization question: When are

three linear systems stabilizable by the same controller? cannot be

solved by a semialgebraic set description nor be answered by compu-

tational machines. Contrary to the case of two systems, the under-

lying in�nite-dimensional space of controllers cannot be bypassed.

Simultaneous stabilization of three systems is truly transcendental.
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1 Introduction

Only few open problems in systems and control theory can be stated in a
single sentence that is understandable by the whole control research com-
munity. One such problem, known as the simultaneous stabilization prob-
lem for three or more systems, is studied in this paper. The one-sentence
question that has until now de�ed all attempts of solution is: When are

three (or more) linear systems stabilizable by the same controller?

In this paper we derive explicit necessary and su�cient conditions for

the stabilizability of one particular family of �rst order systems. From
this analysis we draw general conclusions on the structure of the set of
systems that are simultaneously stabilizable. Our conclusions are twofold.
First, the set of triplets of systems that are simultaneously stabilizable is
not semialgebraic; second, simultaneous stabilizability of more than two
systems is not decidable by standard computation machines.

Before detailing our contributions we start with a description of the
problem and with a survey of existing results.

We consider systems that are linear, time-invariant, single-input, sin-
gle-output and that are given by their (real rational) transfer functions. A
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rational function will be called stable if it has no poles in the closed unit
disc. Consideration of other stability regions would not modify the con-
clusions obtained in this paper; we choose the above de�nition of stability
for convenience only. A controller c (internally) stabilizes a system p if
the four closed loop transfer functions cp=(1 + cp), p=(1 + cp), c=(1 + cp),
1=(1 + cp) are stable. The k systems pi (i = 1; � � � ; k) are simultaneously
stabilizable (or, for short, stabilizable) if there exists a controller c that
stabilizes all systems pi. The simultaneous stabilization problem is one of
�nding necessary and su�cient conditions for systems to be simultaneously
stabilizable.

Simultaneous stabilization was �rst studied more than a decade ago
[28, 23] and has since then received considerable attention [6, 7, 8, 9, 14,
15, 16, 17, 26, 31]. It is shown in [23] and [28] that the case of two systems
can be translated, with the help of the Youla-Kucera parametrization, into
the problem of stabilizing a single related system by a stable controller.
The latter question is elegantly solved by Youla et al. in [33]: a system is
stabilizable by a stable controller if and only if it has an even number of
poles between each pair of real unstable zeros. This condition is known as
the parity interlacing condition. By successively using the Youla-Kucera
parametrization and checking the parity interlacing condition we thus ob-
tain a general tractable test for the case of two systems.

For three systems it is shown by Ghosh [14, 15] that, similarly to the
two systems situation, the problem can generically be translated into the
problem of unstable pole assignment of a related system by a controller
that is both stable and minimum phase. A necessary condition for this
problem to be solvable, the 3-interlacing condition, is given by Blondel in
[5, 7]. This condition can be seen as a counterpart of the parity interlacing
condition for three systems. Unfortunately, the 3-interlacing condition (and
the k-interlacing conditions for k (k � 3) systems) was shown not to be
su�cient for simultaneous stabilizability (see [9, Theorem 5.3]).

Many other results have been obtained for simultaneous stabilization.
We mention here: the analysis of simultaneous stabilization for multi-
variable systems [28], results on genericity of simultaneous stabilization
[29, 25, 17], simultaneous stabilization in a state-space framework [21, 27],
su�cient conditions for simultaneous stabilization [6, 13, 20, 31], or simul-
taneous stabilization using time-varying control [19]. Examples of appli-
cations and motivations for using simultaneous stabilization control design
are given in Ackermann [1].

Despite all the above mentioned progress, the genuine stabilization
problem for three or more systems remains essentially unsolved. Even
in very simpli�ed situations, where for example we consider �rst order
systems, no satisfactory necessary and su�cient conditions are known. Si-
multaneous stabilization constitutes an outstanding open problem in linear
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SIMULTANEOUS STABILIZATION

system theory.
In this paper we consider a particular class of systems for which we

have obtained complete stabilization conditions. Throughout the paper we
analyse the three �rst order systems

z

1 + �1z
;

z

1 + �2z
;

z

1 + �3z

where �i are real numbers. If �i = �j for some i 6= j, then the three
systems degenerate into two systems that are easily seen simultaneously
stabilizable. If j�ij < 1 then the systems are stable, hence stabilizable.
Finally, using the main result of [8], one can show that, for �1 = 0 and
�2 = ��3 = �, the systems are simultaneously stabilizable if and only if
j�j < �4( 1

4
)=(4�2) = 4:377 � � �. In this paper we are interested by general

necessary and su�cient conditions in terms of the parameters �i.
In Section 2 we show that the stabilizability of z=(1 + �iz) depends

upon the existence of a real rational function q that does not assume
the values 0; 1 and 1 in the closed unit disc, and that takes the values
q(0) = (�2 � �3)=(�2 � �1) and q

0(0) = (�2 � �3)(�1 � �3)=(�2 � �1). We
then use a theorem from geometric function theory, Landau's theorem, to
derive necessary and su�cient conditions for the existence of such a ratio-
nal function. The condition obtained involves the coe�cients �i and the
so-called elliptic modular function. It is a necessary and su�cient condition
for the stabilizability of the three systems.

In Section 3 we use the condition obtained in Section 2 to show that the
set of coe�cients �i for which the systems are simultaneously stabilizable
is not a semialgebraic set. These results extend an earlier result of Blondel
and Gevers [8] and also answers a question raised by Ghosh in several of
his papers (e.g., in [15] and [16]). Semialgebraic sets are particular subsets
of Rn that can be used to describe a wide variety of decision problems
(see [3] for examples from control theory). As an illustration of this, we
show that if the number of systems is limited to two, or if the controller is
constrained to have an order that is less than a given constant, then the
set of simultaneously stabilizable systems is semialgebraic. In some sense,
the non semialgebraicity of the set of coe�cients �i for which the systems
z=(1 + �iz) are simultaneously stabilizable expresses that, in this case,
the in�nite dimensional space of the controller cannot be bypassed; the
problem is truly transcendental. The argument of the proof crucially relies
on transcendence properties of the elliptic modular function appearing in
Landau's theorem.

In the last section we interpret the results of Section 3 in terms of
computability. We prove that the problem of determining whether our
three systems are simultaneously stabilizable cannot be decided by certain
computational machines. The �rst machine that we consider was recently
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introduced by Blum, Shub and Smale in a seminal paper [11] and has since
then received considerable attention from the theoretical computer science
community. Roughly speaking, the Blum-Shub-Smale machine (nicknamed
BSS machine) is a real number counterpart of the Turing machine. We show
that simultaneous stabilization cannot be decided by such a machine.

BSS machines are not allowed to compute roots of polynomials. In a
last contribution we introduce a machine that extends the range of BSS
decidable problems by including, among in�nitely many other operations,
the computation of roots of polynomials as possible operation. In a �nal
theorem we show that simultaneous stabilization of the systems z=(1+�iz)
remains undecidable in this extended computational framework.

The results obtained in this paper are for triplets of systems belonging
to the set fz=(1 + �z) j � 2 Rg. It is clear that our conclusions also hold
for larger subsets of R(z) and for any number of systems greater or equal
to three. More precisely, assume that k � 3, P is a subset of R(z), and
P contains fz=(1 + �z) j � 2 Rg. Then the set of k-uples of systems in
P that are simultaneously stabilizable does not form a semialgebraic set,
and simultaneous stabilizability of k systems in P is not decidable by the
machines introduced in the fourth section.

We use the following notation: C and R are the sets of complex and
real numbers, <(z) and =(z) are the real and imaginary parts of z. R(z)
is the set of real rational functions. D(R) = fz 2 C j jzj < Rg is the open
disc with center 0 and radius R. D = D(1) is the open unit disc, and D is
its closure. �+ = fz 2 C j =(z) > 0g is the open upper half plane.

2 Three Special Systems

In this section we derive explicit necessary and su�cient conditions for the
three systems

z

1 + �1z
;

z

1 + �2z
;

z

1 + �3z
;

to be simultaneously stabilizable. As will be clear from the proof of The-
orem 2, the stabilizability of z=(1 + �iz) depends upon the existence of a
real rational function q that does not assume the values 0; 1 and 1 in the
closed unit disc D, and that takes the values q(0) = (�2 � �3)=(�2 � �1)
and q0(0) = (�2 � �3)(�1 � �3)=(�2 � �1). A criteria for the existence of
such a real rational function is given almost explicitly in a theorem from
complex analysis, Landau's theorem. The main di�erence is that Landau's
theorem is stated for analytic rather than real rational functions. In the
proof of Theorem 1 we use an approximation argument to obtain a nec-
essary and su�cient condition for the existence of a rational function q

that satis�es the requested interpolation conditions. The criterion, when
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SIMULTANEOUS STABILIZATION

used on the three systems, gives a stabilization condition in the form of an
inequality involving the coe�cients �i.

The proof of Landau's theorem relies on properties of a well-known
analytic function, the elliptic modular function. There are several related
functions associated with this name. The one that we are considering here
is a conformal mapping � of the upper half plane �+ onto C n f0; 1g.
For the construction and properties of �, see Segal [24, pp. 68-76] and
Rudin [22, sec. 16.17-16.20]. Local inverses of � will be denoted by �.
From the discussion in Rudin it is easy to see that � has a local inverse
�� : C n [0;1)! C that is such that

��(x) = ij��(x)j and �0
�
(x) = �ij�0

�
(x)j (1)

for all x < 0.
Using the properties of the elliptic modular function we now prove an

extended version of Landau's theorem.

Landau's theorem: Suppose that f : D(R)! C n f0; 1g is analytic. Let
a0 = f(0); a1 = f 0(0) and let � be a local inverse of � in a neighbourhood

of a0. Then

Rja1j �
2=(�(a0))

j�0(a0)j
: (2)

Equality holds in (2) if and only if f = � �  , where

 (z) =
�(a0)�z +R�(a0)

�z +R
; (3)

and � is a complex number of modulus 1.
Conversely, suppose that a0 and a1 are complex numbers such that a0 6=

0; 1 and inequality (2) holds. Then there exist an analytic function f :
D(R) ! C n f0; 1g such that f(0) = a0 and f 0(0) = a1. If a0 and a1 are

real numbers, then f can be chosen so that f(z) = f(z).

Proof: For the �rst part, see Segal [24, pp. 76-77].
The condition for equality can be derived from Segal's proof by noting

that equality holds in Schwarz' lemma only for functions F : D ! D of the
type F (z) = �z, where j�j = 1.

For the converse part, the case a1 = 0 is trivial, so we may without loss
of generality assume that a1 6= 0 and that equality holds in (2). Taking
f = � �  , we have f(0) = a0 and jf 0(0)j = ja1j. By adjusting � we can
obtain f 0(0) = a1.

When a0 and a1 are real, we claim that � can be selected so that
f = � � maps the interval (�R;R) into the reals. We prove this in three
cases:
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Case 1: a0 < 0. Choose � = 1. We can assume that � = ��. By equations
(1), we have <(��(a0)) = 0, so that

 (z) = ��(a0)
R � z

R + z
:

It is easy to see that  maps (�R;R) into the positive imaginary axis.
Since � maps the positive imaginary axis into the negative real axis, our
function f = � �  maps (�R;R) into the reals.

Case 2: 0 < a0 < 1. We can take � = 2�(a0)�1, where � is a local inverse
of � that maps (0; 1) into the half-circle C = fz 2 �+ j jz� 1

2
j = 1

2
g. Then

 maps (�R;R) into C, and � maps C into (0; 1).
Case 3: a0 > 1: Let � = 1 and assume that � maps the interval (1;+1)
into the half-line L = fz 2 �+ j <(z) = 1g. Then  maps (�R;R) into L,
and � maps L into (1;+1).

The details of case 2 and 3 are similar to case 1.
Thus, for a suitable choice of �, f = � �  maps the interval (�R;R)

into the reals. But then f 0(0) and a1 are real and satisfy jf 0(0)j = ja1j, so
by reverting the sign of � if needed, we obtain f 0(0) = a1. Finally, it is
clear that f(z) = f(z).

For the mapping properties of � used here, see Rudin [22, the proof of
Theorem 16.20]. �

We now prove a version of Landau's theorem for real rational functions.

Theorem 1: Suppose that a0 and a1 are real numbers such that a0 6= 0; 1.
Then there exists a real rational function q such that q(0) = a0, q

0(0) = a1
and q(z) 6= 0; 1;1 for all z in the closed unit disc D if and only if

ja1j <
2=(�(a0))

j�0(a0)j
; (4)

where � is a local inverse of the elliptic modular function �. The right hand

side in (4) does not depend on the particular choice of �.

Proof: \Only if" part: Assume that q is such a function. By continuity,
there exists an R > 1 such that q(z) 6= 0; 1;1 for all z in the open disc
D(R). Landau's theorem now gives us the inequality (2), from which the
strict inequality (4) follows since R > 1.

\If" part: Assume that (4) holds. In the trivial case a1 = 0 we may
choose q to be constant. Otherwise, de�ne

R =
2=(�(a0))

ja1jj�0(a0)j
: (5)
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SIMULTANEOUS STABILIZATION

The strict inequality (4) shows that R > 1. By Landau's theorem and
equality (5), there exists an analytic function f : D(R) ! C n f0; 1g such
that f(0) = a0; f

0(0) = a1 and f(z) = f(z). We now approximate f with
a real polynomial q which does not assume the values 0 and 1 in D and
satis�es q(0) = a0 and q0(0) = a1. This will complete the \if" part. For
this purpose, let

� = minf inf
z2D

jf(z)j; inf
z2D

jf(z)� 1jg:

Since f(z) 6= 0; 1 for all z 2 D(R), and since D is compact, � > 0. The

function de�ned by h(z)
4

= (f(z)� a0 � a1z)=z
2 is analytic and such that

h(z) = h(z) in D(R). By Runge's theorem (see Rudin [22, Theorem 13.7])
there is a polynomial p such that

jh(z)� p(z)j < � (8z 2 D): (6)

De�ne a real polynomial by p1(z)
4

= (p(z) + p(z))=2. Since h(z) = h(z),

it is easy to see that p1 satis�es (6) also. Now the real polynomial q(z)
4

=
a0 + a1z + z2p1(z) satis�es

jf(z)� q(z)j = jz2h(z)� z2p1(z)j < � (8z 2 D):

In conjunction with the de�nition of �, this shows that q(z) 6= 0; 1 for all
z 2 D. �

We now have all that is needed to show:

Theorem 2: Let �i (i = 1; 2; 3) be distinct real numbers. The systems

z

1 + �1z
;

z

1 + �2z
;

z

1 + �3z
; (7)

are simultaneously stabilizable if and and only if

ja1j <
2=(�(a0))

j�0(a0)j
; (8)

where a0 and a1 are de�ned by

a0 =
�2 � �3

�2 � �1
; (9)

a1 =
(�2 � �3)(�1 � �3)

�2 � �1
;

and � is a local inverse of the elliptic modular function �.
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Proof: We adopt the factorization approach given in Vidyasagar [25]. A
controller n=d (where n and d are coprime real polynomials) in closed loop
with a system ni=di (where ni and di are coprime real polynomials) leads
to a stable closed-loop con�guration if and only if nin + did is a stable
polynomial, i.e., has no zeros in the closed unit disc D. The controller
n=d = ��3=1 stabilizes the third system z=(1+�3z). Hence, by the Youla-
Kucera parametrization (see Vidyasagar [25]), a factorization of all the
controllers n=d that stabilize this system is given by

n(z) = ��3 + r(z)(1 + �3z); d(z) = 1� r(z)z; (10)

where r is an arbitrary real rational function with no poles in D. This
controller n=d also stabilizes the �rst and second systems if and only if

zn(z) + (1 + �iz)d(z) 6= 0 for all z 2 D; i = 1; 2: (11)

Putting (10) into (11) and simplifying, we get

1 + (�i � �3)z + (�3 � �i)z
2r(z) 6= 0 for all z 2 D; i = 1; 2: (12)

After division by �i � �3 and introduction of

a0 =

1

�1��3
1

�1��3
� 1

�2��3

=
�2 � �3

�2 � �1
;

a1 =
1

1

�1��3
� 1

�2��3

=
(�2 � �3)(�1 � �3)

�2 � �1
;

the condition (12) can be written as

a0 + a1z � a1z
2r(z) 6= 0; 1 for all z 2 D: (13)

We have thus shown that the systems (7) are simultaneously stabilizable if
and only if there exists a real rational function r with no poles in D such
that (13) holds. Denoting the left-hand side of (13) by q(z) it is easy to see
that the existence of a rational function r that has the required properties
is equivalent to the existence of a real rational function q that is such that
q(0) = a0, q

0(0) = a1 and q(z) 6= 0; 1;1 for all z in D. By Theorem 1, this
is equivalent to the strict inequality (8). �

3 Semialgebraic Sets

Let S be the set of all triplets (�1; �2; �3) 2 R
3 for which the systems z=(1+

�iz) are simultaneously stabilizable. In this section we use the explicit
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SIMULTANEOUS STABILIZATION

description of S given in Theorem 2 to show that S is not a semialgebraic
set.

As already mentioned in the introduction, this result answers a ques-
tion addressed by Ghosh [15, Question 2.2 p. 1094] and [16, Conclusion
and future developments p. 495], and extends signi�cantly a recent re-
sult obtained by Blondel and Gevers [8]. The extension is to be taken in
the following sense. In [8] the authors proved that the set of coe�cients
of triplets of systems that are simultaneously stabilizable can not be de-
scribed by unions and intersections of solutions of multivariable rational

polynomial equalities and inequalities. We extend this result in two re-
spects. First, we prove the same result for the class of real polynomials
rather than rational polynomials. In a certain sense this �rst extension
shows that one may add one type of operation among those permitted in
[8], namely, rational operations (addition, multiplication, subtraction or
division) with given real constants. A second di�erence with the result in
[8] is that we show that the complement of S is not a countable union of
semialgebraic sets. This statement is much stronger than the one on semi-
algebraicity because it involves a countable number of sets. It is this result
that is needed in the next section for proving decidability properties.

We start with a de�nition of semialgebraic sets and with some examples
from systems and control theory that motivate their use. General references
for semialgebraic sets are [4] and [12].

De�nition: A set X � R
n is semialgebraic if it is a �nite union of sets of

the type

fx 2 R
n j P1(x) = 0; :::; Pk(x) = 0;

Pk+1(x) > 0; :::; Pm(x) > 0g;

where Pi(x) = Pi(x1; :::; xn) (i = 1; 2; :::;m) are real polynomials in n

variables.

It is easy to see that, together with the equalities Pi(x) = 0 and in-
equalities Pj(x) > 0, we may add conditions involving any of �; <;�; 6=.
All such sets can be reduced to sets of the form above.

Unions and intersections of semialgebraic sets are semialgebraic. Also,
the complement of a semialgebraic set is semialgebraic.

In the next section we will also need the concept of a semialgebraic
function.

De�nition: Let X be a semialgebraic subset of Rn . A function f : X ! R
k

is called semialgebraic if its graph f(x; y) 2 X � R
k j f(x) = yg is a

semialgebraic subset of Rn+k .

The next �ve examples illustrate the notion of semialgebraic sets.
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Example 1: Polynomial stability

Let Hn be the set of coe�cients (a0; a1; :::; an) 2 R
n+1 for which the

polynomial a0 + a1s + ::: + ans
n is Hurwitz stable, i.e., has no zeros in

the closed right half plane. By the Routh-Hurwitz criterion, Hn can be
described by a logical expression involving polynomial equalities and in-
equalities in the coe�cients a0; :::; an. For instance, when n = 3 we have

10
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H3 = f(a0; a1; a2; a3) 2 R
4 j

(a3 > 0 and a2 > 0 and a1 > 0 and a0 > 0 and a1a2 � a0a3 > 0)

or (a3 < 0 and a2 < 0 and a1 < 0 and a0 < 0 and a1a2 � a0a3 < 0)

or (a3 = 0 and a2 > 0 and a1 > 0 and a0 > 0)

or (a3 = 0 and a2 < 0 and a1 < 0 and a0 < 0)

or (a3 = 0 and a2 = 0 and a1a0 > 0)

or (a3 = 0 and a2 = 0 and a1 = 0 and a0 6= 0)g;

so that H3 is semialgebraic. Similarly, Hn is easily seen to be semialgebraic
for all n. More generally, any logical expression involving equalities and
inequalities between multivariable real polynomials (such as the expression
describing H3) describes a semialgebraic set.

Example 2: The space of systems

Let �n be the set of vectors (a0; :::; an; b0; :::; bn) 2 R
2n+2 for which

1) The polynomial b0+b1z+ :::+bnz
n has highest order coe�cient equal

to 1.

2) The polynomials a0 + a1z + ::: + anz
n and b0 + b1z + ::: + bnz

n are
coprime.

We use the symbol : to denote logical negation. The set �n may be
described by

�n = f(a0; :::; an; b0; :::; bn) 2 R
2n+2 j

8z :(a0 + a1z + :::+ anz
n = 0 and b0 + b1z + :::+ bnz

n = 0)

and

((bn = 1)

or ((bn = 0) and (bn�1 = 1))

or (:::)

or ((bn = 0) and ::: and (b1 = 0) and (b0 = 1)))g:

By using the Tarski-Seidenberg theorem (see [4]) the universal quanti�er
8 and the corresponding variable, variable z may be eliminated from this
expression, leaving a semialgebraic condition on the coe�cients a0; :::; an;
b0; :::; bn. Thus the set �n is a semialgebraic subset of R2n+2 .

To every vector (a0; :::; an; b0; :::; bn) in �n there corresponds in a one-
to-one fashion a system

p(z) =
a0 + a1z + :::+ anz

n

b0 + b1z + :::+ bnzn

11
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of order at most n. In the sequel we often identify a system with its
coe�cient vector in �n, and we speak of �n as the space of systems of order
at most n. The cartesian product space �k

n is the space of all k-tuples of
systems of order at most n. A set of k-tuples of systems of order at most
n is called semialgebraic if its corresponding subset of �k

n is semialgebraic.
This notion of semialgebraicity is used in the next three examples.

Example 3: Simultaneous stabilization of two systems

Consider two systems p1 and p2 of order at most n. Using the Youla-
Kucera parametrization, one can construct a system p that is such that
p1 and p2 are simultaneously stabilizable if and only if p is stabilizable
by a stable controller. For instance, when p1 and p2 have no common real
unstable poles then we can take p = p2�p1 (see for example [7]). A system p

is stabilizable by a stable controller if and only if between any two zeros of p
in the closed interval [�1; 1] there is an even number of poles of p (counted
with multiplicity); see Youla et al. [33]. This interlacement condition
can be translated into a semialgebraic condition on the coe�cients of p;
see Anderson [2]. This implies that the set of pairs of systems that are
simultaneously stabilizable is semialgebraic.

Example 4: Simultaneous stabilization with a controller of a pri-

ori bounded order

Consider the set Skn;N of all k-tuples of systems (p1; :::; pk) that are of
order at most n and that are are simultaneously stabilizable by a controller
of order at most N . If we use a parametrization of the set of controllers
of order at most N , and the Routh-Hurwitz criteria on the k closed loop
polynomials obtained with this parametrization, it is clear that the set Skn;N
can be described by a �nite number of equalities and inequalities between
real polynomials in the coe�cients of the systems and in the coe�cients of
the controller connected with logical operators and the existential quanti�er
(9).

By the Tarski-Seidenberg theorem, the quanti�ers 9 and the correspond-
ing variable (in this case, the coe�cients of the controller) can be eliminated
from this description, leaving a semialgebraic condition on the coe�cients
of the systems. Thus the set Skn;N of k-tuples of systems that are of order
at most equal to n and that are simultaneously stabilizable by a controller
of order at most N is semialgebraic. For a more comprehensive treatment
of this example, see Ghosh [16].

Example 5: Functions with rational components

This more technical example is introduced here because it is needed in
the proof of Theorem 3. Let ni; di (i = 1; 2; :::; k) be real polynomials of n

12
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variables (x1; :::; xn) = x. A function

f(x) = (
n1(x)

d1(x)
; :::;

nk(x)

dk(x)
)

is de�ned on the semialgebraic subset X of Rn where all the denominators
di(x) are nonzero. The graph of f is

f(x; y) 2 X � R
k ; yi = ni(x)=di(x) for i = 1; 2; :::kg;

which is a semialgebraic set. Hence f is a semialgebraic function.

We now come to our main theorem, which shows that the result of
Example 3 does not extend to the case of three systems, nor does Example
4 extend to the case where there is no a priori bound on the order of the
controller.

First we need a lemma that shows that the bound on a1 in Theorem
2 is given by a non-algebraic function of a0. Recall that an analytic func-
tion f is termed algebraic if there exists a nonzero polynomial P such that
P (z; f(z)) � 0.

Lemma: The analytic function F : C n [0;1)! C de�ned by

F (z) = �2
��(z)

�0
�
(z)

is not algebraic. In addition to this we have

F (x) =
2=(��(x))

j�0
�
(x)j

for all x < 0.

Proof: Assume, to get a contradiction, that P is a nonzero polynomial
such that

P (z; F (z)) = 0 for all z 2 C n [0;1):

As proved in Theorem 16.20(a) of Rudin [22], the modular function � has
the property that �(z + 2n) = �(z) for all integers n and z 2 �+. This

implies that �n(z)
4

= 2n + ��(z) is a local inverse of � for every integer
n. Since �n and �� are both local inverses of the analytic function �,
they must be analytic continuations of each other (see Theorem 10.7.2

in Hille [18]). Hence Fn(z)
4

= �2 �n(z)
�0(z)

is an analytic continuation of F ,

and likewise P (z; Fn(z)) is an analytic continuation of P (z; F (z)). But by
assumption P (z; F (z)) � 0, and so P (z; Fn(z)) � 0. Now �x z0 2 C n[0;1).

13
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Since Fn(z0) = �2 2n+��(z0)
�0
�

(z0)
has in�nitely many values as n ranges over the

integers, this shows that the polynomial Pz0(w)
4

= P (z0; w) has in�nitely
many zeros. Hence Pz0 = 0, so P = 0. This contradiction shows that the
assumption that F is algebraic was false.

The statement about the values of F (x) for x < 0 follows immediately
from the fact that, for all x < 0, we have

��(x) = ij��(x)j and �0
�
(x) = �ij�0

�
(x)j:

�

Theorem 3: The set S of triplets (�1; �2; �3) 2 R
3 for which the systems

z=(1 + �iz) are simultaneously stabilizable is not semialgebraic. Further-
more, the set S is a countable union of semialgebraic sets but its comple-
ment in R3 is not.

Proof: If S was semialgebraic so would be its complement Sc. Hence, the
�rst assertion follows from the second one.

We �rst prove the easy part of the second assertion. Namely, we prove
that S is a countable union of semialgebraic sets.

For that purpose, de�ne Sn by

Sn = f(�1; �2; �3) 2 R
3 j

z

1 + �iz
are simultaneously stabilizable by a controller of order ng:

Then S =
T
1

n=0 Sn. By Example 4, the sets Sn are semialgebraic and thus
the �rst part is proved.

We now prove the second part of the assertion. Assume, to get a con-
tradiction, that the complement Sc is a countable union of semialgebraic
sets. Since the set f(�1; �2; �3) 2 R

3 j �1 < �2 < �3g is semialgebraic, the
set

B
4

= Sc \ f(�1; �2; �3) 2 R
3 j �1 < �2 < �3g

is a countable union of semialgebraic sets. Theorem 2 implies that

B = f(�1; �2; �3) 2 R
3 j �1 < �2 < �3 and ja1j �

2=(�(a0))

j�0(a0)j
g;

where a0 and a1 are de�ned by

a0 =
�2 � �3

�2 � �1
;

a1 =
(�2 � �3)(�1 � �3)

�2 � �1
:

14
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The function which maps (�1; �2; �3) to (a0; a1) maps B onto

A
4

= f(a0; a1) 2 R
2 j a0 < 0 and a1 �

2=(�(a0))

j�0(a0)j
g:

By Example 6, this function is semialgebraic. By using the Tarski-
Seidenberg theorem, it is easy to prove that a semialgebraic function maps
semialgebraic sets onto semialgebraic sets. Thus A is a countable union of
semialgebraic sets, so we can write A =

S
1

n=1An, where

An = f(x; y) 2 R2 j Pn;1(x; y) = 0; :::; Pn;kn(x; y) = 0;

Pn;kn+1(x; y) > 0; :::; Pn;mn
(x; y) > 0g;

0 � kn < 1, kn � mn < 1 and Pn;i(x; y) are nonzero real polynomials.
With the help of the non-algebraic function F in the lemma we can write

A = f(x; y) 2 R
2 j x < 0 and y � F (x)g:

Now �x x0 < 0. Then (x0; F (x0)) 2 A, so (x0; F (x0)) 2 An0 for some
n0. If kn0 = 0, then An0 would be open, so (x0; F (x0)) would be an
interior point of A. But (x0; y) 62 A if 0 < y < F (x0). Hence kn0 > 0, so
Pn0;1(x0; F (x0)) = 0.

Therefore the sets Zn
4

= fx < 0 j Pn;1(x; F (x)) = 0g (n = 1; 2; :::)
have union (�1; 0). One of these sets, say Zn1 , must be uncountable, and
must thus have a limit point in (�1; 0). This means that the set of zeros
of the analytic function Pn1;1(z; F (z)) has a limit point in its domain of
de�nition, so it must be identically zero. Since Pn1;1 is nonzero, this shows
that F is an algebraic function, a contradiction. �

From Theorem 3 we deduce a corollary that gives a general property of
simultaneously stabilizable systems.

Corollary: Let �k
n be the space of all k-tuples of systems of order at most

n and let Skn be the subset of �k
n that correspond to k-tuples of systems

that are simultaneously stabilizable. If n � 1 and k � 3 then Skn is not

semialgebraic. �

4 Computability

In this section we interpret the result of the previous section in terms of
computability. We show that the question of deciding whether the three
systems z=(1 + �iz) (i = 1; 2; 3) are simultaneously stabilizable cannot be
decided by certain computational machines.

The classical types of machines considered in computer science use the
binary digit as the fundamental unit of information. Recently, a new type

15
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of machine which uses exact real numbers as information unit, have been
introduced by Blum, Shub and Smale [11]. These machines (BSS machines)
are allowed to perform exact rational operations (additions, multiplications,
subtractions and divisions) on real numbers and are regarded as counter-
parts of Turing machines for real numbers. In their original context, BSS
machines are de�ned over ordered rings. The ring of integers Z and the
�eld of real numbers R are only two examples of ordered rings. The case
of integers leads, roughly speaking, to Turing machines whereas the ma-
chine that we are considering here is the BSS machine over the reals. We
refer the reader to the original paper [11] for a precise description of BSS
machines.

Proposition 2 of [11] shows that if a set E � R
d is decidable by a BSS

machine (i.e., for every input x 2 R
d , the machine will answer in a �nite

time whether or not x 2 E), then both E and its complement Rd n E
are countable unions of semialgebraic sets. We have shown in Theorem 3
that the complement Sc of the set of triplets (�1; �2; �3) 2 R

3 for which
the systems z=(1 + �iz) are simultaneously stabilizable is not a countable
union of semialgebraic set. Hence S does not belong to the class of sets
that are decidable by a BSS machine and the stabilizability of z=(1 + �iz)
is not decidable by a BSS machine.

One of the drawbacks of BSS machines for our purposes is that they do
not include the computation of roots of polynomial as a possible elementary
operation. Extraction of roots is considered in systems theory as a standard
operation that can possibly be included in any decision algorithm. In what
follows we introduce a machine that is more powerful than that of Blum,
Shub and Smale and that allows the computation of roots. We will see
that, even with this machine, the question of simultaneous stabilizability
of the three systems z=(1 + �iz) is not decidable.

De�nition: A machine consists of a possibly in�nite set of nodes N .

Associated to each node n there is:

1) A set Xn, the input space.

2) A function tn : Xn ! N , the transition function.

3) For each node m in the range of tn, a function fn!m : t�1n (m)! Xm,

the data transformation.

One node ns is singled out as the start node, and another one is the end
node ne. The machine works in discrete time steps 0; 1; 2; � � �. At each time
k the machine is at a certain node nk and has a certain value xk 2 Xnk

of its stored data. The machine starts at the start node (n0 = ns) and its
data is initialized with an input x0 belonging to the input space Xns of the
start node. At time k two things can happen: if the machine is at the end
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node (nk = ne), then it stops and outputs the value xk. Otherwise, the
machine goes to node nk+1 = tnk (xk) and transforms the data according
to xk+1 = fnk!nk+1(xk).

We impose the following restrictions on our machines:
For each node n

a) The input space Xn is a semialgebraic subset of some euclidean space
R
dn .

b) The transition function tn has a �nite range. This means that at each
node there is only a �nite number of nodes to which the machine may
make a transition.

c) The inverse images Xn!m
4

= t�1n (m) are semialgebraic subsets of
R
dn . Note that the set Xn!m is the set of data in Rdn that make the

machine transit from node n to node m.

d) The data transformations fn!m are semialgebraic functions.

Behind these abstract de�nitions lies a very natural idea of machine;
basically one that uses an algorithm that involve only semialgebraic func-
tions. Rational operations are examples of operations that lead to algebraic
functions. A less trivial example is that of root extraction.

Theorem 4: De�ne a function f : C n ! C
n by

f(a0; a1; :::; an�1) = (z1; z2; :::; zn);

where z1; z2; :::; zn are the roots of the polynomial equation

a0 + a1z + :::+ an�1z
n�1 + zn = 0

ordered increasingly according to the following order � of the complex num-

bers:

z � w if and only if <(z) < <(w) or (<(z) = <(w) and =(z) � =(w)):

Then f is semialgebraic when considered as a mapping from R
2n to R2n in

the obvious way.

Proof: The graph of f is

f(a0; :::; an�1; z1; :::; zn) 2 C
n � C

n j z1 � z2 � ::: � zn and

a0 =

nY

i=1

(�zi)

:::

an�1 = �

nX

i=1

(zi)g;

17
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which is semialgebraic considered as a subset of R2n � R
2n . �

Decidable sets for our machine are de�ned in the following way:

De�nition: Let E and I be sets such that E � I. We say that E is

decidable in I, if there is a machine such that:

1) The input space of the start node is I. The input space of the end

node is f0; 1g.

2) For every input x0 2 E, the machine eventually stops and outputs 1.

3) For every input x0 2 I nE, the machine eventually stops and outputs

0.

We can characterize the decidable sets as follows.

Theorem 5: Let I be a semialgebraic set and let E be a subset of I. Then

E is decidable in I if and only if both E and I nE are countable unions of

semialgebraic sets.

Proof:

\Only if" part: Assume that we have a machine that decides E; i.e., 1)-3)
of the previous de�nition holds. Consider a particular sequence of nodes
(n0; n1; :::; nk) that the machine may follow upon input x0, where n0 = ns
and nk = ne. Let X1(n0; :::; nk) be the set of all inputs x0 2 Xns that
makes the machine follow this sequence of nodes and then output 1. We
have

X1(n0; :::; nk) = fx0 2 Xns j x0 2 Xn0!n1 ;

fn0!n1(x0) 2 Xn1!n2 ;

fn1!n2 � fn0!n1(x0) 2 Xn2!n3 ;

:::;

fnk�2!nk�1 � ::: � fn0!n1(x0) 2 Xnk�1!nk ;

fnk�1!nk � ::: � fn0!n1(x0) = 1g:

By the restrictions c) and d) the sets Xn!m and the functions fn!m are
semialgebraic. Using the Tarski-Seidenberg theorem it is easy to prove that
the composition of two semialgebraic functions is a semialgebraic function,
and that the inverse image of a semialgebraic set under a semialgebraic
mapping is a semialgebraic set. Hence the set X1(n0; :::; nk) is semialge-
braic. By assumption, E is the union of allX1(n0; :::; nk), where (n0; :::; nk)
ranges over all possible paths the machine may take. Restriction b) above
implies that this set of possible paths is countable. Hence E is a count-
able union of semialgebraic sets. Similarly, I n E is a countable union of
semialgebraic sets.
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\If" part: Assume that E =
S
1

i=1Ei and InE =
S
1

i=1 Ci, where Ei and
Ci are semialgebraic sets. The machine described by the following diagram
decides E in I .

output 1 output 1
yes " yes "

x 2 E1?
no
�! x 2 C1?

no
�! x 2 E2?

no
�! x 2 C2?

no
�! :::

yes # yes #
output 0 output 0

�

We now collect Theorem 3 and Theorem 5 into a single sentence:

Theorem 6: The stabilizability of the three systems z=(1+�iz) (i = 1; 2; 3)
is not decidable by a BSS machine nor is it by a machine de�ned above.

Proof: The statement for BSS machines follow from Theorem 3 and from
the fact that sets that are decidable by BSS machines must have a comple-
ment that is a countable union of semialgebraic sets. The second statement
follows, in the same way, from Theorem 3 and Theorem 5. �

As a corollary of Theorem 6 we have:

Corollary: Let P be a subset of R(z) such that z=(1 + �z) 2 P for all

� 2 R. The stabilizability of three systems in P is not decidable by a BSS

machine nor by a machine de�ned above. �

5 Conclusion

We have shown that simultaneous stabilizability of three systems is not a
\semialgebraic problem" and that it cannot be decided by our machines,
which are allowed to evaluate semialgebraic functions.

Thus, every solution of the simultaneous stabilization problem for three
or more systems must necessarily include some transcendental function. We
have given one example of this, namely the systems z=(1+�iz) (i = 1; 2; 3),
whose stabilization condition can be expressed in terms of an inequality
involving the elliptic modular function.

Can the general simultaneous stabilization problem be solved in terms
of the elliptic modular function only? We believe not, but this remains an
open problem.

Our result is a negative one, but in practice it has less signi�cance, since
there are often practical limitations on the order of the controllers that one
can implement. By Example 4, the simultaneous stabilizability problem
with a controller of a priori bounded order is solvable in terms of rational
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operations on the coe�cients of the systems, although this computation
may be very involved.

As a �nal comment let us note that simultaneous stabilization of the
systems analysed in this paper cannot be rephrased as a stabilization prob-
lem of a single system by a controller that is both stable and minimum
phase. It is yet unknown whether the latter problem is semialgebraic.

Acknowledgments

We wish to thank Christian Michaux for his criticism of the machine intro-
duced in this paper and for helpful references on BSS machines. Michael
Shub helped us to trace references on decidability. Bijoy Ghosh kindly ex-
plained to us why he had chosen the term \transcendental" in his papers.

This paper was written while V. B. was a G�oran Gustafsson postdoc-
toral research fellow at the Royal Institute of Technology, Sweden. The
G�oran Gustafsson Foundation is gratefully acknowledged.

References

[1] J. Ackermann. Uncertainty and control, Lecture Notes in Control and

Information Sciences 70. Berlin: Springer-Verlag, 1985.

[2] B. Anderson. A note on the Youla-Bongiorno-Lu condition, Automat-

ica 2 (1976), 387-388.

[3] B. Anderson, N. Bose, and E. Jury. Output feedback stabilization
and related problems - solutions via decision methods, IEEE Trans.

Automat. Control 20 (1975), 53-66.

[4] R. Benedetti and J-J. Risler. Real Algebraic and Semi-Algebraic Sets.

Paris: Hermann, 1990.

[5] V. Blondel. Simultaneous Stabilization of Linear Systems: Mathemat-

ical Solutions, Related Problems and Equivalent Formulations, Ph.D.
dissertation, Catholic University of Louvain, Belgium, May 1992.

[6] V. Blondel, G. Campion and M. Gevers. A su�cient condition for
simultaneous stabilization, IEEE Trans. Automat. Control 38 (1993),
1264-1266.

[7] V. Blondel. Simultaneous stabilization of linear systems, Lecture Notes
in Control and Information Sciences. Berlin: Springer-Verlag, 1994.

20



SIMULTANEOUS STABILIZATION

[8] V. Blondel and M. Gevers. The simultaneous stabilizability question
of three linear systems is undecidable, Math. Control, Signal, and

Systems 6 (1994), 135-145.

[9] V. Blondel, M. Gevers, R. Mortini and R. Rupp. Simultaneous stabi-
lization of three or more systems: conditions on the real axis do not
su�ce, SIAM J. Control Optim. 32 (1994), 572-590.

[10] V. Blondel, M. Gevers, R. Mortini and R. Rupp. Stabilizable by a
stable and by an inverstable but not by a stable and inverstable, Proc.
31th Conf. on Decision and Control (1991), 832-833.

[11] L. Blum, M. Shub and S. Smale. On a theory of computation and com-
plexity over the real numbers: NP-completeness, recursive functions
and universal machines, Bull. Amer. Math. Soc. (N.S.) 21 (1989),
1-46.

[12] J. Bochnak, M. Coste and M.-F. Roy. G�eom�etrie Alg�ebrique R�eelle (in
French). Berlin: Springer-Verlag, 1987.

[13] E. Emre. Simultaneous stabilization with �xed closed loop character-
istic polynomial, IEEE Trans. Automat. Control 28 (1983), 103-104.

[14] B.K. Ghosh and C. Byrnes. Simultaneous stabilization and pole-
placement by nonswitching dynamic compensation, it IEEE Trans.
Automat. Control 28 (1983), 735-741.

[15] B.K. Ghosh. Transcendental and interpolation methods in simultane-
ous stabilization and simultaneous partial pole placement problems,
SIAM J. Control Optim. 24 (1986), 1091-1109.

[16] B.K. Ghosh. An approach to simultaneous system design. Part I: Semi-
algebraic geometric method, SIAM J. Control Optim. 24 (1986), 480-
496.

[17] B.K. Ghosh. An approach to simultaneous system design. Part II:
Nonswitching gain and dynamic feedback compensation by algebraic
geometric methods, SIAM J. Control Optim. 26 (1988), 919-963.

[18] E. Hille. Analytic Function Theory, vol 2. Boston: Ginn and Company,
1962.

[19] P. Kabamba and C. Yang. Simultaneous controller design for linear
time-invariant systems, IEEE Trans. Automat. Control 36 (1991),
106-111.

[20] H. Kwakernaak. A condition for robust stabilizability, Systems Control

Lett. 2 (1985), 1005-1013.

21



D. BERTILSSON AND V. BLONDEL

[21] K. Minto and M. Vidyasagar. A state-space approach to simultaneous
stabilization, Control-Theory and Adv. Technol. 2 (1986), 39-64.

[22] W. Rudin. Real and Complex Analysis, 3rd ed. New York: McGraw-
Hill, 1987.

[23] R. Saeks and J. Murray. Fractional representation, algebraic geometry
and the simultaneous stabilization problem, IEEE Trans. Automat.

Control 27 (1982), 895-903.

[24] S. L. Segal. Nine Introductions in Complex Analysis. Amsterdam:
North-Holland, 1991.

[25] M. Vidyasagar. Control System Synthesis: A Factorization Approach.

Cambridge: MIT Press, 1985.

[26] M. Vidyasagar. Some results on simultaneous stabilization with mul-
tiple domains of stability, Automatica 23 (1987), 535-540.

[27] M. Vidyasagar. A state space interpretation of simultaneous stabiliza-
tion, IEEE Trans. Automat. Control 33 (1988), 506-508.

[28] M. Vidyasagar and N. Viswanadham. Algebraic design techniques for
reliable stabilization, IEEE Trans. Automat. Control 27 (1982), 1085-
1095.

[29] M. Vidyasagar, B. Levy and N. Viswanadham. A note on the genericity
of simultaneous stabilizability and pole assignability, Circuits Systems

Signals Process 5 (1986), 371-387.

[30] K. Wei. The solution of a transcendental problem and its applications
in simultaneous stabilization problems, IEEE Trans. Automat. Control

37 (1992), 1305-1315.

[31] K.Wei and B. Barmish. An iterative design procedure for simultaneous
stabilization of MIMO systems, Automatica 24 (1988), 643-652.

[32] K. Wei. Stabilization of a linear plant via a stable controller having
no real unstable zeros, Systems Control Lett. 15 (1990), 259-264.

[33] D. Youla, J. Bongiorno and C. Lu. Single-loop feedback stabilization
of linear multivariable plants, Automatica 10 (1974), 159-173.

Department of Mathematics, Royal Institute of Technology,

S-10044 Stockholm

22



SIMULTANEOUS STABILIZATION

INRIA Rocquencourt, Domaine de Voluceau BP105, F-78153 Le

Chesnay Cedex. Currently at: University of Li�ege, Institute

of Mathematics D-1, Avenue des Tilleuls 15, B-4000 Li�ege, Bel-

gium.

Communicated by Anders Lindquist

23


