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Abstract

In this paper we consider a boundary control problem for a forced

Burgers' equation on a �nite interval. The controls enter as gain

parameters in the boundary conditions as in [7, 6] and the forcing

term is allowed to be time dependent and square integrable in the

spatial variable for all time. The uncontrolled problem is obtained

by equating the control parameters to zero while the zero dynamics

is obtained by constraining the output to be zero. The main result

of the paper is that for H1-smooth initial data the trajectories of the

closed loop system (positive gains) converge uniformly in space and

time, to the trajectories of the zero dynamics system as the feedback

gains are increased to in�nity. This result is similar to the property

of asymptotic phase for lumped nonlinear systems. For forcing terms

which are independent of time, we also establish the existence of a

compact local attractor for the nonlinear semigroup. Moreover, as a

consequence of the uniform convergence of the trajectories, we show

that the attracting sets converge to the attractor for the forced zero

dynamics, which in this case always consists of a single point.

1 Introduction

One of the important feedback design methods of classical automatic con-
trol is root locus theory, based on the observation that in the frequency
domain the closed loop poles of a system vary from the open loop poles to
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the open loop zeros as the gain is increased from zero to in�nity. Success-
fully exploited for decades for �nite dimensional systems, this fundamental
method has been extended to the nonlinear �nite dimensional case ([11]),
where it is shown that as certain gain parameters are tuned, the closed-
loop trajectories approach the trajectories of the zero dynamics. On the
other hand, root locus methods have also recently been extended to the
in�nite dimensional case in [5] where a fairly complete analog of �nite di-
mensional root locus theory is developed for a class of parabolic boundary
control problems in which the inputs and outputs occur through certain
boundary operators and a closed loop system is obtained by employing a
proportional error feedback law, u = �ky. In this case, in [5] it is shown
that the in�nitely many closed loop poles vary from the open loop poles
to the open loop zeros as the gain is increased from zero to plus or minus
in�nity, depending on the sign of the instantaneous gain. De�ning the zero
dynamics to be the system obtained by constraining the output y to zero,
or equivalently, as the system obtained in the high gain limit, it is possible
to enhance many of the classical results on stabilization of minimum phase
systems (i.e., systems with exponentially stable zero dynamics). In partic-
ular, in [5] it is shown that the one parameter family of closed loop spatial
operatorsAk { the analog of (A+BkC) in classical �nite dimensional theory
{ form an analytic family, in the gain parameter k, of unbounded operators,
in Hilbert state space, in the sense of norm resolvent convergence (cf. Kato
[17]). This result together with a generalization the Trotter-Kato theorem
provides a simple proof that the semigroups Sk(t), with in�nitesimal gen-
erators Ak, converge in the uniform operator topology to the semigroup
generated by the zero dynamics, S1(t).

The main result of the present paper is to provide a nonlinear enhance-
ment of the root locus results obtained for linear distributed parameter
systems in [5] for a boundary controlled, viscous Burgers' equation. This
work extends the results obtained in [10] for the unforced problem. In the
unforced case all trajectories converge to zero for increasing time. This is
in marked contrast with the present case in which the forced dynamics can
have more complicated behavior as time increases. In fact we will show
that for all positive values of the gain parameters and for a forcing term
independent of time, there is always a compact local attractor. For the
zero dynamics we can show (cf. [2, 14]) that this attractor consists of a
single point. Our main result is that the closed-loop trajectories uniformly
approach the trajectories of the zero dynamics as the gain parameters are
tuned. And a corollary to our main convergence result is that for su�ciently
small initial data and forcing term the attractors of the closed loop system
converge to the attractor for the zero dynamics. Thus we establish, in this
case, that boundary control provides a design method for stabilizing the sys-
tem about the attractor of the zero dynamics. The most important result
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used in the proofs is that the linear part of the closed loop spatial Burgers'
operator form a holomorphic family, with respect to the gain parameters,
in the sense of norm resolvent convergence and that the nonlinear term is
a Lipschitz operator with respect to the Hilbert scale norm generated by
the square root of the linear part. This paper represents an extension of
our earlier work [10] in which we proved convergence of trajectories for the
unforced case. In that case we were able to obtain exponential stability
along with the convergence of the trajectories while in this case we obtain
the existence of local attractors and convergence of the local attractor to
the single global asymptotically stable equilibrium for the zero dynamics.

As a �nal comment, we note that in this work we are particularly in-
terested in the control of a viscous Burgers' equation as a continuation of
our earlier work [7]-[10]. Nevertheless, it is possible to specify, in a va-
riety of ways, classes of problems which contain the Burgers' model as a
special case, for which a parallel entire theory can be established. Such
generalizations do present certain nontrival di�culties which the authors
address in a forthcoming paper devoted to a general class of convective
reaction di�usion equations on bounded domains in n-dimensional space.
Another approach to generalizing these results, which the authors have not
considered but clearly would work, is to state the entire problem in terms
of abstract operators in Hilbert space. In this case the family of closed
loop operators Ak de�ned below could be replaced by a family of positive
self-adjoint operators with compact resolvent which are holomorphic in the
parameter k. In addition, somewhat more general nonlinear terms can be
considered, but in general the norm of the nonlinear term must, in some
sense, be bounded by the norm of some fractional power of the operators
Ak. Carrying out such an abstract project might be an interesting objective
for future work.

2 Statement of Main Results

Consider the controlled viscous Burgers' system

zt(x; t) + �A0z(x; t) = F (z(x; t)) + f(x; t); x 2 (0; 1); t > 0

�zx(0; t) = u0(t); zx(1; t) = u1(t); (2.1)

z(x; 0) = �(x);

y0(t) = z(0; t); y1(t) = z(1; t)

where � > 0 is a �xed viscosity, u0(t), u1(t) are boundary inputs, y0(t),
y1(t) are boundary outputs, f(t) 2 L2(0; 1) is an external forcing term
modeling an unknown disturbance, and A0 is the unbounded selfadjoint
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operator de�ned by the di�erential operator

A = � d2

dx2
(2.2)

with dense domain in L2(0; 1)

D(A0) = ff 2 H2(0; 1) : f 0(0) = f 0(1) = 0g; (2.3)

(0 = d=dx) and
F (z) = �z0z: (2.4)

Formally introducing proportional error feedback in the form

u0 = �k0y0; u1 = �k1y1; (2.5)

with feedback gains k0; k1 2 R; we obtain the closed loop Burgers' system

zt(x; t) + �Akz(x; t) = F (z(x; t)) + f(x; t); x 2 (0; 1); t > 0

�zx(0; t) + k0z(0; t) = 0; (2.6)

zx(1; t) + k1z(1; t) = 0;

z(x; 0) = �(x);

where Ak = A, k = (k0; k1); with domain

D(Ak) = ff 2 H2(0; 1) : f 0(0)� k0f(0) = 0; f 0(1) + k1f(1) = 0g: (2.7)

The operator Ak, for all real k0 and k1, is a selfadjoint operator, which is
strictly positive, with A�1k compact for k0; k1 � 0 and k0+ k1 > 0 (see, e.g.
[17], pages 146, 148 and 157 and also [13]). We note that for k0 = k1 = 0,
the uncontrolled system (2.1) is obtained and, in this paper, we restrict the
gain parameters by k0 � 0 and k1 � 0 and k0 + k1 > 0.

In analogy with the lumped nonlinear case [11], we de�ne the zero dy-
namics for the controlled Burgers' system to be the system obtained by
constraining the output to be identically zero in time. This corresponds to
the system

zt(x; t) + �A1z(x; t) = F (z(x; t)) + f(x; t); x 2 (0; 1); t > 0;

z(1; t) = 0; z(0; t) = 0; (2.8)

z(x; 0) = �(x);

where A1 = A is positive self-adjoint with domain

D(A1) = ff 2 H2(0; 1) : f(0) = 0; f(1) = 0g: (2.9)

Evidently, the zero dynamics also can be formally identi�ed with the
boundary value system obtained as the feedback gain parameters tend to
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in�nity. For this reason, it is natural to expect that trajectories of the
closed loop system converge in some sense to the trajectories of the zero
dynamics as the feedback gains tend to in�nity. For zero forcing term, (2.8)
is the classical Burgers' equation with Dirichlet boundary conditions which
is well-known to be exponentially stable on H1(0; 1). Indeed, in the se-
ries of papers [3], [4] optimal control methods are used to develop feedback
strategies which enhance stability on this dense subspace of L2(0; 1). In the
language of lumped nonlinear control we would refer to the unforced sys-
tem as being \minimum phase." On the other hand, the unforced open-loop
system, which corresponds to the Burgers' equation with Neumann bound-
ary conditions, is easily shown not to be asymptotically stable. Indeed, the
open-loop dynamics has a one dimensional center manifold, corresponding
to the constant solutions. As predicted by the center manifold theorem, tra-
jectories of solutions, even for small initial data orthogonal to the constants,
may approach this center manifold without going to zero. In contrast to
the case of Dirichlet or periodic boundary conditions, for which stability
can be derived using either Lyapunov or Hopf-Cole methods, a complicat-
ing feature arises for boundary conditions which are neither Dirichlet nor
periodic. Nonetheless, inspired by geometric methods for nonlinear control,
we observe that the feedback laws (2.5) locally asymptotically stabilize the
open loop Burgers' equation given by Neumann boundary conditions in
H1(0; 1), [8]. Our analytic techniques also allow for a preliminary analy-
sis of the robustness of these schemes with respect to the e�ects of small
disturbances, modeled as forcing terms.

The unforced linearization about zero of (2.6) is the controlled heat
equation

zt(x; t) + �Akz(x; t) = 0; x 2 (0; 1); t > 0;

�zx(0; t) + k0z(0; t) = 0; (2.10)

zx(1; t) + k1z(1; t) = 0;

z(x; 0) = �(x):

For k0 = k1 = 0, neither (2.6) nor the linearization about zero of (2.6) is
asymptotically stable, but for k0+k1 > 0 the linearization (2.10) is asymp-
totically stable. As a consequence of the spectral theorem for unbounded
selfadjoint operators, it is easy to see that (��Ak) generates a holomor-
phic semigroup Sk(t) which can be represented explicitly in terms of its
orthonormal eigenfunctions (described below), as

Sk(t)f =

1X
j=1

e���j(k)tfkj  
k
j ; f

k
j =

Z 1

0

f(x) kj (x) dx:

A straightforward calculation based on the explicit eigenfunctions and eigen-
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values given in (2.12)-(2.16) shows that this semigroup is exponentially
stable in L2(0; 1); i.e.,

jjSk(t)jj � e���1(k)t; (2.11)

where �1(k) denotes the �rst eigenvalue of Ak.
Thus the system (2.10) has solution z(t) = exp(�Akt)� satisfying

kz(t)k = kSk(t)�k � e���1tk�k:
Here and below we use the same notation k � k for the norm in L2(0; 1)

k�k =
�Z 1

0

j�(x)j2 dx
�1=2

;

and also for the operator norm for a bounded operator on L2(0; 1).
The spectrum of Ak is readily obtained by noting that a basis of solu-

tions (for all � in the complex plane) of the equation

y00(x) + �y(x) = 0

is given by

y1(x) =
sin(�x)

�
; y2(x) = cos(�x)

where � = �2 and <(�) � 0. Thus every eigenfunction can be written
as a linear combination of these basis functions. Applying the boundary
conditions in (2.7) to a linear combination of these basis functions and
computing the determinant of the resulting coe�cient matrix, we obtain
the characteristic equation�

1� �2

k0k1

�
sin(�)

�
+

�
1

k0
+

1

k1

�
cos(�) = 0: (2.12)

This equation has in�nitely many zeros f�j(k)g1j=1 satisfying

(j � 1)� � �j(k) � j�; j = 1; 2; � � � (2.13)

providing the closed loop eigenvalues

�j(k) = �j(k)
2:

For k0; k1 � 0, k0+k1 > 0, the above inequalities are strict and from (2.12)
it is easy to see that

(�j(k)� (j�)
2
)! 0; k0; k1 !1; j = 1; 2; � � � : (2.14)

Corresponding to the eigenvalues �j(k) = �2j (k), there is a complete

orthonormal system of eigenfunctions in L2(0; 1) given by

 kj (x) = �j(k) sin (�j(k)x + �j(k)) ; j = 1; 2; � � � ; (2.15)
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where in (2.15)

sin(�j(k)) =
�j(k)p

k20 + �j(k)2
; cos(�j(k)) =

k0p
k20 + �j(k)2

;

and �j(k) is a normalization constant given by

�j(k) =

s
2a0a1

a0a1 + (1=k0 + 1=k1)c
(2.16)

with

a0 = 1 + �j(k)
2=k20 ; a1 = 1 + �j(k)

2=k21 ; c = 1 + �j(k)
2=(k0k1):

By direct calculation or a purely formal limit calculation using the above
formulas, we obtain the eigenvalues and eigenfunctions for the operator A1
de�ned in (2.9) corresponding to k0 = k1 =1

�j(1) = (j�)
2
;  1j (x) =

p
2 sin(j�x): (2.17)

This formal limit procedure can also be proved rigorously using the root
locus techniques developed in [5] together with the fact that the operators
Ak form a holomorphic family in the sense of Kato, (see Example 1.15, page
374, [17]).

An immediate consequence of the spectral representation theorem is
that the operators Ak de�ne an in�nite scale of Hilbert spaces H�

k (� 2 R).
For each � � 0 the space H�

k consists of vectors � 2 H0
k = L2(0; 1) such

that

k�k�;k =
0@ 1X
j=1

��j (k)(�;  
k
j )

2

1A1=2

<1: (2.18)

These same spaces can also be described in a di�erent way. Namely, the

spaceH�
k is the domain of the operator A

�=2
k with inner product space given

by

(�;  )� =
�
A
�=2
k �;A

�=2
k  

�
; (2.19)

which is the same as (2.18) for  = �. The operator A
�=2
k is de�ned on H�

k

by the formula

A
�=2
k � =

1X
j=1

�j(k)
�=2(�;  kj ) 

k
j : (2.20)

Lemma 2.1 For k = (k0; k1) > 0 or k = (1;1), the spaces H�
k have the

following properties:
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1. If � > �; then H�
k � H�

k and

k�k�;k � �1(k)
(���)=2k�k�;k (2.21)

for all � 2 H�
k ;

2. H�
k is dense in H�

k ; and

3. The embedding H�
k � H�

k is compact.

The proof of this lemma is easily established using elementary L2(0; 1)
estimates and the formulas in (2.12)-(2.23). For example, as a consequence

of (2.13) and (2.18), for � 2 H�
k , the �rst statement of the lemma can be

established as follows:

k�k2�;k =

1X
j=1

�j(k)
�(�;  kj )

2

= �1(k)
�

1X
j=1

�
�j(k)

�1(k)

��
(�;  kj )

2

� �1(k)
�

1X
j=1

�
�j(k)

�1(k)

��
(�;  kj )

2

= �1(k)
(���)

1X
j=1

�j(k)
�(�;  kj )

2

= �1(k)
(���)k�k2�;k:

Using the fact that D(Ak) is a core in D(A1=2
k ) = H1

k (cf, Theorem 3.35,
[17]), it is easy to show that the norm in H1

k can be written as

k'k21;k =

8>>>>>>>>>>><>>>>>>>>>>>:

k'xk+ k0j'(0)j2 + k1j'(1)j2;
for k = (k0; k1) 2 (0;1)� (0;1);

k'xk2 + k0j'(0)j2;
for k0 2 (0;1); k1 =1;

k'xk2 + k1j'(1)j2;
for k0 =1; k1 2 (0;1)

(2.22)

and
k'k21;1 = k'xk2; for k = (1;1): (2.23)

Let H1(0; 1) denote the usual Sobolev space with norm

k'k2H1(0;1) = k'xk2 + k'k2:
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Then, as sets, the spaces H1
k are given explicitly by

H1
k =

8>>><>>>:
H1(0; 1); for k = (k0; k1) 2 (0;1)� (0;1);

H1(0; 1) \ f' : '(1) = 0g; for k0 2 (0;1); k1 =1;

H1(0; 1) \ f' : '(0) = 0g; for k0 =1; k1 2 (0;1);

(2.24)

and

H1
1 = H1(0; 1) \ f' : '(0) = 0; '(1) = 0g; for k0 = k1 =1: (2.25)

We emphasize that

H1
1 = D(A1=2

1 ) = H1
0 (0; 1); (2.26)

where H1
0 (0; 1) is the standard notation for the Sobolev space of functions

in H1(0; 1) which vanish at x equal 0 and 1.

De�nition 2.1 The \zero dynamics" subspace is the natural domain of

A
1=2
1 , i.e., H1

1 = H1
0 (0; 1).

The results in (2.24) are well known but can easily be obtained from
several di�erent points of view. One point of view is the notion of inter-
polation spaces (see, for example, [1], pages 111-115) and fractional powers
of dissipative operators. The basic ideas used in [1] can also be found in
several other references but the main idea is generally based on the work
of P. Grisvard, [15].

An immediate consequence of part 1 of Lemma 2.1, with � = 0, � = 1,
and the representation of the norm in H1

k given in (2.22) is the following
lemma which will be used repeatedly.

Lemma 2.2 For any k = (k0; k1) 2 (0;1]� (0;1] and ' 2 H1
k; we have

k'k2 � �1(k)
�1k'k21;k; (2.27)

where 0 < �1(k) < �2 is the �rst eigenvalue of Ak, k � k is the norm in

L2(0; 1) and k � k1;k is de�ned in (2.22). It follows that for all ' 2 H1
k,

k'k2H1(0;1) �
�
1 + �1(k)

�1
� k'k21;k: (2.28)

We will also need the following well known relationship between the
L1(0; 1) norm

kzkL1(0;1) = ess sup
x2[0;1]

jz(x)j

and the norm in H1(0; 1). In general such results follow from the classical
Sobolev embedding theorem but this special case can easily be established
using elementary calculus, the Cauchy-Schwartz inequality and Lemma 2.2.
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Lemma 2.3 For z 2 H1(0; 1) we have the estimate

kzkL1(0;1) �
p
2kzkH1(0;1);

and, hence, for z 2 H1
k,

kzkL1(0;1) � ckzk1;k
where

c =
p
2(1 + �1(k)

�1)1=2: (2.29)

From (2.22), for all �nite k = (k0; k1) > 0 and � 2 H1
1, we have the

norm equality
k�k1;k = k�k1;1: (2.30)

Furthermore, we note that for all �nite k = (k0; k1) > 0 and � 2 H1
k,

with k�k1;k � �, it follows from (2.22) that

j�(0)j � �p
k0
; j�(1)j � �p

k1
:

So, as k0 and k1 tend to in�nity, we must have

�(0) = �(1) = 0:

This implies\
k>0

f� 2 H1
k : k�k1;k � �g = f� 2 H1

1 : k�k1;1 � �g: (2.31)

We are now in a position to state the main results of the paper. First
in Theorem 2.1 we state a global in time existence and uniqueness result
for small initial data and forcing terms. The proof of this result can be
obtained using the same methods found, for example, in [3, 4], [8], [16],
[18]. In particular, (cf., Theorem 3.3.3, 3.3.4 and 5.1.1 in [16]) the proof
is based on assuming the initial data to be small and obtaining certain
estimates from the variation of parameters formula which ensure that the
solution will stay small for all time. In our case, how small the initial
data and forcing term must be in order to guarantee global existence of a
solution depends on the values of the gain parameters k0 and k1. This is
due to the fact that for k0 = k1 = 0 the linearization about zero possesses
a zero eigenvalue and certain estimates no longer hold, e.g., the generalized
Poincare inequality (cf. Lemma 2.2 part 1). Since the primary goal in this
paper is to consider the behavior of solutions for large values of k0 and k1
{ the high gain limit { the existence Theorem 2.1 is not stated in most
generality. Rather, we �rst assume that k0 and k1 are su�ciently large,
i.e., greater than a certain value ek. With this assumption we can state the
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existence Theorem 2.1 for a �xed ball of initial data in the zero dynamics
subspace H1

1 and the same forcing term f . This result is valid for all

(k0; k1) � ek for (2.6) and for k0 = k1 =1 in (2.8).
It is easy to see from (2.12) that the eigenvalues �j(k) are monotone

increasing functions of k0 and k1 and as mentioned in (2.14),

lim
k0;k1!1

�1(k) = �2:

In general, it is well known that multivariable root locus analysis, even
for �nite dimensional linear systems, can be quite complicated and that
typically the way in which the gain parameters tend to in�nity can be
critical. Nevertheless, for the closed loop system described in (2.10), the
root locus analysis is quite simple. Indeed, for gains (k0; k1) restricted to
[0;1]� [0;1] the closed loop poles are real and nonnegative and eigenfunc-
tions de�ned in (2.15)-(2.16) vary continuously with respect to the gains.
That is, it is possible to pass to the limit, as either k0 or k1 tends to in�nity
�rst, and then the other, and the resulting limit is the same. In order to
avoid the necessity of considering all the resulting special cases that arise
in dealing with the cases in which either k0 or k1 becomes in�nite while the
other is �nite, we will make the following assumption on our passage to the
high gain limit.

Assumption 2.1

1. We assume that (k0; k1) = k � ek where ek has been chosen so that

�1 � �1(ek) > 3�2

4
: (2.32)

2. Throughout the paper we use the slight abuse of notation k � ek where

k = (k0; k1) is a pair and ek is a number. This is to be interpreted as

meaning that k0; k1 � ek.
3. Finally, in using the notation

lim
k0;k1!1

g(k0; k1) = L

in a normed space with norm k � k, it is understood that given � > 0,

there is a ek > 0 so that

kg(k0; k1)� Lk < �

for k0; k1 � ek with k0 and k1 restricted to a sector

0 < � < tan�1
�
k1

k0

�
� �

2
� �

for some � 2 (0; �=2).
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Note that the last assumption ensures that in passing to the limit in k0
and k1 it is not possible for one to become in�nite while the other remains
�nite.

The main result of the paper concerning convergence of trajectories is
contained in Theorem 2.2. The proof of this result is given in the appendix
in a series of lemmas, several of which are of independent interest.

Next we state a compactness result, Theorem 2.3, for the trajectories
of solutions to (2.6) in the Sobolev space H1

k. This result can be obtained
with appropriate modi�cation of Theorem 3.3.6 in [16] together with the
compact embedding in part 3 of Lemma 2.1. So once again the proof will
be omitted.

Next in Theorem 2.4 we present a continuous dependence result in H1
k

which also shows that for �xed gain values, di�erent initial values and
the same forcing term, the di�erence of the trajectories converge to zero
exponentially as t!1.

These last two results are needed in the proof of our �nal Theorem 2.6
concerning the convergence of local attractors in the high gain limit. Before
stating Theorem 2.6 we describe how our closed loop system (2.6) and
zero dynamics (2.8) generate nonlinear semigroups in a bounded complete
metric phase space in H1(0; 1). This provides us with the standard setup
to de�ne certain nonlinear dynamical systems and discuss the existence of
local attractors. Namely, in Theorem 2.5 we state the existence of a local
attractor for the system (2.6) in H1

k.

Theorem 2.1 Let � be a �xed positive viscosity, k = (k0; k1) � ek and

� = �k > 0 be any positive number satisfying

� <
�

4
: (2.33)

Assume that t ! f(�; t) : (0;1) ! L2(0; 1) is locally H�older continuous

with f 2 L1([0;1); L2(0; 1)) such that

ess sup
t2[0;1)

kf(�; t)k � ��

3
: (2.34)

Then for every initial condition � 2 H1(0; 1) with

k�k1;k � �=4 (2.35)

there is a unique solution zk 2 C([0;1); H1(0; 1)) \ C1([0;1); L2(0; 1)) of
(2.6) and, moreover, this solution satis�es

kzk(t)k1;k � �; for all t � 0: (2.36)

Furthermore, for every initial condition � 2 H1
1 = H1

0 (0; 1) with

k�k1;1 � �=4 (2.37)

12
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there is a unique solution z1 2 C([0;1); H1(0; 1))\C1([0;1); L2(0; 1)) of
(2.8) which satis�es

kz1(t)k1;1 � �; for all t � 0: (2.38)

The main result of the paper is contained in the following theorem.

Theorem 2.2 Let zk and z1 denote the solutions of (2.6) and (2.8), re-

spectively for the same initial data � 2 H1
1 satisfying (2.35) and forcing

term f satisfying (2.34).

Then

lim
(k0;k1)!1

sup
t�0

kzk(�; t)� z1(�; t)k1;k = 0 (2.39)

and

lim
(k0;k1)!1

sup
t�0

sup
x2[0;1]

jzk(x; t)� z1(x; t)j = 0; (2.40)

i.e., the trajectories converge uniformly in space and time.

We note that, due to Lemma 2.3, (2.40) follows from (2.39).
The following result shows that for �xed k = (k0; k1), the trajectories

of solutions given in Theorem 2.1 lie in a �xed compact set in H1
k.

Theorem 2.3 Assume the hypotheses in Theorem 2.1 on �, f and k =
(k0; k1). Then for 1 < � < 2, there is a continuous bounded function

C(k�k; �; k) > 0 such that

kzk(t)k�;k � C(k�k; �; k) (2.41)

for all t 2 [0;1), where zk(t) is the solution of Theorem 2.1 for k0; k1 2
[ek;1]. Thus due to the compact embedding of H�

k in H1
k, the set

fzk(t)gt�0
lies in a �xed compact set in H1

k.

Theorem 2.4 Assume the hypotheses of Theorem 2.1 and let z1k, z
2
k denote

the solutions given in Theorem 2.1 for initial data �1 and �2 satisfying

k�jk1;k � �

4
; j = 1; 2; (2.42)

and with the same forcing term f = f(x) (independent of t) satisfying

kfk � ��

3
: (2.43)

13
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Then for all t � 0 we have

kz1k(t)� z2k(t)k1;k � e���
2t=8k�1 � �2k1;k (2.44)

and hence by (2.42)

kz1k(t)� z2k(t)k1;k �
�

2
e���

2t=8 (2.45)

We now assume that the forcing term f 2 L2(0; 1) is independent of
time. Let

Bk0 = f� 2 H1
k : k�k1;k < �=4g;

Bk1 = f� 2 H1
k : k�k1;k < �g;

then we can de�ne the mappings

T kt (�) = zk(t)

where zk(t) is the solution to (2.6) for k �nite or in�nite and for initial data
� 2 Bk0 given in Theorem 2.1. By Theorem 2.1 T kt (�) is in B

k
1 for all t � 0.

That is,
T kt (B

k
0 ) � Bk1 ; 8 t � 0:

Consider now the set


k(B
k
0 ) =

[
t�0

T kt (B
k
0 ):

T kt can be naturally extended to 
k(B
k
0 ); i.e., if � 2 
k(Bk0 ), then there is a

�0 2 Bk0 and t0 � 0 such that � = T kt0(�0) and for t � 0 it makes sense to
de�ne T kt (�) = T kt0+t(�0). The family fT kt ; t � 0g becomes a semigroup of

transformations on 
k(B
k
0 ) which can be extended to 
k(B

k
0 ) by continuity.

Thus, in this way, we obtain a nonlinear semigroup fT kt ; t � 0g with phase
space

Bk = 
k(Bk0 ):

We see that 
k(B
k
0 ) � Bk1 ; so, the whole phase space of our dynamical

system is bounded. From Theorem 2.3 we see that all the mappings T kt
with t > 0 are compact; i.e., if eB � Bk then T kt (

eB) is relatively compact
in H1

k.

Theorem 2.5 De�ne

Ak =
\
��0

[
t��

T kt (B
k
0 ): (2.46)

Then Ak is a local attractor:

14
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1. Ak is nonempty, connected and compact.

2. Ak attracts all bounded subsets of Bk:

lim
t!1

dk

�
T kt (

eB);Ak� = 0; for all eB � Bk:

Here dk(C;D) = supc2C infd2D kc� dk1;k.
3. Ak is invariant: T kt (Ak) = Ak for all t � 0.

The proof of statements 1-3 of Theorem 2.5 are simple consequences of
Theorems 2.1, 2.3 and the general results on attractors found, for example,
in [20]-[23].

An alternative characterization of Ak is given by the set of all convergent
sequences of the form T ktj (�j) for �j 2 Bk0 and tj " 1 (see [21, 22, 23]). We
will use this formulation to show that the attractors Ak converge to A1
as k ! 1. As a consequence of the results in [2] it follows that the local
attractor for the zero dynamics consists of a single point; i.e., A1 = z1

with z1 2 H1
0 (0; 1). Indeed, based on the work in [2] or by straightforward

application of the Hopf-Cole transformation, it can be shown that there is a
unique stationary solution that is globally attractive for any positive value
of the viscosity � and for any forcing term f .

Theorem 2.6

lim
k0;k1!1

d(Ak;A1) = 0; (2.47)

where

d(Ak ;A1) = sup
�2Ak

k�� z1kH1(0;1):

The proof of Theorem 2.6 is given in the appendix.

Remark 1 In this section we were able to de�ne a family of nonlinear
semigroups depending on the gain parameters k0 and k1 and make several
statements concerning properties of the nonlinear semigroups. The proofs
of Theorems 2.1, 2.3 and 2.5 can be obtained using modi�cations of proofs
that can be found elsewhere (see, e.g., [16, 18, 20, 21, 22, 23]) and so to
conserve space we have not included these proofs.

While the proof of Theorem 2.1 is not included, we will provide some
remarks that might be helpful in understanding how the results in [16] can
be modi�ed to handle the present case.

A straightforward modi�cation of the uniqueness and existence results
in Theorem 3.3.3, 3.3.4 and 5.1.1 of [16] show that our assumption on � is
not best possible. For example, for k0 � 0, k1 � 0 with k0+ k1 > 0 and for
initial data � 2 H1

k with

k�k1;k � �

4

15
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we need only take � a positive number satisfying

cCk� � 1

2
(2.48)

with c de�ned in (2.29), and

Ck =
s

2�

�2e�1(k)
(2.49)

is de�ned in (4.8).

Under Assumption 2.1 for k � ek, we have
3�2

4
� �1(k) � �2

and it is easy to show that

cCk � 1

�

so that
� � �

2

implies (2.48). We have chosen the extra smallness condition in (2.33) since
it is needed in the proof of Theorem 2.4. Similarly, we need

Ck sup
t�0

kf(t)k � �

4
(2.50)

which again is satis�ed for all k � ek if

sup
t�0

kf(t)k � ��

3
:

The proofs of Theorems 2.2, 2.4 and 2.6 are included in the Appendix
following the next section on numerical simulation.

3 Numerical Simulations

In this section we present a numerical example with approximate solutions
obtained using a Galerkin method based on the eigenfunctions of the lin-
earization about zero of the spatial part of Burgers' equation. In this exam-
ple we consider initial data �(x) = x2(1� x)2, forcing term f � :5(:5� x).

The error referred to in the table below is the maximum variation be-
tween the closed loop and the zero dynamics solutions on a uniform grid
of [0; 1] � [0; 5] with mesh size �x = :01 and �t = :01. In Table 1 we

16
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present the maximum deviation between the zero dynamics computed us-
ing an eight node approximation and the closed loop solution generated
using N = 2, 4 and 6 nodes. In this example we have set � = (60)�1=2 and
the gains to be equal, k0 = k1 � k. The values of k are varied from :05 to
1000. For the forcing term in this example, it can be shown (see [14]) that
for k0 = k1 > :008 the closed loop system has a single stationary solution.
This helps to explain why the approximate solutions depicted in Figure 3
- Figure 6 approach a single equilibrium. This data was generated using a
program developed in MATLAB.

wt � �wxx + wwx = :5 (:5� x)

�wx(0; t) + kw(0; t) = 0

wx(1; t) + kw(1; t) = 0

w(x; 0) = x2(1� x)2;

k N=2 N=4 N=6

.05 3.2898e-001 3.073e-001 3.072e-001

.5 1.949e-001 1.897e-001 1.899e-001

1 1.356e-001 1.356e-001 1.358e-001

10 2.732e-002 3.005e-002 3.083e-002

50 1.131e-002 6.482e-003 6.887e-003

100 1.033e-002 3.632e-003 3.438e-003

1000 9.509e-003 2.581e-003 7.623e-004

Table 1. Maximum Deviations From Zero Dynamics.
N : number of Galerkin nodes, k = k0 = k1: gain values
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Figure 1. Open Loop Dynamics: k = 0
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Figure 2. Zero Dynamics: k =1
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Figure 3. Closed Loop Dynamics: k = 1
max deviation from zero dynamics: :136
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Figure 4. Closed Loop Dynamics: k = 10
max deviation from zero dynamics: :03
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Figure 5. Closed Loop Dynamics: k = 100
max deviation from zero dynamics: :003
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Figure 6. Closed Loop Dynamics: k = 1000
max deviation from zero dynamics: :0007

20



VISCOUS BURGERS' EQUATION

4 Appendix

Throughout all the proofs of Theorems 2.1 - 2.6 the following estimates are
used time and time again. First it is easy to see that the nonlinear term F

is locally Lipschitz from H1
k to L

2(0; 1), i.e., for kz1k1;k, kz2k1;k < M , there
exists a constant, C depending only onM , and k but otherwise independent
of z1, z2 such that

kF (z1)� F (z2)k � Ckz1 � z2k1;k:

In particular, for z1, z2 in H1
k with kz1k1;k, kz2k1;k < M

kF (z1)� F (z2)k = kz1z01 � z2z
0
2k (4.1)

� kz1z01 � z1z
0
2 + z1z

0
2 � z2z

0
2k

� kz1z01 � z1z
0
2k+ kz1z02 � z2z

0
2k

� kz1k1kz01 � z02k+ kz02kkz1 � z2k1
� c (kz1k1;kkz1 � z2k1;k + kz2k1;kkz1 � z2k1;k)
= c ((kz1k1;k + kz2k1;k) kz1 � z2k1;k
� Ckz1 � z2k1;k;

where
C = 2cM:

As a special case of the above proof we note that

Lemma 4.1 For z 2 H1
k and F (z) = �zzx,

kF (z)k � c (kzk1;k)2 ; (4.2)

where

c =
p
2(1 + ��11 )1=2

is de�ned in (2.29).

Proof: This result follows immediately from the inequalities

kF (z)k = kzzxk � kzk1kzxk

�
p
2kzkH1(0;1)kzk1;k � ckzk21;k:

2
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Lemma 4.2 The following estimates hold

1. If g 2 H�
k , then for all t > 0, we have

kSk(t)gk�;k � e���1tkgk�;k: (4.3)

2. For � 2 L2(0; 1) and all t > 0

kSk(t)�k�;k � C�
1

t�=2
e���1t=2k�k; (4.4)

where

C� =
��
�

��=2
e��=2: (4.5)

In the particular case � = 1 we have

kSk(t)�k1;k � C1

1

t1=2
e���1t=2k�k; (4.6)

with

C1 =
1p
e�
: (4.7)

3. Using the estimate in 2 we can, by a straightforward integration, ob-

tain Z 1

0

C1t
�1=2e���1(k)t d� = C1

s
2�

��1(k)
� Ck: (4.8)

Remark 2 We notice that Sk(t) : L
2(0; 1) ! L2(0; 1) is compact for all

t > 0 from (4.6) and the compactness of the embedding H1
k � L2(0; 1)

(Lemma 2.1). This is also correct for S1(t) and the estimate for k0 = k1 =
1 can be obtained exactly as above.

Proof:

For part 1) we have for g 2 H�
k ,

kSk(t)gk�;k = kA�=2k (Sk(t)g)k = kSk(t)A�=2k (g)k

� kSk(t)kkA�=2k gk = kSk(t)kkgk�;k � e���1tkgk�;k:

As for part 2), with � 2 L2(0; 1) one computes

kSk(t)�k�;k = Sk(t)�k

= k
1X
j=1

�
�=2
j e���j(k)t < �; kj >  kj k
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=

0@ 1X
j=1

��j (k)e
�2��j(k)tj < �; kj > j2

1A1=2

� sup
j�1;t>0

�
�
�=2
j (k)e���j(k)t

�0@ 1X
j=1

j < �; kj > j2
1A1=2

= sup
j�1;t>0

�
�
�=2
j (k)e���j(k)t

�
k�k:

We now proceed to estimate

sup
j�1;t>0

�
�
�=2
j (k)e���j(k)t

�
:

To this end de�ne
p(�) = ��=2e���t

and we have
dp

d�
(�) = ��=2�1

��
2
� ��t

�
e���t

with a single positive critical value at

�0 =
�

2�t
:

Note that p is increasing for � < �0 and decreasing for � > �0. Also recall
that we need � � �1(k). Thus we have two cases: 1) �0 < �1(k) and 2)
�0 > �1(k).

A straightforward calculation shows that

1. for �0 < �1(k), the max of p occurs at � = �1(k). Also �0 < �1(k)
implies

t >
�

2��1(k)
� tc

and in this case

sup
j�1

�
�
�=2
j (k)e���j(k)t

�
� �

�=2
1 (k)e���1(k)t:

2. for �0 > �1(k), the max of p occurs at �0 and �0 > �1 implies

t <
�

2��1(k)
� tc

and in this case we have

sup
j�1

�
�
�=2
j (k)e���j(k)t

�
� p(�0) �

� �

2�t

��=2
e��=2:
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Combining these results we can say that for all t > 0

sup
j�1

�
�
�=2
j (k)e���1(k)t

�
�
8<:

�
�
2�t

��=2
e��=2 for t < �

2��1(k)

�
�=2
1 (k)e���1(k)t for t > �

2��1(k)

:

We now look for a constant C� such that

sup
j�1

�
�
�=2
j (k)e���1(k)t

�
� C�

e���1(k)t=2

t�=2
; 8 t > 0: (4.9)

For t >
�

2��1(k)
we seek a constant C+ such that

�
�=2
1 (k)t�=2e���1(k)t=2 � C+:

Let s = �1t, and de�ne h+(s) = s�=2 exp(��s). Then we need to �nd
the maximum of h+ on s > �=(2�). Now h+(0) = 0 and h+(1) = 0 and
h+(s) > 0 for s > 0 and it has only one critical value at s = �=� which gives
a maximum value. From this we obtain the desired constant C+, namely,

C+ =
��
�

��=2
e��=2:

For t <
�

2��1
(k) we seek a constant C� such that

��
�

��=2
e��=2e��1(k)t=2 � C�:

In this case we see that the function

h�(t) =
��
�

��=2
e��=2e��1(k)t=2

is a monotone increasing function of t so the maximum on the interval [0; tc]
occurs at tc so that

h�(tc) =
��
�

��=2
e��=2e�=4 =

��
�

��=2
e��=4

and

C� =
� �
2�

��=2
e��=4

works.
Now take

C� = max(C+; C�)
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and we have

max(C+; C�) =
��
�

��=2
e��=4max

"�
1

2

��=2
; e��=4

#
:

But for � > 0 we have �
1

2

��=2
< e��=4

so that

C� = max(C+; C�) =
��
�

��=2
e��=2:

From this estimate we now have

kSk(t)�k�;k � C�
e���1(k)t=2

t�=2
k�k:

2

These results together with our assumption on the forcing term f(t) in
(2.6) and (2.8) allows us to obtain Theorem 2.1 based on the local existence
result found in [16] or [18]. That is, we now can apply Theorem 6.3.1, page
196 of [18], or Theorems 3.3.3, 3.3.4 and 5.1.1 of [16] for small enough initial
data in H1

k.

Proof of Theorem 2.4: If we write out the variation of parameters for-
mula for the solutions z1 and z2,

z
j
k(t) = Sk(t)�

j +

Z t

0

Sk(t� �)(F (zjk(�)) + f(�)) d�;

take the di�erence, apply the k � k1;k norm to both sides and multiply both

sides by e��t=2 with � = �1(k)=4 to obtain

e��t=2kz1k(t)� z2k(t)k1;k � e�t=2kSk(t)(�1 � �2)k1;k +

e��t=2
Z t

0

kSk(t� �)(F (z1k(�)) � F (z2k(�)))k1;k d�;

� e��(�1(k)��)t=2k�1 � �2k1;k + (4.10)

C1

Z t

0

(t� �)�1=2e��(�1(k)��)(t��)=2e���=2kF (z1k(�)) � F (z2k(�))k d�

� k�1 � �2k1;k + 2c�C1

Z t

0

(t� �)�1=2e��(�1(k)��)(t��)=2

e���=2kz1k(�) � z2k(�)k d�;
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where C1 is de�ned in (4.7), the terms involving f(t) have canceled and we
have used (4.1) with M = �.

De�ning
!(T ) = sup

0���T

e��t=2kz1k(�) � z2k(�)k1;k;

we then have for all 0 < t < T

e��t=2kz1k(t)� z2k(t)k1;k � k�1 � �2k1;k +

2!(T )c�C1

Z t

0

(t� �)�1=2e��(�1(k)��)(t��)=2 d�:

Now we note thatZ 1

0

C1(t� �)�1=2e��(�1(k)��)(t��)=2 d� = C1

s
2�

�(�1(k)� �)
� Ck;�;

so we can write

e��t=2kz1k(t)� z2k(t)k1;k � k�1 � �2k1;k + 2!(T )cCk;��:

Under the Assumption 2.1 with k = (k0; k1) � ek we have

cCk;� � 1

�
:

We now have

e��t=2kz1k(t)� z2k(t)k1;k � k�1 � �2k1;k + !(T )
2�

�

� !(T )

2
+ k�1 � �2k1;k;

since we assumed in (2.33) that

� � �

4
:

We can now sup on 0 � t � T to obtain

kz1k(t)� z2k(t)k1;k � e���t=2k�1 � �2k1;k:
2

Proof of Theorem 2.2

Recall once again that a classical solution of (2.6) satis�es the variation
of parameters formula for 0 < k0 + k1 <1

zk(t) = Sk(t)�+

Z t

0

Sk(t� �)(F (zk(�)) + f(�)) d�;
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as does the solution of the zero dynamics (2.8)

z1(t) = S1(t)�+

Z t

0

S1(t� �)(F (z1(�)) + f(�)) d�:

Also we have the pointwise estimate

jzk(x; t)� z1(x; t)j � ckzk � z1k1;k;
with c =

p
2(1 + �1(k)

�1)1=2 de�ned in (2.29).
So to compute a pointwise estimate for the di�erence of the solutions,

we need only consider the H1
k norm of the di�erence.

kzk(�; t)� z1(�; t)k1;k � (4.11)

�




A1=2

k (zk(t)� z1(t))





 � 



A1=2

k

�
Sk(t)� � S1(t)�

�



+
+

Z t

0





A1=2
k

�
Sk(t� �)F (zk(�)) � S1(t� �)F (z1(�))

�



 d�;
+

Z t

0





A1=2
k

�
Sk(t� �)� S1(t� �)

�
f(�)





 d�;
� kA1=2

k [Sk(t)� S1(t)]�k

+ k
Z t

0

�
A
1=2
k Sk(t� �)F (zk(�)) �A1=2

1 S1(t� �)F (z1(�))

�
d�k

+





 Z t

0

�
A
1=2
k �A1=2

1

�
S1(t� �)F (z1(�)) d�






+





 Z t

0

A
1=2
k

�
Sk(t� �)� S1(t� �)

�
f(�) d�






� I + II + III + IV: (4.12)

For the term II we have the estimates

II �
Z t

0





A1=2
k Sk(t� �)(F (zk(�)) � F (z1(�)))





 d� (4.13)

+





 Z t

0

[A
1=2
k Sk(t� �) �A1=2

1 S1(t� �)]F (z1(�)) d�






� IIa+ IIb:
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For the term IIa we can apply (4.1) to obtain the estimate

kF (zk)� F (z1)k � 2c�kzk � z1k1;k: (4.14)

Now using (4.4), (4.7), (4.8) and (4.14) we obtain

IIa �
2c�C1

Z t

0

(t� �)�1=2e���1(k)(t��)=2kzk(�)� z1(�)k1;k d� (4.15)

� 2c�Ck sup
0<�<t

kzk(�) � z1(�)k1;k

< (1=2) sup
0<�<t

kzk(�) � z1(�)k1;k

where the last inequality follows from our choice of � in (2.33). Now take
t0 > 0 and de�ne

!(t0) = sup
0<�<t0

kzk(�) � z1(�)k1;k:

Then we have for all 0 � t � t0

kzk(�) � z1(�)k1;k � 1

2
!(t0) + I + IIb+ III + IV (4.16)

and we need to show that the last four terms on the right can be made
arbitrarily small independent of t for k su�ciently large. The term I is
considered in detail in Lemmas 4.3 to 4.6. The term IIb is considered in
Lemma 4.8, the term III is examined in Lemma 4.7 and �nally the last
term IV is estimated in Lemma 4.9.

As a consequence of the main theorem of [5] (see also [17] Theorem
1.14 and Example 1.15, page 374), we have that the negative selfadjoint
operators ��Ak form a holomorphic family in k0; k1 2 [0;1] with k0+k1 >
0 in the sense of Kato ([17], (Theorem 2.25, page 206 and Theorem 1.3 and
Example 1.4, page 367). Therefore, de�ning

Rk(�) = (�I +Ak)
�1

for any � 62 (0;1), we have

kRk(�) �R1(�)k ! 0; k !1:

In one form or another, most of the following results repose on this strong
statement concerning the fact that the resolvents converge in the uniform
operator topology as k0 and k1 go to in�nity. In addition to this, we now
recall various properties of the resolvents Rk(�), R1(�) and the semigroups
Sk(t), S1(t) that will be used in the proofs of the main results.
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Lemma 4.3 1. For every f 2 L2(0; 1)

ksRk(s)f � fk ! 0; s! +1; (4.17)

and

ksRk(s)k � 1:

We can also see that

ks2Rk(s)2f � fk ! 0; s! +1: (4.18)

2. For all t � 0 and s > 0

kRk(s) (S1(t)� Sk(t))R1(s)k � te���1(k)tkRk(s)�R1(s)k:

3. For all t � 0 and s > 0

[Sk(t)� S1(t)]R1(s)2 = Rk(s)[Sk(t)� S1(t)]R1(s) (4.19)

+[Rk(s)�R1(s)]S1(t)R1(s)� Sk(t)[Rk(s)�R1(s)]R1(s):

4. We have

k[Sk(t)� S1(t)]R2
1(s)k � (t+ 2)e���1(k)tkRk(s)�R1(s)k:

Proof:

Part 1 is a well-known consequence of the fact that �Ak generates a
contraction semigroup (cf. [18]). Part 2 can be found in [17] (page 501,
Theorem 2.14). Part 3 is simple algebra obtained by adding and subtracting
certain terms. Part 4 follows from parts 1 through 3 and the fact that
�1(k) < �1(1). 2

Lemma 4.4 For every � > 0 we can �nd K for which k0; k1 > K implies

kSk(t)� S1(t)k � �e���1t=2; for all t � 0: (4.20)

Proof:

Take g 2 L2(0; 1) such that kgk � 1, then

k[Sk(t)� S1(t)]gk � k[Sk(t)� S1(t)](g � s2R1(s)
2g(s))k

+ s2k[Sk(t)� S1(t)]R
2
1(s)gk (4.21)

� eI +fII:
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Now from Lemma 4.3, part 1 we can take an s > 1 so that

kg � s2R1(s)
2gk � �

4

so by (2.11) eI � (kSk(t)k+ kS1(t)k) �
4
� e���1t

�

2
:

Now by Lemma 4.3 part 4fII = s2k[Sk(t)� S1(t)]R
2
1(s)gk

� s2(t+ 2)e���1t=2kRk(s)�R1(s)k (4.22)

� s2Ce���1t=2kRk(s)�R1(s)k

� �

2
e���1t=2;

where
C = max

t�0
(t+ 2)e���1t=2 <1:

Here, for s �xed, in the last inequality, we have chosenK so that k0; k1 > K

implies

kRk(s)�R1(s)k � �

2s2C
:

Finally, taking the sup over all kgk � 1 we obtain

kSk(t)� S1(t)k � �e���1t=2:

2

Lemma 4.5 For every  2 L2(0; 1), the bounded operators

Bk = A
1=2
k A�1=21 (4.23)

converge to the identity in L2(0; 1) in the strong operator topology as k =
(k0; k1) tend to in�nity. Further, if C � L2(0; 1) is a relatively compact

set, then

sup
 2C

k[Bk � I ] k ! 0; k0; k1 !1:

Proof:

The �rst part of the proof follows from the norm resolvent convergence
of the resolvents. See, for example, the proof of Theorem 3.13, page 459
of [17]. The second part is a simple general fact which can be found for
example in [12], Theorem 3.2 page 124. 2

With these Lemmas we can bound the �rst term I .
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Lemma 4.6 For � 2 H1
k and � > 0; there exists a K such that for k0; k1 >

K

I = kA1=2
k [Sk(t)� S1(t)] �k � � (4.24)

for all t � 0.

Proof:

For each �xed t > 0 a simple Banach algebra argument can be employed
to establish this result (cf. [19] Theorem VIII.20, page 286 ). But to obtain
the result uniformly in t � 0 a bit more work is required.

Take � > 0 su�ciently small and any t � 0 to obtain

kA1=2
k [Sk(t)� S1(t)]�k

� k[A1=2

k Sk(t)�A1=2
1 S1(t)]�k

+ k[A1=2
k �A1=2

1 ]S1(t)]�k (4.25)

= k[Sk(t)A1=2
k A�1=21 � S1(t)]A

1=2
1 �k

+ k[A1=2
k A�1=21 � I ]A1=2

1 S1(t)]�k

� k[Sk(t)[A1=2
k A�1=21 � I ]A1=2

1 �k

+ k[Sk(t)� S1(t)]A
1=2
1 �k

+ k[A1=2
k A�1=21 � I ]A1=2

1 S1(t)]�k

� T1 + T2 + T3:

Now de�ne  = A
1=2
1 �. For the �rst term we have from Lemma 4.5 that

there is a K1 > 0 so that for k > K1

T1 � k[A1=2
k A�1=21 � I ] kkSk(t)k � �=3e���1t: (4.26)

For the second term by Lemma 4.4 there is a K2 > 0 so that for k > K2

we have
T2 = k[Sk(t)� S1(t)] k � �=3e���1t=2: (4.27)

For the third term we note that the set

fS1(t) gt�0
is a relatively compact set in L2(0; 1) for  2 L2(0; 1). Indeed, for any � > 0
the set fSk(t)�gt�� is compact due to Remark 4.1. On the other hand, the
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set fSk(t)�g0�t�� is compact as a continuous image of a compact interval
[0; �]. Hence by Lemma 4.5, we again have a K3 > 0 so that for k > K3

T3 � sup
t�0

k[A1=2

k A�1=21 � I ]S1(t) k � �=3: (4.28)

Combining (4.26), (4.27) and (4.28) with K = max(K1;K2;K3) the result
follows. 2

We have left to consider the remaining terms IIb, III and IV in (4.16):

IIb =





 Z t

0

�
A
1=2

k Sk(t� �) �A1=2
1 S1(t� �)

�
F (z1(�)) d�





;
III =





 Z t

0

�
A
1=2
k �A1=2

1

�
S1(t� �)F (z1(�)) d�





;
IV =





 Z t

0

A
1=2
k

�
Sk(t� �) � S1(t� �)

�
f(�) d�





:
Recall from (4.2) and (2.36) that

kF (z1(�))k � c�2; for all t > 0: (4.29)

Lemma 4.7 For any � > 0 there exists a K > 0 so that for k0; k1 > K we

have

III � �

for all t � 0.

Proof: First note that with Bk de�ned in (4.23) we have

III =





[Bk � I ]

Z t

0

A1=2
1 S1(t� �)F (z1(�)) d�





: (4.30)

Now we show that the set

S =
[
t�0

�Z t

0

A1=2
1 S1(t� �)F (z1(�)) d�

�

is a relatively compact set in L2(0; 1) and hence the result follows from
Lemma 4.5. Take � = 1+ 
 where (1 + 
)=2 < 1. Now use (4.29) and part
2 of Lemma 4.5 to show that the set S is bounded in H


k (here we refer to
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the Hilbert scale generated by A1) and is therefore a relatively compact
set in L2(0; 1). We have



Z t

0

A1=2
1 S1(t� �)F (z1(�)) d�







;k

(4.31)

=





Z t

0

A1=2+
=2
1 S1(t� �)F (z1(�)) d�






=





Z t

0

A�=21 S1(t� �)F (z1(�)) d�






� c�2

Z t

0

kA�=21 S1(t� �)k d�

� c�2C1 <1;

where C1 is de�ned in (2.49) with k =1 (see also (4.8)). 2

For the term IIb we extend a result found in Simon and Reed (cf. [19]
Theorem VIII.20, page 286 ).

Lemma 4.8 For any � > 0 there exists a K > 0 so that for k0; k1 > K we

have

IIb � �

for all t � 0.

Proof:

We �rst reduce our calculations to a compact time interval. To this end,
we consider the following



Z t

0

[A
1=2
k Sk(t� �)�A1=2

1 S1(t� �)]F (z1(�)) d�






=





 Z t

0

[A
1=2

k Sk(�)� A1=2
1 S1(�)]F (z1(t� �)) d�






� c�2

Z t

0




[A1=2
k Sk(�)�A1=2

1 S1(�)]



 d� (4.32)

� c�2
Z t0

0




[A1=2
k Sk(�) �A1=2

1 S1(�)]



 d�

+c�2
Z t1

t0




[A1=2
k Sk(�) �A1=2

1 S1(�)]



 d�
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+c�2
Z 1

t1




[A1=2
k Sk(�)� A1=2

1 S1(�)]



 d�:

For the �rst term, after the last equality above, we haveZ t0

0




[A1=2
k Sk(�)�A1=2

1 S1(�)]



 d� (4.33)

�
Z t0

0

�


[A1=2
k Sk(�)




 + 


A1=2
1 S1(�)]




� d�
� 2C1

Z t0

0

e���1sp
s

ds

� 2C1

Z t0

0

s�1=2 ds � 2C1

p
t0 � �=3

for t0 < (�=12C1)
2 with C1 de�ned in (4.7).

For the last term aboveZ 1

t1




[A1=2

k Sk(�) �A1=2
1 S1(�)]




 d� (4.34)

�
Z 1

t1

�


[A1=2
k Sk(�)




 + 


A1=2
1 S1(�)]




� d�
� 2C1

Z 1

t1

e���1sp
s

ds

� 2C1p
t1

Z 1

0

e���1s ds

� 2C1p
t1��1

� �=3

for t1 > (6C1=(��1�))
2.

With t0 and t1 chosen above, we need only consider the integral over
the �xed compact interval [t0; t1]. Thus we need to estimate the expressionZ t1

t0





�A1=2
k Sk(�) �A1=2

1 S1(�)

�



 d�:
Let

g(�; t) =

�
�1=2e���t; � > 0

0 � � 0
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The function g is a uniformly continuous function on R �[t0; t1] and vanishes
at in�nity in �. Furthermore, by the spectral theorem we have

g(Ak; t) = A
1=2
k Sk(t);

g(A1; t) = A1=2
1 S1(t):

Since [t0; t1] is compact we can �nd fsjgNj=1 and disjoint intervals fIjg such
that

[t0; t1] =

N[
j=1

Ij

and

sup
�2R;t2Ij

jg(�; t)� g(�; sj)j � �

9(t1 � t0)

for j = 1; � � � ; N . Once again by the spectral theorem

sup
�2R;t2Ij




A1=2

k Sk(t)�A
1=2

k Sk(sj)



 � �

9(t1 � t0)

for j = 1; � � � ; N . A similar expression holds for k =1.
Finally, and once again as a consequence of the spectral theorem (cf.

[19] Theorem VIII.20, page 286) and the norm resolvent convergence as
k0; k1 go to in�nity, there exists a K > 0 so that for k0; k1 > K and for
j = 1; � � � ; N

sup
t2Ij




A1=2
k Sk(sj)�A1=2

1 S1(sj)



 � �

9(t1 � t0)
:

Combining these results we can computeZ t1

t0





 hA1=2
k Sk(�)�A1=2

1 S1(�)
i 



 d� (4.35)

=

NX
j=1

Z
Ij





 hA1=2
k Sk(�) �A1=2

1 S1(�)
i 



 d�:

�
NX
j=1

(Z
Ij





 hA1=2

k Sk(�) �A
1=2

k Sk(sj)
i 



 d�

+

Z
Ij





�A1=2
k Sk(sj)�A1=2

1 S1(sj)

�



 d�
+

Z
Ij





�A1=2
1 S1(�) �A1=2

1 S1(sj)

�



 d�
)

� �

9(t1 � t0)

�
3(t1 � t0)

�
=
�

3
: (4.36)
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2

Finally, we consider the term IV

IV =





 Z t

0

A
1=2
k [Sk(t� �) � S1(t� �)] f(�) d�





:
Lemma 4.9 For any � > 0 there exists a k > 0 so that for k0; k1 > k we

have

IV � �

for all t � 0.

Proof: It is easy to see that under the assumption (2.34), so that

ess sup
t2[0;1)

kf(�; t)k <1;

we can simply repeat the proofs given in Lemmas 4.7 and 4.8 in the present
case. Namely, we estimate IV by

IV =





 Z t

0

A
1=2
k [Sk(t� �) � S1(t� �)] f(�) d�






�
Z t

0





 hA1=2

k Sk(t� �) �A1=2
1 S1(t� �)

i
f(�)





 d�
+





 hA1=2
k A�1=21 � I

i Z t

0

A1=2
1 S1(t� �)f(�) d�





:
Following the proof of Lemma 4.7 it can be shown that the set[

t�0

�Z t

0

A1=2
1 S1(t� �)f(�)) d�

�

is a relatively compact set in L2(0; 1). Now using Lemma 4.5 we can con-
clude that last term can be made small uniformly in t � 0 for k0; k1 suf-
�ciently large. As for the second to last term simply replay the proof of
Lemma 4.8 replacing F (z1(�)) by f(�). 2

Proof of Theorem 2.6: In order to prove that the attractors Ak converge
to A1 (which consists of a single point), with respect to the semidistance
determined by the H1(0; 1) norm, we recall (2.28) and our Assumption 2.1
which implies that

k�kH1(0;1) � Ck�k1;k; for all � 2 H1(0; 1);
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where the constant C is independent of k. Therefore is su�ces to show that

lim
k0;k1!1

sup
�2Ak

k�� z1k1;k = 0:

We suppose that this is not true and arrive at a contradiction. If the
attractors Ak do not converge to the single point z1, then there exists a
sequence kn = (kn0 ; k

n
1 ) with k

n
0 ; k

n
1 !1 as n tends to in�nity and a � > 0

such that d(Akn ; z1) > � for every n.
Take �0 2 H1

0 (0; 1) such that k�0k1;1 � �=4, then �0 2 Bk0 for all
k. Since kn0 and kn1 are diverging to in�nity, we know by our main result,
Theorem 2.2, that there is an n for which

kT knt (�0)� T1t (�0)k1;kn �
�

4
; for all t � 0: (4.37)

Now �x this kn and take an arbitrary element � 2 Akn . Then by the
de�nition of the !-limit sets Akn (see [22]), there are sequences f�jg1j=1 �
Bkn0 (see (2.46) and [22]) and tj " 1 such that T kntj (�j) ! � as j ! 1.
Take J1 > 0 so that for all j > J1,

k�� T kntj (�j)k1;kn �
�

4
: (4.38)

By Theorem 2.4, there exists a J2 > 0 such that for all j > J2,

kT kntj (�j)� T kntj (�0)k1;kn � 2�e��tj=8 � �

4
(4.39)

due to (2.44), (2.45). Here we have used the fact that �0 and �j (j > 0)

are in Bkn0 .
Next we note that since A1 = fz1g (see [2]), there exists a J3 > 0

such that for all j > J3

kT1tj (�0)� z1k1;kn �
�

4
: (4.40)

Note that since T1tj (�0) and z
1 are in H1

1, the norms k � k1;kn and k � k1;1
coincide, (2.30).

We now combine (4.38)-(4.40) and use the triangle inequality to obtain

k�� z1k1;kn �
� k�� T kntj (�j)k1;kn
+kT kntj (�j)� T kntj (�0)k1;kn
+kT kntj (�0)� T1tj (�0)k1;kn
+kz1 � T1tj (�0)k1;kn
� �;
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for all j > maxfJ1; J2; J3g. Thus we have arrived at a contradiction and
the proof is complete. 2
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