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Polynomials of Interval Parameters
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Abstract

In this paper, stability of the characteristic polynomial F (s) of

which parameters appear nonlinearly in coe�cients is studied. If

real and imaginary part of F (jw) are monotone of parameters in

frequency domain, their maximum and minimum values can be cal-

culated from the endpoints of parameters. Using this monotonicity,

we will extend the mapping theorem, to the case of polynomial coef-

�cient of parameters. And su�cient conditions of the monotonicity

are derived for the case of one parameter and multi-parameters.
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1 Introduction

Since the appearance of the Kharitonov's theorem [1], the simple stability
criterions of interval polynomials have been studied by many researchers
([2],[3],[4],[5],[6],[7]). On the other hand, there is the mapping theorem for
the analysis of multilinear coe�cient of polynomials ([8, p.476], [2, pp. 147-
152], [9], [10]). The mapping theorem is useful to analyze the stability of
open loop and closed loop system in the frequency domain. In these studies,
coe�cients of interval polynomial are supposed to be linear or multilinear
in system parameters. And little attention has been given to the nonlinear
case which is more common in practice.

In this paper, the mapping theorem is extended to the general non-
linear case by means of the monotonicity of functions on the intervals of
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parameters. If our conditions on monotonicity of Re F (jw) and Im F (jw)
are satis�ed, then all polynomials F (jw) belong to a rectangle Fh(w) in
the frequency domain, whose vertices are calculated from the endpoints
of parameter intervals. Using this property, we can check the stability of
the interval polynomial. If the coe�cient is a polynomial of the only one
parameter, its monotonicity can be studied by applying Sturm's theorem
([11], [12, pp. 81-85]) to its derivatives with respect to parameter. In or-
der to obtain the monotonicity test for multiparameter case, it is su�cient
for us to apply the monotonicity test for one-parameter recursively. An
example is worked out to illustrate our result.

2 Description of the System

We study the characteristic polynomial

F (s) = sn + c1(p)s
n�1 + c2(p)s

n�2 + � � �+ cn�1(p)s+ cn(p)

where cj(p)'s are in polynomials of p = (p1; : : : ; pm)

pi 2 [ pi; pi ]; pi 2 <; i = 1; 2; : : : ;m (2.1)

It is clear that for each cj(p) there exists an interval [ cj ; cj ] to which
the value of cj(p) belongs under the restrictions pi 2 [ pi; pi ] (i =
1; : : : ;m; j = 1; : : : ; n): And the relations between the interval [ cj ; cj ]
and the interval [ pi; pi ] are complicated in general. For example, the
system with structural uncertainties:

_x(t) = Ax(t) (2.2)

A = A0 + p1A1 + p2A2 + � � �+ pmAm

where pi 2 [ pi; pi ]; pi 2 <; A;Ai 2 <
n�n; i = 1; 2; : : : ;m

has the characteristic polynomial in the form of equation (2.1). It is known
that if cj 's are multilinear in pi's, the interval [ cj ; cj ] is directly determined

by pi's and pi's. In this case, the mapping theorem can be used to check
the stability of the system. In the following, we will study a more general
case where coe�cients cj 's are polynomials.

3 Extension of the Mapping Theorem

First, we need the de�nition of monotone functions.

De�nition 1 (Monotone function of p) If a function f(p) = f(p1; : : :,
pm) is a polynomial of pi, i = 1; : : :, m and satis�es the condition

@f(p)

@pi
� 0 (3.1)
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or
@f(p)

@pi
� 0 (3.2)

for all pi 2 ( pi; pi ); pk 2 [ pk; pk ]; k 6= i; i; k = 1; 2; � � � ;m;

it is called a monotone function of p. 2

Using this de�nition, we have the following theorem.

Theorem 1 If Re F (jw) and Im F (jw) are monotone functions of p,

F (jw) belongs to the rectangle Fh(w) in the complex plane.

Fh(w) = fx+ jy : �m � x � �M ; �m � y � �Mg (3.3)

�m = min
pi=pi; pi

i=1;2;:::;m

Re F (jw); �M = max
pi=pi; pi

i=1;2;:::;m

Re F (jw)

�m = min
pi=pi; pi

i=1;2;:::;m

Im F (jw); �M = max
pi=pi; pi

i=1;2;:::;m

Im F (jw):

2

Proof: Let us consider the monotonicity at an arbitrary frequency w. If
only a parameter pi is varied on [ pi; pi ] with the other parameters �xed,
it is shown that Re F (jw) have the relative maximal value at pi or pi due
to the monotonicity with pi. The relative minimum value of Re F (jw) is
determined in the same way. Then, another parameter pk can be varied and
so on. Consequently, Re F (jw) has the maximum value and the minimum
value at the endpoints of pi; i = 1; 2; : : : ;m. The same argument is applied
to Im F (jw). Therefore, F (jw) belongs to the convex hull Fh. 2

Using this theorem, we can check the stability of F (s). F (jw) belongs
to the rectangle Fh(w).

Theorem 2 If the plot of Fh(w) satis�es the following two conditions, the

system is stable.

1) Fh(0) is on the positive part of real axis.

2) As w increases, the plot of Fh(w) encircles the origin in a counterclock-

wise direction and its vertex's phase goes to n�
2
for w! 1. 2

Thus all rectangles Fh(w) do not include the origin.

Proof: According to Mikhailov's Theorem [2, p. 113], the above conditions
are derived. 2

This stability analysis is similar to the mapping theorem [2, pp. 147-
150]. And the monotonicity of a function is very important in our analysis
method. Next, we study conditions of the monotonicity.
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4 Criterion of Monotonicity

In this section we will discuss how to check the monotonicity. First we
study one parameter case using both endpoints of interval parameters.

4.1 One-parameter function

We consider a polynomial f(p) with a parameter p 2 [ p; p ]. It is clear

that if df(p)

dp
6= 0 on the interval [ p; p ], f(p) is monotone. Therefore,

it is necessary to know how many roots of the equation df(p)

dp
= 0 are in

the interval [ p; p ]. According to the Euclidean Algorithm, the following
procedure is derived.

r1 =
df(p)

dp
; r2 =

d2f(p)

dp2
(4.1)

r1 = q1r2 � r3 (4.2)

r2 = q2r3 � r4 (4.3)

� � � � � � � � �

rw�2 = qw�2rw�1 � rw ; (4.4)

where rw is the greatest common factor of r1 and r2.
Next, we evaluate the values r1(p) r2(p), : : :, rw(p), and count how

many times r1(p), r2(p), : : :, rw(p) change its signs, which is denoted by
V (p). V (p) is calculated in the same way.

Theorem 3 In the above system, if the following condition 1) or 2) holds,

f(p) is a monotone function of p on the interval [ p; p ].

1) V (p)� V (p) = 0 (4.5)

2) V (p)� V (p) = 1and sign (r1(p)r1(p)) > 0 (4.6)

2

Remark 1 [12, pp. 81-85]. If r1 has �-tuple roots at p = p and/or �-tuple
roots at p = p, then all functions (4.1), (4.2), (4.3) and (4.4) become 0. In
this case, V (p) can not be calculated in the neighborhood of p and/or p.

So we must eliminate (p� p)� or/and (p� p)� in r1 and r2. For example,

r1 =
d

dp

f(p)

(p� p)�
; r2 =

d2

dp2
f(p)

(p� p)�
:

We can calculate V (p)� V (p) using the above algorithm. 2

Proof: According to the Sturm's theorem, the number of roots of df(p)
dp

=

0 on the interval ( p; p ] is given by V (p) � V (p). If V (p) � V (p) = 0,
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df(p)

dp
= 0 has no roots on the interval ( p; p ], and if V (p) � V (p) = 1,

df(p)

dp
= 0 has one root on the interval ( p; p ]. Since r1(p) and r1(p) have

the same sign, f(p) is a monotone function with one point of in
ection. 2

4.2 Multi-parameter function

For multiparameter functions, we examine the monotonicity.

De�nition 2 For parameters p1, p2, : : :, pm, we de�ne the set of param-

eters pi (i = 1; 2; : : : ;m) as p(1j12j23j3 � � �mjm) where each j1; j2; � � � ; jm
takes 0 or 1 respectively. In this form, we denote ji = 0 if pi = pi and also

ji = 1 if pi = pi. For example, p(i0j1) means pi = pi and pj = pj . 2

Then we suppose a function f(p) = f(p1; : : : ; pm) to be a polynomial of

pi; i = 1; : : : ;m, where pi 2 [ pi; pi ] and f(p) 2 [ f; f ]. If
@f(p)
@pi

6= 0 on

[ pi; pi ] for i = 1; : : : ;m, then the function f(p) is monotone by de�nition.
In the same way as one parameter case, we examine the existence of roots

of
@f(p)
@pi

= 0 on [ pi; pi ] for all i.

ri 1 =
@f(p)

@pi
; ri 2 =

@2f(p)

@p2i
(4.7)

ri 1 = qi 1ri 2 � ri 3 (4.8)

ri 2 = qi 2ri 3 � ri 4 (4.9)

� � � � � � � � �

ri wi�2 = qi wi�2ri wi�1 � ri wi
; (4.10)

where ri 1, ri 2, : : :, ri wi
are polynomials of p1, p2, : : :, pm. And ri wi

is
the greatest common factor of r1 and r2.

As the one-parameter case, V (p(1020 � � � (i � 1)0(i + 1)0 � � �m0))(pi) is
calculated by counting the sign changes of the sequence

ri 1(p(1020 � � � (i� 1)0(i+ 1)0 � � �m0))(pi); (4.11)

ri 2(p(1020 � � � (i� 1)0(i+ 1)0 � � �m0))(pi); (4.12)

: : : : : : : : : ;

ri wi
(p(1020 � � � (i� 1)0(i+ 1)0 � � �m0))(pi). (4.13)

And V (p(1020 � � � (i� 1)0(i+1)0 � � �m0))(pi) is calculated in the same way.
Using these expressions, we have the following theorem.

Theorem 4 If the following conditions 1), and 2) or 3) hold, f(p) is a

monotone function of p on [ p1; p1 ]
 [ p2; p2 ]
 � � � 
 [ pw; pw ]:
1) Let ri 1 be regarded as a polynomial of pi. All coe�cients of pi in ri 1
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are monotone of pk ( k 6= i; k = 1; 2; : : : ;m ).

2) For all pairs pk and pk (k 6= i),

V (p(1j12j2 � � � (i� 1)ji�1(i+ 1)ji+1 � � �mjm))(pi)

� V (p(1j12j2 � � � (i� 1)ji�1(i+ 1)ji+1 � � �mjm))(pi) = 0 (4.14)

where j1; j2; : : : ; ji�1; ji+1; : : : ; jm = 0; 1; i = 1; 2; : : : ;m

3) For all pairs pk and pk (k 6= i),

V (p(1j12j2 � � � (i� 1)ji�1(i+ 1)ji+1 � � �mjm))(pi)

� V (p(1j12j2 � � � (i� 1)ji�1(i+ 1)ji+1 � � �mjm))(pi) = 1 (4.15)

and

sign(ri 1(p(1j12j2 � � � (i� 1)ji�1(i+ 1)ji+1 � � �mjm)(pi))

ri 1(p(1j12j2 � � � (i� 1)ji�1(i+ 1)ji+1 � � �mjm)(pi))) > 0

(4.16)

where j1; j2; : : : ; ji�1; ji+1; : : : ; jm = 0; 1; i = 1; 2; : : : ;m:

2

Remark 2 As the same as Remark 1, if ri 1 has �-tuple roots at pi = pi
and/or �-tuple roots at pi = pi, we must eliminate (pi � pi)

� and/or

(pi � pi)
� in ri 1 and ri 2. We can calculate V (p(1j12j2 � � � (i � 1)ji�1(i +

1)ji+1 � � �mjm))(pi) � V (p(1j1 2j2 � � � (i�1)ji�1 (i+1)ji+1 � � �mjm))(pi) using
the above algorithm as the one-parameter function case. 2

Remark 3 In this theorem, we have to check whether ri 1 is monotone of pk
( k 6= i; k = 1; 2; : : : ;m ) or not. If ri 1 can be expressed by the polynomial
of pi, the coe�cients of the powers of pi are expressed by polynomials of pk
(k 6= i). Applying this procedure repeatedly to the coe�cients, we �nally
obtain coe�cient functions with only one parameter. Then we can check
its monotonicity by means of Theorem 3 and calculate the maximum value
and minimum value of these coe�cient functions. Using these maximum
and minimum values, we obtain interval polynomials whose monotonicity
can be checked, and we calculate its maximum and minimum values, which
yields another interval polynomials and so on. This backward procedure
terminates with �nite steps and we can check the monotonicity of ri 1(p).

2

Proof: In this theorem, V (p(1j12j2 � � � (i� 1)ji�1(i+1)ji+1 � � �mjm))(pi) is
equal to the number of sign changes of the sequence ri j , j = 1; 2; : : : ; wi.
ri j is a polynomial of pi and coe�cients of powers of pi are polynomials of
pk ( k 6= i; k = 1; 2; : : : ;m ). If condition 1) is satis�ed, ri 1 is a monotone
function of pk and ri 1 belongs to the convex hull spanned by functions
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whose coe�cients are derived from all combinations of coe�cients of ri 1
where pk takes pk or pk. According to Sturm's theorem, if the equation
(4.14) holds, ri 1 = 0 has no roots on the interval ( pi; pi ]. This means
directly f(pi) is a monotone function with respect to pi. And also if the
equation (4.15) holds, ri 1 = 0 has one root on the interval ( pi; pi ]. As the
one parameter case, if (4.15) and (4.16) hold, f(pi) is a monotone function
with respect to pi. Thus, if condition 1), and 2) or 3) hold for all pi, f(p)
is monotone. 2

Remark 4 In the applications of our test to ReF (jw) and ImF (jw), we
have to examine the monotonicity in parameters for all w belonging to the
in�nite interval [0;1). In the coe�cients of higher powers of w, parameters
appear in lower powers. Hence, if we di�erentiate the polynomial with
respect to parameters, the terms with higher powers of w often disappear.
ReF (jw) consists of only the even powers of w and ImF (jw) odd powers.
Thus, if we put � = w2, it is clear that we can check the monotonicity of
examining the lower order polynomial in �. 2

5 Example

Let us consider the characteristic polynomial with interval parameters.

F (s) = s3 + (2� p1 � p2)s
2

+ (p21 + p1 + 2p1p2 � 2p22 + p2 + 3)s

+ 3p31 + 4p1p2 + p32 + 1; (5.1)

where p1 2 [0; 0:5]; p2 2 [0; 0:25]

In order to study the stability of (5.1), we have to check the monotonicity
of Re F (jw) and Im F (jw).

F (jw) = (p1 + p2 � 2)w2 + 3p31 + 4p1p2 + p32 + 1

+ jf�w3 + (p21 + p1 + 2p1p2 � 2p22 + p2 + 3)wg (5.2)

= �+ j� (5.3)

where p1 2 [0; 0:5]; p2 2 [0; 0:25]

1) Check the monotonicity of �.
i) Regard � as a polynomial of p1.

� = (p1 + p2 � 2)w2 + 3p31 + 4p1p2 + p32 + 1

@�

@p1
= w2 + 9p21 + 4p2: (5.4)

It is obvious the equation (5.4) takes positive value on intervals of p1 and
p2 and

@�
@p1

is monotone with respect to p2. In this case, we will check the
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monotonicity according to theorem 3.

r11 =
@�

@p1
= w2 + 9p21 + 4p2; r12 =

@2�

@p21
= 18p1; r13 = 4p2 + w2 (5.5)

case 1: p2 = p2 = 0

r11 = w2 + 9p21; r12 = 18p1; r13 = w2 (5.6)

V (p2)(p1) = 0, V (p2)(p1) = 0. Thus, V (p2)(p1)� V (p2)(p1) = 0.

case 2: p2 = p2 = 0:25

r11 = w2 + 9p21 + 1; r12 = 18p1; r13 = w2 + 1 (5.7)

V (p2)(p1) = 0, V (p2)(p1) = 0, V (p2)(p1)� V (p2)(p1) = 0.
Then � is a monotone function of p1.
ii) Regard � as a polynomial of p2.
� is a monotone function of p2, because

@�
@p2

= w2+3p22+4p1 > 0 holds on
interval p1 and p2.

2) Check the monotonicity of �.
i) Regard � as a polynomial of p1.

� = �w3 + (p21 + p1 + 2p1p2 � 2p22 + p2 + 3)w

@�

@p1
= (2p1 + (1 + 2p2))w (5.8)

All coe�cients of (5.8) are monotone on the interval. Thus we can check
the monotonicity at the endpoints of p2.
case 1: p2 = 0

@�

@p1
= (2p1 + 1)w > 0; p1 2 [0; 0:5] (5.9)

case 2: p2 = 0:25

@�

@p1
= (2p1 + 1:5)w > 0; p1 2 [0; 0:5] (5.10)

Then � is monotone function of p1.
ii) Regard � as a polynomial of p2. We also check the monotonicity.

@�

@p2
= (�4p2 + (1 + 2p1))w (5.11)

All coe�cients of (5.11) are monotone with respect to p1 on the interval
[ p1; p1 ].
case 1: p1 = 0

@�

@p2
= (�4p2 + 1)w � 0; p2 2 [0; 0:25] (5.12)
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case 2: p1 = 0:5

@�

@p2
= (�4p1 + 2)w > 0; p2 2 [0; 0:25] (5.13)

� is a monotone function of p2. Thus, � is a monotone function of p1, p2.
Consequently, Re F (jw) and Im F (jw) are monotone with respect to
parameters p1, p2. Thus maximum and minimum values of Re F (jw) and
Im F (jw) are expressed by endpoints of p1 and p2. Drawing the rectangles
Fh(w) for this example (Fig. 1), we know that F(s) is stable. 2

In some cases as shown in our example, it is possible to check the
monotonicity even if w varies from 0 to 1. But in more complicated
cases, we have to divide the interval [0;1) into subintervals where the
monotonicity holds.

6 Concluding Remarks

In this paper, we present a new criterion of stability of interval polynomials.
De�ning the monotonicity of multivariable function, the mapping theorem
is extended to the general case, where parameters appear nonlinearly. Using
our extended mapping theory, stability of characteristic polynomials with
polynomial coe�cients is checked by means of endpoints of parameters.

We introduce the rectangle Fh(w) in the complex plane and show the
condition that the characteristic polynomial with interval polynomials lies
in the rectangle Fh(w) for an arbitrary frequency w. The su�cient condi-
tion for stability of F (s) are derived by means of Fh(w) by our extended
mapping theorem.

For one parameter functions and multi-parameter functions, we show
how to check the monotonicity. For one parameter coe�cients, we apply
Sturm's theorem and for multi-parameter coe�cients, we can check the
monotonicity by our multiparameter test.

Our result may be applied to the stability problem for the characteristic
polynomial, of which coe�cients are polynomials of parameters, multilinear
and linear (a�ne) with respect to the parameters. And there is room for
argument on the conservativeness of our su�cient conditions. It needs
further investigation for nonlinear functions with interval parameters.
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-15 -12.5 -10 -7.5 -5 -2.5
Re F(jw)

-20

-15

-10

-5

Im F(jw)

 Fig. 1  Rectangles for Example

with w = 0.1 k, k= 0, 1,...,30

Figure 1:
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