
Journal of Mathematical Systems, Estimation, and Control c
 1996 Birkh�auser-Boston

Vol. 6, No. 4, 1996, pp. 1{21

Forward/Backward Periodic Realizations of

Nonproper Rational Matrices�

Vicente D. Estruchy Vicente Hern�andezy

Elena S�ancez
y

Carmen Coll
y

Abstract

In many control problems, periodic controllers are usually rep-

resented by nonproper rational transfer matrices. The study of the

model requires implementing the controllers as periodic linear sys-

tems. In this paper we study the problem of realizing a periodic

collection of nonproper rational matrices as a discrete-time forward/

backward periodic linear system.
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1 Introduction

The realization theory of discrete-time invariant linear systems has been

developed using two di�erent approaches: the time domain approach and

the frequency domain or z domain approach. In the time domain ap-

proach, the existence of realizations has been characterized by means of

the Markov parameters that de�ne the input-output invariant application.

This characterization has been oriented in di�erent ways, mainly by means

of recurrence equations that are satis�ed by the Markov parameters and us-

ing the Hankel matrix associated with the collection of Markov parameters

[17] [8]. In the frequency domain approach, the existence of an invariant

realization is equivalent to the proper rational character of the associated
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transfer function matrix [1] [16]. Moreover, it is well known that in general

a nonproper rational matrix always represents a transfer function matrix

associated with a singular invariant linear system [7] [3].

Discrete-time periodic linear systems are important and useful in sys-

tem modeling and seem to be of real interest for generalizing the above

results. The existence of periodic realizations in the time domain and fre-

quency domain approaches is studied in [6]. The �rst part of [6] presents

a characterization of the existence of a periodic realization associated with

an input-output periodic application based on a certain recurrence equa-

tion satis�ed by the periodic Markov parameters. The second part of [6],

studies the problem in the frequency domain and gives a necessary and suf-

�cient condition for the existence of periodic realizations associated with a

periodic collection of proper rational matrices. In [11] realization and mini-

mality theory for discrete-time �nite dimensional linear systems with time-

varying state spaces is developed in the case of the input-output model. In

[14], [5] the minimal periodic realization problem is studied and it is shown

that there exists a periodic system associated with a proper rational ma-

trix. In this work we solve the periodic realization problem in the general

case of nonproper rational matrices.

When generalized periodic models, i.e. discrete-time singular periodic

linear systems are considered, we know that this kind of system can be

approached in the frequency domain by a periodic collection of nonproper

rational matrices. The main goal of this paper is to solve the converse

problem. We characterize when a periodic collection of nonproper ratio-

nal matrices has a singular periodic realization and study the existence of

discrete time-varying forward/backward minimal periodic realizations.

The main tools we use are based on the Invariant Formulations of

discrete-time periodic linear systems and discrete-time singular forward/

backward periodic linear systems. In general the study of a discrete-time

singular invariant linear system is based on the decomposition of the sys-

tem into two subsystems: a discrete-time forward invariant linear system

and a discrete-time backward invariant linear system. The properties of the

initial singular system are given in terms of the properties of the forward

and the backward subsystems [7].

The structure of the paper is the following. First, we introduce the

concept of discrete time-varying forward/backward periodic linear systems

and their associated forward and backward invariant systems. In section 3

we de�ne the forward/backward periodic realization associated with a pe-

riodic collection of nonproper rational matrices. In section 4 we construct

a forward/backward periodic linear system that realizes the periodic col-

lection of rational matrices, proving that a periodic collection of rational

matrices fHs(z); s 2 Zg, Hs+N (z) = Hs(z) 2 <
pN�mN (z) is realizable if

and only if Hs+1(z) = Rp(z)Hs(z)R
�1
m (z), s 2 Z , where Rj(z), j = p;m,
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are given below. In section 5 we present some de�nitions and results re-

lated with reachability and observability properties of forward/backward

periodic systems. Finally, in section 6 we prove that there exists a minimal

and c-minimal discrete time-varying forward/backward periodic linear re-

alization of a given periodic collection of nonproper rational matrices if and

only if the matrices of the collection satisfy the same recurrence equation

of section 4.

2 Discrete Time-Varying Forward/Backward Periodic

Linear Systems

Consider the discrete time-varying periodic linear system

2
4 I 0

0 A2(k)

3
5 x(k + 1) =

2
4 A1(k) 0

0 I

3
5 x(k) +

2
4 B1(k)

B2(k)

3
5u(k); (2.1)

y(k) = [C1(k); C2(k)]x(k); (2.2)

where, A1(k + N) = A1(k) 2 <n1(k+1)�n1(k), A2(k + N) = A2(k) 2

<n2(k)�n2(k+1), B1(k +N) = B1(k) 2 <
n1(k+1)�m, B2(k +N) = B2(k) 2

<n2(k)�m, Ci(k + N) = Ci(k) 2 <p�ni(k), k 2 Z , m; p; N 2 Z+ and

ni(k +N) = ni(k) 2 Z
+, i = 1; 2. We refer to it as a forward/backward

periodic singular system. Note that in this system, the dimension of the

state spaceX(k) = X1(k)�X2(k) is time-varying and given by dimX1(k) =

n1(k) and dimX2(k) = n2(k), k 2 Z . From the special structure of this

system we consider the periodic systems given by

x1(k + 1) = A1(k)x1(k) + B1(k)u(k); (2.3)

y1(k) = C1(k)x1(k); (2.4)

and

A2(k)x2(k + 1) = x2(k) + B2(k)u(k); (2.5)

y2(k) = C2(k)x2(k); (2.6)

denoted by

�F
� (I; A1(�); B1(�); C1(�);X1(�))N

and

�B
� (A2(�); I; B2(�); C2(�);X2(�))N :

System (2.1)-(2.2) will be denoted by �F=B . Systems (2.3)-(2.4) and (2.5)-

(2.6) are called the Discrete-Time Forward and Backward Periodic Lin-

ear Subsystems of (2.1)-(2.2), respectively. Note that the three systems
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have the same inputs, and the states and outputs are such that x(k) =

col[x1(k); x2(k)], y(k) = y1(k) + y2(k).

It is well known [15] that, for any s 2 Z , there exists a forward invariant

linear system associated with periodic system (2.3)-(2.4)

x1;s(k + 1) = A1;sx1;s(k) +B1;sus(k); (2.7)

y1;s(k) = C1;sx1;s(k) + D1;sus(k); k 2 Z (2.8)

with

x1;s(k) = x1(s+ kN);

us(k) = col[u(s+ kN); u(s+ kN + 1); : : : ; u(s+ kN +N � 1)];

y1;s(k) = col[y1(s+ kN); y1(s+ kN + 1); : : : ; y1(s+ kN +N � 1)];

and

A1;s = �A1
(s+N; s) 2 <n1(s)�n1(s);

B1;s = row[�A1
(s+N; s+ j + 1)B1(s+ j)]N�1

j=0 2 <
n1(s)�mN ;

C1;s = col[C1(s+ j)�A1
(s+ j; s)]N�1

j=0 2 <
pN�n1(s);

D1;s = [D
1;s
ij
] 2 <pN�mN ; D

1;s
ij
2 <

p�m; i; j = 1; 2; : : : ; N;

D
1;s
ij

=

8<
:

0; if i � j;

C1(s+ i� 1)�A1
(s+ i� 1; s+ j)B1(s+ j � 1); if i > j:

Note that D1;s is a strictly lower block triangular matrix and A1;s is

the forward monodromy matrix of (2.3)-(2.4) at time s, �A1
(k; k0) =

A1(k� 1)A1(k� 2) : : :A1(k0), k > k0, �A1
(k0; k0) = I . Systems (2.7)-(2.8)

de�ne the Invariant Formulation of forward periodic system (2.3)-(2.4).

We denote invariant system (2.7)-(2.8) by �F

s � (I; A1;s; B1;s; C1;s; D1;s).

From the periodicity of system (2.3)-(2.4) we deduce that �F

s+N � �F

s
,

s 2 Z .

Following the same approach we construct invariant linear systems as-

sociated with a backward periodic system (2.5)-(2.6). For each s 2 Z , we

consider the associated backward invariant linear system

A2;sx2;s(k + 1) = x2;s(k) +B2;sus(k); (2.9)

y2;s(k) = C2;sx2;s(k + 1) + D2;sus(k); k 2 Z ; (2.10)

with

x2;s(k) = x2(s+ kN);

us(k) = col[u(s+ kN); u(s+ kN + 1); : : : ; u(s+ kN +N � 1)];

y2;s(k) = col[y2(s+ kN); y2(s+ kN + 1); : : : ; y2(s+ kN +N � 1)];
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and

A2;s =  A2
(s; s+N) 2 <n2(s)�n2(s);

B2;s = row[ A2
(s; s+ j)B2(s+ j)]N�1

j=0 2 <
n2(s)�mN ;

C2;s = col[C2(s+ j) A2
(s+ j; s+N)]N�1

j=0 2 <
pN�n2(s);

D2;s = [D
2;s
ij
] 2 <pN�mN ; D

2;s
ij
2 <

p�m; i; j = 1; 2; : : : ; N;

D
2;s
ij

=

8<
:
�C2(s+ i� 1) A2 (s+ i� 1; s+ j � 1)B2(s+ j � 1); if i � j;

0; if i > j:

Note that D2;s is an upper block triangular matrix and A2;s, is the back-

ward monodromy matrix of (2.5)-(2.6) at time s,  A2
(k; k0) = A2(k)A2(k+

1) : : : A2(k0 � 1), k < k0,  A2
(k0; k0) = I . Systems (2.9)-(2.10) de�ne the

Invariant Formulation of the backward periodic system (2.5)-(2.6). We

denote system (2.9)-(2.10) by �B

s
� (A2;s; I; B2;s; C2;s; D2;s). From peri-

odicity, systems (2.9)-(2.10) satisfy that �B

s+N � �B
s , s 2 Z .

3 Transfer Matrices of Discrete-Time Forward/Back-
ward Periodic Linear Systems

Given forward periodic system (2.3)-(2.4), the transfer matrix of associated

invariant system (2.7)-(2.8) is given by Fs(z) = C1;s(zI�A1;s)
�1B1;s+D1;s,

s 2 Z . Note that Fs+N (z) = Fs(z) is a periodic collection of proper rational

matrices, with strictly lower block triangular polynomial parts given by

D1;s. In addition to [12] these matrices satisfy the relation Fs+1(z) =

Rp(z)Fs(z)R
�1
m
(z), where Rp(z) and Rm(z) are given by

Rj(z) =

2
4 0 I(N�1)j

zIj 0

3
5 2 <

jN�jN ; j = p;m: (3.1)

In the case of backward periodic system (2.5)-(2.6), if the monodromy

matrix A2;s =  A2
(s; s+N), s = 0; 1; : : : ; N � 1 is nilpotent, the transfer

matrix of associated invariant system (2.9)-(2.10) is given by the polynomial

matrixGs(z) = zC2;s(zA2;s�I)
�1B2;s+D2;s, s 2 Z . Note that Gs+N (z) =

Gs(z) is a periodic collection of polynomial matrices, with upper block

triangular independent terms given by D2;s. These matrices also satisfy

the relation Gs+1(z) = Rp(z)Gs(z)R
�1
m (z), where Rp(z) and Rm(z) are

given in (3.1).

In this way we introduce the concept of forward (backward) periodic

realization of a periodic collection of rational (polynomial) matrices.
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De�nition 1 ([6])

a) Periodic system (I; E(�); F (�); G(�);X(�))N is a forward periodic re-
alization of a periodic collection of rational matrices fHs(z); s 2 Zg,
Hs+N (z) = Hs(z) 2 <

pN�mN (z), if Hs(z) = Gs(zI �Es)
�1Fs + Js,

s 2 Z, where (I; Es; Fs; Gs; Js), is the associated invariant system
at time s.

b) Periodic system (E(�); I; F (�); G(�);X(�))N is a backward periodic
realization of a periodic collection of polynomial matrices

fHs(z); s 2 Zg ; Hs+N (z) = Hs(z) 2 <
pN�mN [z]

if
Hs(z) = zGs(z Es � I)�1Fs + Js; s 2 Z ;

where (Es; I; Fs; Gs; Js) is the associated invariant system at time
s.

Now we introduce the concept of discrete-time singular forward/back-

ward periodic realization of a periodic collection of nonproper rational ma-

trices.

De�nition 2 The discrete time-varying singular forward/backward peri-
odic linear system �F=B, given by (2.1)-(2.2), realizes the periodic collec-
tion of rational matrices fHs(z); s 2 Zg, Hs+N (z) = Hs(z) 2 <

pN�mN (z),
N 2 Z+, if

Hs(z) = [C1;s; zC2;s]

2
4 (zI �A1;s) 0

0 (zA2;s � I)

3
5
�1 2
4 B1;s

B2;s

3
5+

+D1;s +D2;s; s 2 Z

where (I; A1;s; B1;s; C1;s; D1;s) and (A2;s; I; B2;s; C2;s; D2;s) are the for-
ward and backward invariant systems associated with the forward and back-
ward periodic sub systems �F and �B, given by (2.3)-(2.4) and (2.5)-(2.6),
respectively.

In the above de�nition it is assumed that matricesA2;s, s 2 Z are nilpotent.

4 Existence of Singular Forward/Backward Periodic

Realizations

Let

fHs(z); s 2 Zg ; Hs+N (z) = Hs(z) 2 <
pN�mN(z); N 2 Z

+ (4.1)

6
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be a periodic sequence of rational matrices satisfying

Hs+1(z) = Rp(z)Hs(z)R
�1
m
(z); (4.2)

where matrices Rp(z); Rm(z) are given in expression (3.1).

Consider the decomposition H0(z) = F0(z) + P0(z), where F0(z) is a

proper rational matrix whose polynomial part is strictly lower block trian-

gular and P0(z) is a polynomial matrix whose independent term is upper

block triangular. Then, from (4.2), Hs(z) = Fs(z) + Ps(z), s 2 Z , where

Fs(z) is a proper rational matrix whose polynomial part is also strictly

lower block triangular and Ps(z) is a polynomial matrix with upper block

triangular independent term, and such that

Fs+1(z) = Rp(z)Fs(z)R
�1
m (z); (4.3)

Ps+1(z) = Rp(z)Ps(z)R
�1
m
(z); s 2 Z : (4.4)

Consider the periodic collection of proper rational matrices fFs(z);

s 2 Zg. We know from [6] that there exists a forward periodic realization

(I; A1(�); B1(�); C1(�); X1(�))N of fFs(z); s 2 Zg.

On the other hand, for each s 2 Z , Ps(z) = ~Ps(z) + D2
s
, ~Ps(z) =

l+1X
i=1

Ls
i z

i, is a polynomial matrix with upper block triangular indepen-

dent term D2
s
. Thus � ~Ps(

1

z
) =

1

zl+1
~Ns(z) is a strictly proper rational

matrix, where ~Ns(z) is a polynomial matrix of degree least or equal to

l. Rational matrix � ~Ps(
1

z
) has a forward canonical invariant realization

(I; A2;s; B2;s; C2;s; 0) given by [1]

A2;s =

2
4 0 IlpN

0pN 0

3
5 2 <(l+1)pN�(l+1)pN ; (4.5)

B2;s = col [�Ls
i
]
l+1

i=1 ; C2;s = [ IpN ; 0pN ; � � � ; 0pN ] : (4.6)

Thus,

� ~Ps(
1

z
) = C2;s(zI �A2;s)

�1B2;s:

This implies that

~Ps(z) = zC2;s(zA2;s � I)�1B2;s:

As Ps(z) = ~Ps(z) +D2
s
, the backward invariant linear system

A2;sx(k + 1) = x(k) +B2;su(k); (4.7)

y(k) = C2;sx(k + 1) +D2;su(k); (4.8)

7
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where A2;s, C2;s, B2;s are given in (4.5), (4.6) and D2;s = D2
s
, is a back-

ward invariant realization of the matrix Ps(z). Note that matrix A2;s given

by (4.5) is a nilpotent matrix with order of nilpotence l+1. So we only have

a �nite number of nonzero Markov parameters associated with backward

invariant realization (A2;s; I; B2;s; C2;s; D2;s). Consider these Markov pa-

rameters, V2;s(k) 2 <
pN�mN ,

V2;s(k) =

8<
:

�C2;sA
k�1
2;s B2;s; if 1 � k � l + 1

D2;s; if k = 0:
(4.9)

These parameters satisfy

Ps(z) = �zC2;s(zA2;s � I)�1B2;s +D2;s =

l+1X
k=1

V2;s(k)z
k +D2;s:

Applying to the backward case the same technique described in [6] we de�ne

the following periodic collection of Markov parameters

fV2;s(k; j); k � 1; j = 0; 1; : : : k � 1g � <p�m; s 2 Z : (4.10)

Given a partition of V2;s(k) into blocks of size p�m

V2;s(k) = ([V2;s(k)]�;�); [V2;s(k)]�;� 2 <
p�m; �; � = 1; 2; : : : ; N;

and k = pN + 
, k � 1, we de�ne V2;s(k; j) in the following way:

1. If 
 = 0 (k = pN; p > 0), j = �N + �, 0 � � < p, 0 � � � N � 1,

then

V2;s(k; j) = [V2;s(�)]1;�+1:

2. Consider 
 = 1; 2; : : : ; N � 1.

(a) If j = 0; 1; : : : ; 
 � 1, then

V2;s(k; j) = [V2;s(0)]N�
+1;N�
+j+1:

(b) If j = (� � 1)N + 
 + �, � = 0; 1; : : : ; N � 1 (1 � � � p, p � 1),

then

V2;s(k; j) = [V2;s(�)]N�
+1;�+1:

As in [6], we obtain the following proposition.

Proposition 3 The backward periodic linear system (A2(�); I; B2(�);

C2(�);X2(�))N ; where

A2(s) =

2
4 0 I((l+1)N�1)p

0p 0

3
5 2 <(l+1)pN�(l+1)pN ; (4.11)

8
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B2(s) = col [�V2;s+1(j; j � 1)]
(l+1)N

j=1
; (4.12)

C2(s) = [ Ip; 0p; � � � ; 0p] ; s 2 Z (4.13)

is a periodic realization of the Markov sequences (4.10).

Moreover, the backward invariant system associated with (A2(�); I; B2(�);

C2(�); X2(�))N at time s, is a backward invariant realization of the Markov

parameters V2;s(k) given in (4.9). So from de�nition 1, periodic system

(A2(�); I; B2(�); C2(�);X2(�))N is a backward periodic realization of the

periodic collection of polynomial matrices fPs(z); s 2 Zg.

The next theorem resumes the above discussion.

Theorem 4 A periodic collection of, in general, nonproper rational ma-
trices

fHs(z); s 2 Zg ; Hs+N (z) = Hs(z) 2 <
pN�mN (z); N 2 Z

+;

is realized by a discrete time-varying singular forward/backward N-periodic
linear system such that its backward subsystem has a nilpotent monodromy
matrix at any time, if and only if the relation Hs+1(z) = Rp(z)Hs(z)R

�1
m
(z)

is satis�ed, where Rp(z) and Rm(z) are given in (3.1).

Next, we study the problem of the existence of minimal discrete time-

varying linear forward/backward periodic realizations of a periodic collec-

tion of rational matrices. If a forward/backward discrete-time linear pe-

riodic system is a realization of a periodic collection of rational matrices,

then the monodromy matrices  A2
(s; s +N), s = 0; 1; 2; : : : ; N � 1 of the

backward subsystem are nilpotent. We assume nilpotence as an implicit

characteristic of the monodromy matrices of backward discrete-time linear

periodic systems.

5 Solutions, Reachability and Observability of For-
ward/Backward Discrete-Time Linear Periodic Sys-
tems

Consider the forward/backward discrete-time linear periodic system (2.1)-

(2.2), in a �nite set of times k0; k0 + 1; : : : ; kf 2 Z . The forward system

(2.3)-(2.4) and the backward system (2.5)-(2.6) will be restricted to the

same discrete-time interval [k0; kf ]Z . Equation (2.3) is a forward recurrence

equation whose state x1(k) is determined uniquely by initial state x1(k0)

and the forward sequence of inputs u(j), j = k0; k0 + 1; : : : ; k � 1

x1(k) = �A1
(k; k0)x1(k0) +

k�1X
j=k0

�A1
(k; j + 1)B1(j)u(j): (5.1)

9
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On the other hand, equation (2.5) is a backward recurrence equation whose

state x2(k) is determined uniquely by the terminal state x2(kf ) and the

backward sequence of inputs u(j), j = kf � 1; kf � 2; : : : ; k

x2(k) =  A2
(k; kf )x2(kf ) +

kf�1X
j=k

 A2
(k; j)B2(j)u(j): (5.2)

A pair formed by initial state x1(k0) and terminal state x2(kf ) for sys-

tems (2.3)-(2.4) and (2.5)-(2.6), respectively, will be called a complete ini-

tial/terminal condition. The state x(k) of singular system (2.1)-(2.2), at

time k 2 [k0; kf ]Z , is determined by a complete initial/terminal condition,

x1(k0) = x2(kf ), and by a sequence of inputs u(j), j = k0; k0+1; : : : ; kf�1,

x(k) =

2
4 In1(k)

0

3
5 (�A1

(k; k0)x1(k0) +

k�1X
j=k0

�A(k; j + 1)B1(j)u(j)) +

2
4 0

In2(k)

3
5 ( A2

(k; kf )x2(kf ) +

kf�1X
j=k

 A2
(k; j)B2(j)u(j)): (5.3)

5.1 Reachability

De�nition 5

� Given system (2.1)-(2.2), the state w 2 X(k) will be called reachable
at time k in the interval [k0; kf ]Z if there exists a set of inputs u(j) 2
<m(j); j = k0; k0+1; : : : ; kf�1, such that, if x1(k0) = 0 and x2(kf ) =
0; then x(k) = w.

� The state w 2 X(k) will be called reachable at time k 2 Z if there
exist k0; kf 2 Z ; k0 < k < kf such that w is reachable at time k in
the interval [k0; kf ]Z .

� System (2.1)-(2.2) is completely reachable if w is reachable at time
k, for every state w 2 X(k), and for all k 2 Z.

The backward reachability de�nition can be introduced in a similar way

as the forward reachability condition. Thus the subspaces

R1(k0; k) = Im[B1(k�1); �A1
(k; k�1)B1(k�2); : : : ; �A1

(k; k0+1)B1(k0)];

and R1(k) =
S
k0<k

R1(k0; k) are the subspace of reachability in the inter-

val [k0; k]Z and the subspace of reachability at time k of system (2.3)-(2.4).

The subspaces

R2(k; kf ) = Im[ A2
(k; kf )B2(kf );  A2

(k; kf � 1)B2(kf � 1); : : :

: : : ;  A2
(k; k + 1)B2(k + 1); B2(k)];

10
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and R2(k) =
S
kf>k

R2(k; kf ) will be called the subspace of reachability in

the interval [k; kf ]Z and the subspace of reachability at time k of system

(2.5)-(2.6).

System (2.3)-(2.4) is completely reachable if and only if dimR1(k) =

dimX1(k), for all k 2 Z , and system (2.5)-(2.6) is completely reachable if

and only if dimR2(k) = dimX2(k), for all k 2 Z .

Proposition 6 ([10]) System (2.1)-(2.2) is completely reachable if and
only if systems (2.3)-(2.4) and (2.5)-(2.6) are both completely reachable.

5.2 Observability

There are di�erent concepts of observability for generalized state space

models ([18] [4] [2] [7]). Several authors coincide in introducing observabil-

ity of a singular system, at the interval [k0; kf ]Z , as the ability to recon-

struct a complete initial/terminal condition col[x1(k0); x2(kf )] from the

inputs u(k) and the outputs y(k) of the system. We extend the observabil-

ity de�nition for singular invariant systems proposed in [4] and [7] to the

case of forward/backward periodic systems.

De�nition 7 System (2.1)-(2.2) is observable in the interval [k0; kf ]Z if
any state x(k), k 2 [k0; kf ]Z is uniquely determined by the inputs u(j),
j 2 [k0; kf [Z and the outputs y(j), j 2 [k0; kf ]Z , of the system.

We denote by N1(k0; k) the set of unobservable states, in the interval

[k0; k]Z , for system (2.3)-(2.4), i.e. the unobservability subspace in the

interval, [k0; k]Z . Note that

N1(k0; k) = Ker

2
6666664

C1(k0)

C1(k0 + 1)�A1
(k0 + 1; k0)

...

C1(k)�A1
(k; k0)

3
7777775
=

=
T
k�k0

j=0 KerC1(k0 + j)�A1
(k0 + j; k0):

The set N1(k0) =
\
k>k0

N1(k0; k) is called the unobservability subspace at

time k0, of system (2.3)-(2.4). Analogously, we denote by N2(k; kf ) the set

of unobservable states in the interval [k; kf ]Z , of the system (2.5)-(2.6), i.e.

11
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the unobservability subspace in the interval [k; kf ]Z . In this case

N2(k; kf ) = Ker

2
6666664

C2(k) A2
(k; kf )

C2(k + 1) A2
(k + 1; kf )

...

C2(kf � 1) A2
(kf � 1; kf )

3
7777775
=

=
Tkf�k

j=1 KerC2(kf � j) A2
(kf � j; kf ):

The subspace N2(kf ) =
\
k<kf

N2(k; kf ) will be called the unobservability

subspace at time kf of system (2.5)-(2.6). Note that if (2.1)-(2.2) is ob-

servable in the interval [k0; kf ]Z , then

N (k0; kf ) =

Ker

2
6666664

C1(k0) C2(k0) A2
(k0; kf )

C1(k0 + 1)�A1
(k0 + 1; k0) C2(k0 + 1) A2

(k0 + 1; kf )

...
...

C1(kf � 1)�A1
(kf � 1; k0) C2(kf � 1) A2

(kf � 1; kf )

3
7777775
= f0g :

N (k0; kf ) will be called the unobservability subspace in the interval [k0; kf ]

of system (2.1)-(2.2) and N (k0) =
\
k>k0

N (k0; k) the unobservability sub-

space at time k0 of system (2.1)-(2.2).

De�nition 8

� System (2.1)-(2.2) is observable at time k0 2 Z if there exists kf 2 Z,
kf > k0 such that N (k0; k) = f0g, for all k 2 Z ; k � kf .

� System (2.1)-(2.2) is completely observable if it is observable at time
k0, for all k0 2 Z.

Proposition 9 System (2.1)-(2.2) is completely observable if and only if
systems (2.3)-(2.4) and (2.5)-(2.6) are completely observable.

6 Minimal Forward/Backward Periodic Realizations

In this section we study the problem of the existence of minimal discrete

time-varying forward/ backward periodic realizations of a periodic collec-

tion of rational matrices. First we introduce the de�nition and an im-

portant result about similarity of forward and backward periodic linear

systems.

12
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De�nition 10 Two discrete time-varying forward (backward) periodic lin-
ear systems (I; Ai(�); Bi(�); Ci(�); Xi(�))N , ((Ai(�); I; Bi(�); Ci(�); Xi(�))N ),
i = 1; 2, are similar if there exists a periodic succession of invertible matri-
ces fU(k)g, U(k+N) = U(k), U(k) : X2(k)! X1(k) (fV (k)g, V (k+N) =

V (k), V (k) : X2(k)! X1(k)), k 2 Z, such that

A2(k) = (U(k + 1))�1A1(k)U(k)
�
A2(k) = (V (k))�1A1(k)V (k + 1)

�
;

B2(k) = (U(k + 1))�1B1(k)
�
B2(k) = (V (k))�1B1(k)

�
;

C2(k) = C1(k)U(k) (C2(k) = C1(k)V (k)) :

De�nition 11 Two discrete time-varying forward/backward periodic lin-

ear systems �
F=B

i
, i = 1; 2 are similar if the two forward subsystems �F

i
,

i = 1; 2, are similar and the two backward subsystems �B

i
, i = 1; 2 are also

similar.

Proposition 12 ([11], [10]) If two discrete time-varying forward (back-
ward) linear periodic systems (I; Ai(�); Bi(�); Ci(�); Xi(�))N ((Ai(�); I;

Bi(�); Ci(�); Xi(�))N ), which are completely reachable and completely ob-
servable, realize the same periodic collection of rational (polynomial) ma-
trices, then they are similar.

De�nition 13

a) The discrete time-varying forward (backward) periodic system (I; A(�);

B(�); C(�); X(�))N ((A(�); I; B(�); C(�); X(�))N), is a minimal for-
ward (backward) periodic realization of a periodic collection of ra-
tional (polynomial) matrices fFs(z); s 2 Zg, Fs+N (z) = Fs(z) 2

<pN�mN(z) (fPs(z); s 2 Zg, Ps+N (z) = Ps(z) 2 <pN�mN [z]), if,
for any other forward (backward) periodic realization, (I; ~A(�); ~B(�);
~C(�); ~X(�))N (( ~A(�); I; ~B(�); ~C(�); ~X(�))N ), of the same periodic col-
lection of rational (polynomial) matrices, it is true that dimX(k) �

dim ~X(k), for all k 2 Z.

b) The discrete-time linear forward (backward) periodic system (I; A(�);

B(�); C(�))N ((A(�); I; B(�); C(�))N , with constant dimension n is a
c-minimal forward (backward) periodic realization of a periodic col-
lection of rational (polynomial) matrices

fFs(z); s 2 Zg ; Fs+N (z) = Fs(z) 2 <
pN�mN (z)(fPs(z); s 2 Zg ;

Ps+N (z) = Ps(z) 2 <
pN�mN [z]); N 2 Z

+;

if, the dimension of any other constant dimension forward (backward)
periodic realization of the same periodic collection of rational (poly-
nomial) matrices is greater than or equal to n.

13
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a') The discrete time-varying forward/backward periodic linear system
�F=B with state space X(k), k 2 Z, of variable dimension, is a min-
imal forward/backward periodic realization of a periodic collection of
rational matrices fHs(z); s 2 Zg, Hs+N (z) = Hs(z) 2 <

pN�mN (z),
N 2 Z+, if, for any other forward/backward periodic realization,
~�F=B, of the same periodic collection, with variable state space ~X(k),
k 2 Z, it is true that dimX(k) �dim ~X(k), for all k 2 Z.

b') The discrete-time forward/backward periodic linear system �F=B with
constant dimension n is a a c-minimal forward/backward periodic re-
alization of a periodic collection of rational matrices, if the dimension
of any other constant dimension forward/backward periodic realiza-
tion, ~�F=B, of the same collection, is greater than or equal to n.

Remark 1 For discrete time-varying periodic systems a minimal periodic
realization is a periodic system which has state spaces of minimal dimension
at each time. In the context of periodic systems with state space of constant
dimension a c-minimal periodic realization is a periodic system with state
space of minimal constant dimension.

Let fHs(z); s 2 Zg, Hs+N (z) = Hs(z) 2 <pN�mN (z), N 2 Z+ be

a periodic collection of rational matrices. We consider the decomposition

Hs(z) = Fs(z)+Ps(z), s 2 Z where Fs(z) is a proper rational matrix whose

polynomial part is a strictly lower block triangular matrix and Ps(z) is a

polynomial matrix whose independent term is an upper block triangular

matrix. It is easy to deduce the next proposition.

Proposition 14 ([10]) The forward/backward periodic linear system �F=B

is a minimal forward/backward periodic realization of the periodic collection
of rational matrices fHs(z); s 2 Zg, if and only if its forward and backward
periodic subsystems, �F and �B, are minimal forward and minimal back-
ward periodic realizations of the periodic collections of rational matrices
fFs(z); s 2 Zg and polynomial matrices fPs(z); s 2 Zg, respectively.

The next result gives a solution to the problem of reducing realizations

to reachable and observable realizations with smaller dimension.

Theorem 15 If �F=B is a discrete time-varying forward/backward peri-
odic linear system, with variable state space X(k), that realizes a periodic
collection of rational matrices

fHs(z); s 2 Zg ; Hs+N (z) = Hs(z) 2 <
pN�mN (z); N 2 Z

+;

then there exists a completely reachable and completely observable discrete

time-varying forward/ backward periodic linear system �
F=B

0 , with vari-
able state space X0(k), that realizes the same periodic collection of rational
matrices, such that dimX0(k) � dimX(k), for all k 2 Z.

14
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Proof: Suppose that �F=B realizes the periodic collection of rational ma-

trices

fHs(z); s 2 Zg ; Hs+N (z) = Hs(z) 2 <
pN�mN (z); N 2 Z

+:

For any s 2 Z , let Hs(z) = Fs(z)+Ps(z) be a decomposition where Fs(z)

is a proper rational matrix with strictly lower block triangular polynomial

part and Ps(z) is a polynomial matrix whose independent term is an upper

block triangular matrix.

Consider the direct sum X(k) = X1(k) �X2(k), k 2 Z , where X1(k),

X2(k), are the state spaces of the forward subsystem, �
F � (I; A1(�); B1(�);

C1(�);X1(�))N and the backward subsystem, �B � (A2(�); I; B2(�); C2(�);

X2(�))N . From [9] we know that �F realizes the periodic collection of ra-

tional matrices fFs(z); s 2 Zg, Fs+N (z) = Fs(z) 2 <
pN�mN (z), N 2 Z+,

and �B realizes the periodic collection of polynomial matrices

fPs(z); s 2 Zg ; Ps+N (z) = Ps(z) 2 <
pN�mN [z]; N 2 Z

+:

In [11] it is proved that an appropriate decomposition of X1(k) allows

us to obtain a completely reachable and completely observable realization,

�F

0 , of the periodic collection of rational matrices fFs(z); s 2 Zg. In the

backward case, an analogous decomposition of X2(k) gives rise to a com-

pletely reachable and completely observable realization, �B
0 , of the periodic

collection of polynomial matrices fPs(z); s 2 Zg.

The discrete time-varying forward/backward periodic linear system

�
F=B

0 , de�ned by �F
0 and �B

0 , is a completely reachable and completely

observable forward/backward periodic realization of the periodic collection

of rational matrices fHs(z); s 2 Zg. 2

As a consequence, from a discrete time-varying forward/backward pe-

riodic linear system �F=B , with variable state space X(k), that realizes

a periodic collection of rational matrices, we always can obtain a discrete

time-varying linear forward/backward periodic system whose state space

has smaller or equal dimension.

Next we characterize minimal forward/backward periodic realizations

in terms of reachability and observability properties.

Theorem 16 The discrete time-varying forward/backward periodic linear
system �F=B , is a minimal periodic realization of the periodic collection of
rational matrices

fHs(z); s 2 Zg ; Hs+N (z) = Hs(z) 2 <
pN�mN (z); N 2 Z

+;

if and only if it is completely reachable and completely observable.

Proof: From theorem 15, we deduce that a minimal forward/backward

periodic realization is completely reachable and completely observable.

15
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To prove the converse result, we apply proposition 14. From [11] we

know that the converse result is true in the case of the forward subsystem

�F . So it is su�cient to prove it for the backward case. Suppose that

�B � (A2(�); I; B2(�); C2(�);X2(�))N is a nonminimal completely reachable

and completely observable backward periodic realization of the periodic

collection of polynomial matrices fPs(z); s 2 Zg � <
pN�mN [z], Ps+N (z) =

Ps(z). Then there exists a realization ~�B � ( ~A2(�); I; ~B2(�); ~C2(�); ~X2(�))N
of the same periodic collection of rational matrices, such that dim ~X2(k) �

dimX2(k) and dim ~X2(k0) < dimX2(k0) for some k0 2 Z . By theorem 15,

from ~�B we construct a completely reachable and completely observable

realization ~�B

0 � ( ~A0
2(�); I;

~B0
2(�);

~C0
2 (�);

~X0
2 (�))N of the periodic collection

of polynomial matrices with dim ~X0
2 (k) � dim ~X2(k) for all k 2 Z . By

proposition 12, ~�B
0 and �B are similar. So, dimX2(k) = dim ~X0

2 (k), k 2 Z .

This contradicts that dim ~X2(k0) < dimX2(k0) and the theorem is proved

2.

Corollary 17 Given a periodic collection of nonproper rational matrices
fHs(z); s 2 Zg � <pN�mN (z), Hs+n(z) = Hs(z), there exists a minimal

forward/backward periodic realization �
F=B

0 of this periodic collection if and
only if

Hs+1(z) = Rp(z)Hs(z)R
�1
m
(z); (6.1)

where Rp(z) and Rm(z) are given in (3.1).

Proof: From theorem 4 we know that, given a periodic collection of rational

matrices fHs(z); s 2 Zg � <pN�mN(z), Hs+n(z) = Hs(z), there exists a

discrete time-varying forward/backward periodic realization �F=B of this

periodic collection if and only if the recurrence equation (6.1) is true. By

means of the method described in theorem 15, from �F=B we obtain a

completely reachable and completely observable system �
F=B

0 that realizes

the same periodic collection of rational matrices. By theorem 16, realization

�
F=B

0 is minimal 2.

Now we consider the c-minimal realization problem. To absorb this

problem, we are going to present some consequences of theorem 16 that

relate the minimality of forward and backward periodic systems with the

minimality of its associated invariant forward and backward systems.

Proposition 18

a) Discrete time-varying forward (backward) periodic system �F � (I;

A1(�); B1(�); C1(�); X1(�))N (�B � (A2(�), I, B2(�), C2(�); X2(�))N )
is completely reachable and completely observable at time s 2 Z if and
only if its associated invariant forward (backward) system �F

s
� (I;

A1;s; B1;s; C1;s; D1;s) (�
B

s
� (A2;s; I; B2;s; C2;s; D2;s)), is minimal.
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b) Discrete time-varying forward (backward) periodic system �F (�B)
is minimal if and only if its associated invariant forward (backward)
system, �F

s
(�B

s
), s = 0; 1; : : : ; N � 1 are minimal.

c) Discrete time-varying forward/backward periodic system �F=B , is min-
imal if and only if the forward and backward invariant systems �F

s
,

�B
s
, are both minimal, for each s = 0; 1; : : : ; N � 1.

The following result can be proved by direct computation and is funda-

mental to characterize the existence of c-minimal realizations.

Proposition 19 Let (I; A(�); B(�); C(�);X(�))N be a discrete time-varying
forward periodic realization of a periodic collection of rational matrices and
f�j ; j 2 Zg, �j+N = �j , a periodic succession of non-negative integers.
Consider �0 = max fdimX(j) + �jg, s0 2 Z such that dimX(s0)+�s0 = �0
and �� = dimX(s0+�), � 2 Z. Consider the discrete time-varying periodic
system (I; ~A(�); ~B(�); ~C(�); ~X(�))N �0 de�ned by

~A(s0 + �) =

2
4 0 0

0 A(s0 + �)

3
5 2 <(�0���+1)�(�0���);

~B(s0 + �) =

2
4 0

B(s0 + �)

3
5 2 <(�0���+1)�m;

~C(s0 + �) =
h
0 C(s0 + �)

i
2 <p�(�0���);

where A(s0+�) 2 <
��+1��� , B(s0+�) 2 <

��+1�m and C(s0+�) 2 <
p���.

Then, (I; ~A(�); ~B(�); ~C(�); ~X(�))N realizes the same periodic collection of
rational matrices.

The next theorem characterizes c-minimal realizations.

Theorem 20 A forward/backward periodic realization, �F=B, of a peri-
odic collection of rational matrices is c-minimal if and only if there exists
some s0 2 f0; 1; : : : ; N � 1g such that the associated invariant forward and
backward systems �F

s0
and �B

s0
are both completely reachable and completely

observable.

Proof: Consider the c-minimal forward/backward periodic realization

�F=B , with constant dimension � , of the periodic collection of rational

matrices fHs(z); s 2 Zg � <
pN�mN(z), Hs+n(z) = Hs(z). Let

�F � (I; A1(�); B1(�); C1(�);X1(�))N ;

�B � (A2(�); I; B2(�); C2(�);X2(�))N ;
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be the forward and backward periodic subsystems of �F=B where dimX1(k)+

dimX2(k) = � , k 2 Z . Consider the associated invariant forward and back-

ward systems �F

s
, �B

s
, s 2 Z . Suppose that there is not any s 2 Z , such

that �F

s
, �B

s
are both completely reachable and completely observable. By

theorem 15, there exists a discrete time-varying forward/backward periodic

system ~�F=B such that the corresponding forward and backward periodic

subsystems

~�F � (I; ~A1(�); ~B1(�); ~C1(�); ~X1(�))N ;

~�B � ( ~A2(�); I; ~B2(�); ~C2(�); ~X2(�))N ;

are both completely reachable and completely observable. We have that

dim ~X1(k) �dimX1(k) and dim ~X2(k) �dimX2(k), k 2 Z . Let

�0 = max
k2Z

n
dim ~X1(k) + dim ~X2(k)

o
;

�0 � � and s0 2 Z such that �0 =
n
dim ~X1(s0) + dim ~X2(s0)

o
. We de�ne

�
(i)
� = dim ~Xi(s0 + �), i = 1; 2. The associated invariant forward and

backward systems ~�F
s0
, ~�B

s0
are both completely reachable and completely

observable. Consider the forward/backward periodic system with constant

dimension �0, �̂
F=B , with backward periodic subsystem given by �̂B = ~�B

and forward periodic subsystem �̂F � (I; Â1(�); B̂1(�); Ĉ1(�); X̂1(�))N ,

de�ned by

Â1(s0 + �) =

2
4 0 0

0 ~A1(s0 + �)

3
5 2 <(�0��

(2)

�+1
)�(�0��

(2)
�

);

B̂1(s0 + �) =

2
4 0

~B1(s0 + �)

3
5 2 <(�0��

(2)

�+1
)�m;

Ĉ1(s0 + �) =
h
0 ~C1(s0 + �)

i
2 <p�(�0��

(2)
�

):

By proposition 19, �F=B and �̂F=B are forward/backward periodic realiza-

tions, with constant dimension � and �0, respectively, of the periodic collec-

tion of rational matrices fHs(z); s 2 Zg. Note that �0 � � . As �F=B is a

c-minimal realization; we have that � = �0. Then dimX1(s0) =dim ~X1(s0)

and dimX2(s0) =dim ~X2(s0). As �F

s0
and ~�F

s0
, realize the same rational

matrix, we deduce that �F
s0

is completely reachable and completely ob-

servable. In the same way we prove that �B

s0
is also completely reachable

and completely observable. This contradiction completes the proof of the

necessary condition.

Conversely, consider the completely reachable and completely observ-

able associated invariant forward and backward systems �F
s0
, �B

s0
. Note
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that �F

s0
, is a minimal realization of a rational matrix Fs0(z) and �B

s0
is

a minimal realization of a polynomial matrix Ps0(z), Hs0
(z) = Fs0(z) +

Ps0(z). Denote by �
(1)
0 , �

(2)
0 the dimension of systems �F

s0
, �B

s0
, respec-

tively. We have that �
(1)
0 + �

(2)
0 = � , where � is the constant dimension of

�F=B . Suppose that �F=B is not a c-minimal periodic realization of the

periodic collection of rational matrices fHs(z); s 2 Zg. Then there exists

a forward/backward periodic realization, ~�F=B , with constant dimension

less than � . The associated invariant forward and backward systems ~�F
s0
,

~�B

s0
, realize the rational matrix Fs0(z) and the polynomial matrix Ps0(z),

respectively. If we denote by 

(1)
0 , 


(2)
0 the dimension of these systems,

then 

(1)
0 + 


(2)
0 < � . So �F

s0
and �B

s0
cannot be minimal realizations. This

contradiction completes the proof.2

Corollary 21 Consider a c-minimal forward/backward periodic realiza-
tion, �F=B, of a periodic collection of rational matrices, such that its pe-
riodic forward subsystem �F and periodic backward subsystem �B have
constant dimension. Then, periodic subsystems �F and �B are c-minimal.

In general, the converse implication of the above corollary is not true.

The following theorem is a consequence of the previous results and charac-

terizes the existence of minimal and c-minimal realizations.

Theorem 22 Let

fHs(z); s 2 Zg ; Hs+N (z) = Hs(z) 2 <
pN�mN (z); N 2 Z

+;(6.2)

be a periodic collection of rational matrices. Then, the following statements
are equivalent:

(i) There exists a discrete time-varying minimal forward/backward peri-
odic system �F=B, with variable state space X(k), k 2 Z, that realizes

the periodic collection (6.2).

(ii) There exists a c-minimal forward/backward periodic realization ~�F=B

that realizes the periodic collection (6.2).

(iii) The matrices of the periodic collection (6.2) satisfy the recurrence
equation

Hs+1(z) = Rp(z)Hs(z)R
�1
m (z)

where Rp(z) and Rm(z) are given by

Rj(z) =

2
4 0 I(N�1)j

zIj 0

3
5 2 <

jN�jN ; j = p;m:
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