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Abstract

In this paper an indirect adaptive regulator is constructed for

single-input single-output linear time-varying discrete-time systems.

The plant parameters are modeled as a linear combination of known

bounded functions which may be fast varying with unknown slowly-

varying coe�cients that are con�ned to a convex region. The un-

known coe�cients are estimated using a gradient type estimator with

a projection operation. It is assumed that the system is uniformly

N -step reachable, where N is an integer greater than or equal to the

system dimension. It is then shown that the resulting closed-loop

system is globally stable if the rate of unknown parameter variations

and the normalized model errors are su�ciently small.

Key words: robust adaptive control time-varying systems parameter estimation

1 Introduction

Much of the work that has been done on linear time-varying systems is
based on the \frozen-time" approach where a time-varying plant is viewed
as a collection of parameterized linear time-invariant systems. This method
is obviously adequate only for systems with slowly-varying parameters (e.g,
[1], [2], [3], [5], [6], [9], [10], [15]). Many systems, however, contain some
rapid parameter variations. Several results have treated the class of sys-
tems possessing a stable inverse (e.g, [16], [14]). On the other hand, many
systems arising in practice are not stably invertible. For instance, the
linearized system dynamics of air-to-air missiles contain rapidly-varying
coe�cients due to missile acceleration and high velocity. In this case, some
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results concerning the regulation of this class of systems have been estab-
lished.

Kamen et al. [11] proposed a regulator scheme based on the generalized
Kleinman's method [13] for multi-input multi-output linear discrete-time
systems. This regulator is designed under the assumption that the plant
is uniformly N -step reachable, where N is greater or equal to the system
dimension. In adaptive control framework, it is assumed that the plant pa-
rameters are expressed in terms of a linear combination of known bounded
functions that are allowed to be fast varying and unknown constant co-
e�cients. The coe�cients are estimated using a RLS estimator with a
projection operation and a variable forgetting factor. Using the general-
ized Kleinman's regulator with the unknown coe�cients replaced with the
estimates, an indirect adaptive regulator was proposed.

In an input-output framework, Ioannou and Tsakalis [8] considered
continuous-time systems that are modeled by polynomial di�erential oper-
ators with time-varying coe�cients. They proposed a new pole-placement
regulator structure that is able to overcome the non-commutativity problem
associated with the time-varying polynomial di�erential operators. This
regulator scheme is based on the assumption of uniform coprimeness of
the plant operators. Ioannou and Tsakalis [8] then considered an indirect
adaptive pole-placement regulator. It is assumed that the time-varying
parameters are modeled in terms of a known part which may be rapidly
varying and an unknown slowly-varying part which is estimated using a
gradient estimator with �-modi�cation and a normalizing signal.

In this paper, we consider a single-input/single-output discrete-time
systems modeled by a linear time-varying di�erence equation that includes
an error term to incorporate model errors and/or disturbances. The discrete-
time model may be a result of sampling the input and output signals of a
continuous-time system; that is, the model corresponds to a sampled-data
format. The system parameters are modeled as in [11], except that the
unknown coe�cients, which are con�ned to a convex region, are assumed
to be slowly varying. It is further assumed that for all possible values in
the convex set, the observable realization of the system model is N -step
uniformly reachable. The purpose of this paper is to design a robust in-
direct adaptive pole-placement regulator for discrete-time systems without
requiring any excitation and without requiring the nominal model to be
stably invertible. This paper is to some extent a discrete-time version of
the work presented in [8], except that in [8] model errors or disturbances
are not considered in the system model.

This paper is outlined as follows: after some preliminaries in the follow-
ing section, the problem statement is formulated and the assumptions are
speci�ed in Section 3. The estimation algorithm and the pole-placement
regulator are discussed in Section 4 and Section 5 respectively. Then the
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adaptive pole-placement regulator is presented, and the main result is given
in Section 6. It is shown that the adaptive regulator results in global sta-
bility (i.e, all signals are bounded for any initial conditions) if the mean of
the rate of variations of the unknown coe�cients is su�ciently small and if
the model errors are su�ciently small. A simulation example is also given
in Section 6.

2 Preliminaries

With Z equal to the set of integers and < equal to set of real numbers, let

<Z denote the <-linear space of all functions from Z into <. Moreover,

let S denote the subspace of <Z that consists of all functions with support
bounded to the left; that is, for every y(k) 2 S there exists an integer k0
which may depend on y(k) such that y(k) = 0 for all k < k0.

Now, let q denote the left � shift operator on S de�ned by q(y(k)) =
y(k + 1). Also let q�1 denote the right � shift operator on S given by
q
�1(y(k)) = y(k � 1). It can be veri�ed that q�1 is the left and right
inverse of the operator q on the space S; that is, for any y(k) 2 S,

q(q�1(y(k)) = q
�1(q(y(k))) = y(k):

Moreover, let P (q; k) denote a polynomial in q de�ned by

P (q; k) =

nX
i=0

ai(k)q
i (2.1)

where the ai(k) belong to <Z. The degree of the polynomial P (q; k) is the
largest value i such that the coe�cient ai(k) is nonzero for at least one
value of k. In the case where the degree of P (q; k) is equal to n, an(k) is
called the leading coe�cient of P (q; k), and if the leading coe�cient is the
identity function, P (q; k) is said to be monic.

The polynomial P (q; k) de�nes a linear operator from S to S, which for
every y(k) 2 S de�nes an element z(k) 2 S given by

z(k) = P (q; k)y(k) =

nX
i=0

ai(k)y(k + i):

Given a monic polynomial operator P (q; k), the operator denoted by
P
�1(q; k) is de�ned as

P
�1(q; k)z(k) = h

T

k�1X
i=�1

�(k; i+ 1)gz(i) (2.2)
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where � is the state transition matrix of the following state model associ-
ated with the equation P (q; k)y(k) = z(k):

x(k + 1) = F (k)x(k) + gz(k); y(k) = h
T
x(k) (2.3)

where \T" denotes the transpose operation. The state vector x(k) is given
by

x(k) = [y(k + n� 1) � � � y(k)]; (2.4)

g = [1; 0; � � � ; 0]T , h = [0; � � � ; 1]T , and F (k) is a n�n matrix which is given
by

F (k) =

2
66664
�an�1(k) � � � � � � �a0(k)

1 0 � � �
. . . 0

0 1 0

3
77775 :

The state transition matrix � is de�ned as

�(k; k0) =

8<
:

F (k � 1)F (k � 2):::F (k0) if k > k0

I if k = k0

not de�ned if k < k0

: (2.5)

Having de�ned the operator P�1(q; k), we have the following theorem:

Theorem 1 Given a monic polynomial operator P (q; k), the operator

P
�1(q; k) is the left inverse and the right inverse operator for P (q; k) on

the space S; that is, for any y(k) 2 S:

(i) P�1(q; k)P (q; k)(y(k)) = y(k)

(ii) P (q; k)P�1(q; k)(y(k)) = y(k):

For proof of Theorem 1, see Appendix A.
A de�nition and a proposition associated with the inverse operator

which will be used in subsequent discussion are given next.

De�nition 1 Given a monic operator P (q; k), the inverse operator

P
�1(q; k) de�ned in (2:2) is said to be exponentially stable if the state

transition matrix �(k; k0) satis�es

k�(k; k0)k � d�
k�k0 (2.6)

where k:k is the Euclidean norm, 0 � � < 1, and d is a positive real number.
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Proposition 1 Given the monic polynomial operators Q(q; k) and P (q; k),
the inverse operators Q�1(q; k), P�1(q; k), and (P (q; k)Q(q; k))�1satisfy
the following equality

(P (q; k)Q(q; k))�1(z(k)) = Q
�1(q; k)P�1(q; k)(z(k))

for any z(k) 2 S.

Proof: Consider the monic polynomial operator P (q; k)Q(q; k) which maps
y(k) into z(k), both elements of S, in the following way

P (q; k)Q(q; k)y(k) = z(k):

Since P (q; k)Q(q; k) is monic, there exists a left inverse operator (P (q; k)
Q(q; k))�1 such that

y(k) = (P (q; k)Q(q; k))�1z(k): (2.7)

Also given that P (q; k) and Q(q; k) are monic, there exist P�1(q; k) and
Q
�1(q; k) such that

Q(q; k)y(k) = P
�1(q; k)z(k)

and
y(k) = Q

�1(q; k)P�1(q; k)z(k): (2.8)

Equating (2:7) and (2:8), the desired result is obtained. 2
Now, given a monic polynomial A(q; k) with the degree of A(q; k) equal

to n, and a polynomial B(q; k) with the degree of B(q; k) equal to n �
1, consider the linear time-varying discrete-time system speci�ed by the
input/output di�erence equation

A(q; k)y(k) = B(q; k)u(k) + �(k) (2.9)

where y(k) 2 S is the output, u(k) 2 S is the control input, �(k) is an
unknown signal which consists of model errors and/or disturbances and
A(q; k), B(q; k) are given by

A(q; k) = q
n +

n�1X
i=0

ai(k + n)qi; ai(k + n) 2 <Z

B(q; k) =

n�1X
i=0

bi(k + n)qi; bi(k + n) 2 <Z:
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Equation (2:9) can be written as the following ARMA model:

y(k) +

nX
i=1

an�i(k)y(k � i) =

nX
i=1

bn�i(k)u(k � i) + �(k): (2.10)

Moreover, the system (2:10) can be expressed in the following observable
canonical form:

x(k + 1) = A(k)x(k) + b(k)u(k); y(k) = c
T
x(k) (2.11)

where b(k) = [bn�1(k + n); � � � ; b0(k + 1)]T , c = [0; � � � ; 1]T , and A(k) is
given by

A(k) =

2
66664
�an�1(k + n� 1) 0 � � � 0

�an�2(k + n� 2) 1 0
...

. . .

�a0(k + 1) 0 1 0

3
77775 :

Given the system de�ned by (2:9) and (2:10), the objective is to design
an adaptive regulator (in the case where the coe�cients of the polynomi-
als A(q; k) and B(q; k) contain unknown time-varying parameters) so that
the resulting closed-loop system is globally stable. In order to design the
regulator, we will make use of the notion of the time-varying resultant [7].

The resultant matrix is a classical tool for determining the existence of a
common factor of two time-invariant polynomials. In the time-varying case,
Hwang [7] related the issue of coprimeness of two time-varying polynomials
and the Bezout identity to the resultant matrix. In this regard, it was shown
that the existence of a Bezout identity is su�cient but not necessary for the
coprimeness of two polynomials. This is due to the fact that discrete-time
systems can be reachable in a number of steps which is greater than the
system dimension.

Given the polynomials A(q; k) and B(q; k) de�ned above, we can write

A(q; k) = q
n + q

n�1
an�1(k + 1) + � � �+ a0(k + n)

B(q; k) = q
n�1

bn�1(k + 1) + � � �+ b0(k + n):

Then for any positive integer N � n, the (N + n� 1)� (2N � 1) resultant
matrix is given by
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�N (k) =

2
66666664

a0(k + n) 0 � � � b0(k + n) 0 � � �

.

.

.

.
.
.

.

.

.

.
.
.

an�1(k + 1) q2�Na0(k + n) bn�1(k + 1)

1 0 q1�Nb0(k + n)

.
.
.

.
.
.

.

.

. q2�Nan�1(k + 1)

.

.

.

0 � � � 1 0 � � � q1�Nbn�1(k + 1)

3
77777775

(2.12)
Hwang [7] has established that the system (2:11) is N -step reachable if and
only if the rank of the resultant matrix (2:12) is equal to N + n� 1.

In the next section the problem statement is formulated and the as-
sumptions required to solve the adaptive control problem are given.

3 Problem Formulation

Again consider the discrete-time single-input single-output time-varying
system given by (2:10). It is assumed that the order of the nominal model
is known apriori, where the nominal model is given by (2:10) with �(k) = 0.
As in [11], the time-varying coe�cients in (2:10) are modeled in terms of
linear combinations of known time-varying functions fj(k) with unknown
slowly-varying coe�cients ai;j(k) and bi;j(k), except that in [11] the un-
known part is assumed to be constant. The plant coe�cients ai(k), bi(k)
can then be expressed as

ai(k) =

sX
j=1

ai;j(k)fj(k); bi(k) =

sX
j=1

bi;j(k)fj(k) (3.13)

where i is an integer ranging from 0 to n � 1 and s is a known positive
integer. It should be emphasized that in this development, the known
functions fj(k) are allowed to vary arbitrarily fast.

Consider the scaled s-element row vectors �i(k), !i(k), and hi(k) de-
�ned as

�i(k) = �
i�n+1[ai;1(k) � � � ai;s(k)]

!i(k) = �
i�n+1[bi;1(k) � � � bi;s(k)]

hi(k) = �
n�1�i[f1(k) � � � fs(k)]; i = 0; 1; :::; n� 1 (3.14)

where 0 < � < 1.
By de�ning the 2ns-element column vector

�
T (k) = [ �n�1(k) � � � �0(k) !n�1(k) � � � !0(k) ]; (3.15)
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the plant parameters can be written in a compact way as

[ an�1(k) � � � a0(k) bn�1(k) � � � b0(k) ]T = H(k)�(k) (3.16)

where the 2n� 2ns matrix H(k) is given by

H(k) =

2
6666666664

hn�1(k) 0 � � �
. . . 0

h0(k)

0 hn�1(k)
. . .

h0(k)

3
7777777775
: (3.17)

Moreover, by de�ning the 2ns-element weighted regression vector

�
T (k) = [�hn�1(k)y(k � 1) � � � � h0(k)y(k � n)

hn�1(k)u(k � 1) � � �h0(k)u(k � n)]:

Equation (2:10) can be written in the standard form

y(k) = �
T (k)�(k) + �(k): (3.18)

The weighted regression vector �(k) de�ned above di�ers from the standard
one by the decaying terms � i, 0 � i � n � 1. By appropriately selecting
the value � , it will be shown that under the following assumptions, there is
an adaptive regulator for the system (2:9) or (2:10) which results in global
stability.

The parameter vector �(k) is an element of the space (<Z)2ns of 2ns-

element column vectors over <Z. The following constraint on the param-
eter variations is imposed:

A.1 There exists an integer k0 and a known, bounded convex subset H of
the 2ns-dimensional Euclidean space <2ns such that �(k) 2 H for all
k > k0.

It is worth noting that the assumption that �(k) belongs to H for all k > k0

implies that there exists nonnegative constants v0 and v1 such that

k�1X
i=k0

k�(i+ 1)� �(i)k � v0 + v1(k � k0) 8 k > k0: (3.19)

Moreover the following assumption on the resultant matrix is required:
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A.2 There exists a positive integer N � n such that for any possible
parameter trajectory � with �(k) 2 H for all k > k0,

jdet(�N;�(k)�
T
N;�(k))j > "; (3.20)

where " is some real constant strictly greater than zero, det denotes
the determinant, and �N;�(k) is the resultant given by (2:12) with
the ai(k) and bi(k) de�ned by (3:16), where i = 0; � � � ; n� 1.

To test for the condition given by (3:20), it is necessary to know what
the possible parameter trajectories �(k) are. In practice, such knowledge is
usually not available a priori; however, (3:20) can be tested using particular
\sample trajectories" such as ramp or sine waveforms with vector values
belonging to H. Although this does not guarantee that (3:20) is satis�ed
for all possible trajectories, based on a number of simulation examples we
have run, the use of sample trajectories appears to be a good indicator as
to when (3:20) is satis�ed in general.

From Assumption A:2, it can be deduced that �N;�(k) has a rank
N + n � 1 and thus the system is N -step reachable [7]. Further, since
it is required that (jdet(�N;�(k)�

T
N;�(k))j > "), a uniformity condition is

imposed. Therefore A:2 implies that the system (2:11) is uniformly N -
step reachable for all possible vectors �(k) 2 H.

Regarding the error term �(k) in (2:10) or (3:18), the following assump-
tion is required

A.3 The error term �(k) is bounded by

j�(k)j � �k�(k)k+ �(k); (3.21)

where � is an unknown nonnegative constant and �(k) is an unknown
nonnegative bounded function.

Now given the plant de�ned by (2:9) or (3:18) with the assumptions
A:1-A:3, the objective is to design a pole-placement regulator using poly-
nomial operators of the form

u(k) = C(q; k)D�1(q; k)(r(k) � y(k)) (3.22)

where r(k) is an arbitrary bounded reference and C(q; k), D(q; k) are given
by

C(q; k) =

N�1X
i=0

ci(k)q
i

D(q; k) = q
N�1 +

N�2X
i=0

di(k)q
i

so that the resulting closed-loop system is globally stable (i.e, all signals
are bounded for any initial conditions). Again N is a positive integer which
is greater or equal to the system dimension n.

The following section discusses the parameter estimator.
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4 The Parameter Estimator

Consider the plant given by (3:18). The parameter estimation scheme that

will be used to generate an estimate �̂(k) of the parameter vector �(k) is
given by

�
�(k) = �̂(k � 1)�

�(k)(ŷ(k)� y(k))


(k � 1) + �T (k)�(k)
(4.23)

�̂(k) = P [��(k)] (4.24)

where P denotes a projection operator that ensures that �̂(k) lies within
H, and ŷ(k) is the predicted output given by

ŷ(k) = �
T (k)�̂(k � 1):

For details on a projection satisfying (4:24), see [4].
In (4:23), 
(k � 1) is a normalization term (a design parameter) which

is assumed to satisfy the condition


(k � 1) � c; 8k;

for some real number c > 0.
De�ning the output prediction error

e(k) = ŷ(k)� y(k) = �
T (k)(�̂(k � 1)� �(k)) � �(k)

and the normalized output prediction error,

�e(k) =
e(k)p


(k � 1) + �T (k)�(k)
(4.25)

we have a key property of the parameter estimator (4:23), (4:24) which is
given in the following result:

vspace3mm
Theorem 2 Given the plant (3:18), suppose that Assumptions A:1 and

A:2 hold, so that there exist v0; v1; �; and �(k) for which (3:19) and (3:21)
are satis�ed.

De�ne

D = sup
�1;�22H

k�1 � �2k

� = �+ sup
k

"
�(k)p


(k � 1) + �T (k)�(k)

#
:

10
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Then for all k � k0

k�1X
i=k0

�e2(i) � (D2+3Dv0+2�v0)+(2D�+2�2+3Dv1+2�v1)(k�k0): (4.26)

The proof of Theorem 2 is given in [9].

This property of the parameter estimation process allows us to prove
global stability of the adaptive control system.

In order to illustrate the design method, we �rst assume that the plant
parameters are known for all k > k0, for some integer k0. Then, we extend
the design approach to the case when the slowly-varying parameters are
unknown.

5 The Control Law

Most of the existing pole-placement regulators for time-varying discrete-
time systems have been derived using the frozen-time approach. More
precisely, by considering the frozen-time method, commutativity of poly-
nomials holds and thus a regulator of the form (3:22) can be expressed
as

u(k) = D
�1(q; k)C(q; k)(r(k) � y(k)):

Although this regulator can be easily realized, it guarantees closed-loop
stability only if the plant is slowly time varying.

Now the objective is to design a pole-placement regulator (3:22) so that
the operator [A(q; k)D(q; k) + B(q; k)C(q; k)] is equal to a speci�ed con-
stant Hurwitz polynomial whose zeros can be assigned. The fundamental
problem that immediately arises in this framework is associated with the
polynomial operators. Namely, since these operators are not commutative
(i.e., C(q; k)D�1(q; k) 6= D

�1(q; k)C(q; k)), the approach taken above is
evidently not applicable. Therefore the design issue does not only involve
the proof of existence of the regulator, but also involves the question as to
whether the regulator is implementable.

In the continuous-time case, Ioannou and Tsakalis [8] have proposed a
new regulator structure that achieves stabilization regardless of the rate of
time variations. On the other hand, in the discrete-time case, Kamen [12]
gives a cascade realization of the regulator (3:22) as

C(q; k)D�1(q; k) = (C(q; k)q�N+1)(qN�1D�1(q; k))

= (C(q; k)q�N+1)(D(q; k)q�N+1)�1:

So the control signal can be obtained as

11
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u(k) = (C(q; k)q�N+1)v(k)

= (

N�1X
i=0

ci(k)q
i�N+1)v(k)

=

N�1X
i=0

ci(k)v(k + i�N + 1) (5.27)

where v(k) is computed from the following equation

v(k) = (D(q; k)q�N+1)�1(r(k) � y(k))

= (1 +

N�2X
i=0

di(k)q
i�N+1)�1(r(k) � y(k))

= �(
N�2X
i=0

di(k)v(k + i�N + 1)) + r(k) � y(k): (5.28)

It should be emphasized that this cascade realization in the discrete-time
case can not be obtained in continuous time.

The next theorem asserts that the regulator (3:22) in fact exists. It is
believed that the following result and constructions are new.

Theorem 3 Consider the nominal model of the plant (2:9) which sat-

is�es the assumption A:3. Then the coe�cients of the operators C(q; k)
and D(q; k) in (3:22) can always be selected such that [A(q; k)D(q; k) +
B(q; k)C(q; k)] is equal to any desired Hurwitz time-invariant polynomial

of degree N + n� 1.

Proof:Given the nominal model of the system (2:9) and the pole-placement
regulator (3:22), the output signal y(k) can be expressed in terms of the
closed-loop operator applied to the reference input as

y(k) = A
�1(q; k)B(q; k)u(k)

= A
�1(q; k)B(q; k)C(q; k)D�1(q; k)(r(k) � y(k)): (5.29)

Equation (5:29) can be written as

y(k) = (1� [1 +A
�1(q; k)B(q; k)C(q; k)D�1(q; k)]�1)r(k)

= r(k)� [1 +A
�1(q; k)B(q; k)C(q; k)D�1(q; k)]�1

A
�1(q; k)A(q; k)r(k):

Using Proposition 1, the above equation becomes

y(k) = (1� [A(q; k) +B(q; k)C(q; k)D�1(q; k)]�1A(q; k))r(k)

12
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= r(k) �D(q; k)[A(q; k)D(q; k) +B(q; k)C(q; k)]�1

A(q; k)r(k): (5.30)

From (5:30), it can be concluded that the inverse operator associated with
the closed-loop system is given by

[A(q; k)D(q; k) +B(q; k)C(q; k)]�1:

It is the goal of the regulator to make the inverse operator of (5:30) equal
to the inverse of a Hurwitz polynomial (R(q))�1, or

R(q) = A(q; k)D(q; k) +B(q; k)C(q; k): (5.31)

Equation (5:31) is a time-varying version of the Bezout identity which can
be expressed in terms of the resultant matrix de�ned in (2:12) as

�N(k)X(k) = Z(k) (5.32)

where the vector X(k) contains the adjustable parameters

X(k) = [d0(k) � � � dN�2(k �N + 2)

c0(k) � � � cN�1(k �N + 1)]T (5.33)

for which equation (5:32) is solved. The vector Z(k) consists of the coe�-
cients of the operator (R(q)�A(q; k)qN�1). So if R(q) is given by

R(q) = q
N+n�1 + rN+n�2q

N+n�2 + � � �+ r0;

the vector Z(k) can be written as

Z(k) = [ r0 � a0(k + n�N + 1) � � � rN+n�2 � an�1(k �N + 2) ]T :

In order to solve (5:32) for the vector X(k), the notion of pseudo-inverse
is used; that is,

X(k) = �TN (k)(�N (k)�
T
N (k))

�1
Z(k): (5.34)

Using assumption A:2, (�N (k)�
T
N (k))

�1 exists and so the regulator
parameters always exist. This concludes the proof. 2

Note that the vector X(k) given by (5:33) contains the regulator pa-
rameters at times prior to and at time k. However, from equations (5:27)
and (5:28), the regulator parameters at time k should be available. To
resolve this problem, we consider the equation

�N (k +N � 1)X(k +N � 1) = Z(k +N � 1): (5.35)

By solving for X(k+N�1), the parameter cN�1(k) is obtained and all the
other parameters are stored for future iterations. For initial computation

13
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at time k0, where k0 is an integer, equation (5:35) should be solved at times
k0 until k0 +N � 1 to obtain all the regulator parameters at time k0. It
should be noted that in order to obtain the controller parameters at time
k, the resultant matrix (2:12) and the vector Z(k) should be computed at
time k + N � 1. This implies that the plant parameters are to be known
in the future up to time k + n+N � 1.

In order to highlight the fundamental di�erence between the design
technique developed in this section and the frozen-time approach, the fol-
lowing example is considered.

Example 5.1:

Consider the second order system

(q2 + qa1(k) + a0(k))y(k) = (qb1(k) + b0(k))u(k)

and the pole-placement regulator

u(k) = (qc1(k) + c0(k))(q + d0(k))
�1(r(k) � y(k)):

As mentioned above, the objective is to solve the following Bezout identity
for the coe�cients d0(k), c0(k), and c1(k):

R(q) = (q2 + qa1(k) + a0(k))(q + d0(k)) + (qb1(k) + b0(k))(qc1(k) + c0(k))
(5.36)

where R(q) is a Hurwitz polynomial given by

R(q) = q
3 + r2q

2 + r1q + r0:

Following the de�nition of the operator q in Section 2, and by de�ning

n(k) = a0(k)b1(k)b1(k� 1)� b0(k)a1(k)b1(k� 1)+ b0(k)b0(k� 1); (5.37)

the controller coe�cients are given by

d0(k) =
1

n(k)
fr0b

2
1(k)� b0(k)b1(k)(r1 � a0(k)) + b

2
0(k)(r2 � a1(k))

+(r0b1(k)� r1b0(k))(b1(k � 1)� b1(k)) + b0(k)r2

(b0(k � 1)� b0(k)) + b0(k)(b1(k � 1)a0(k � 1)

�b1(k)a0(k) + a1(k)b0(k)� a1(k � 1)b0(k � 1))g (5.38)

c0(k) =
1

n(k)
f�r0a1(k)b1(k) + r0b0(k) + a0(k)b1(k)(r1 � a0(k))

�a0(k)b0(k)(r2 � a1(k)) + a0(k)[r1(b1(k � 1)� b1(k))

+r2(b0(k)� b0(k � 1)) + b1(k)a0(k)� b1(k � 1)a0(k � 1)

+b0(k � 1)a1(k � 1)� b0(k)a1(k)] + r0a1(k)(b1(k)� b1(k � 1))

+r0(b0(k � 1)� b0(k))g (5.39)

14
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c1(k) =
1

n(k)
f�r0b1(k) + b0(k)(r1 � a1(k)) + (a0(k)b1(k)� a1(k)b0(k))

(r2 � a1(k)) + (b0(k) + a0(k)b1(k)� a1(k)b0(k))

(a1(k)� a1(k � 1))g (5.40)

Now by considering the Bezout identity (5:36) pointwise; that is setting
qa1(k) = a1(k)q, and by de�ning

n
0(k) = a0(k)b1(k)b1(k)� b0(k)a1(k)b1(k) + b

2
0(k); (5.41)

the controller coe�cients are now given by

d0(k) =
1

n0(k)
fr0b

2
1(k)� b0(k)b1(k)(r1 � a0(k))

+b20(k)(r2 � a1(k))g (5.42)

c0(k) =
1

n0(k)
f�r0a1(k)b1(k) + r0b0(k) + a0(k)b1(k)(r1 � a0(k))

�a0(k)b0(k)(r2 � a1(k))g (5.43)

c1(k) =
1

n0(k)
f�r0b1(k) + b0(k)(r1 � a1(k)) + (a0(k)b1(k)

�a1(k)b0(k))(r2 � a1(k))g: (5.44)

First, it should be noted that n(k) in (5:37) can be written in terms of
n
0(k) in (5:41) as

n(k) = n
0(k) + (a0(k)b1(k)� a1(k)b0(k))(b1(k � 1)� b1(k))

+b0(k)(b0(k � 1)� b0(k)): (5.45)

Moreover, consider the controller coe�cients given by (5:38), (5:39), (5:40)
(solution using the method described above) and (5:42), (5:43), (5:44) (so-
lution using the frozen-time approach). It should be noted that (5:38),
(5:39), (5:40) contain the same terms as in (5:42), (5:43), (5:44) respec-
tively, plus some extra terms which are functions of parameter rate of vari-
ations. Therefore in the case where the parameters are slowly varying, the
controller coe�cients generated by either method are approximately iden-
tical and the control objective is met. However, if the parameter variations
are arbitrarily fast, only the approach discussed in this section will yield
satisfactory performance since the design method takes into account the
rate of parameter variations. This explains why the frozen-time approach
is applicable only to slowly-varying systems.
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6 The Adaptive Control Law

In this section, we consider the design of the adaptive pole-placement reg-
ulator in the case where the slowly-varying part of the plant parameters
are unknown. Then the main result of this paper is given.

The adaptive control law is implemented using the certainty equivalence
principle. In other words, the unknown vector �(k) is replaced with its

estimate �̂(k � 1) and so the plant parameter estimates are given by

[ ân�1(k) � � � â0(k) b̂n�1(k) � � � b̂0(k) ]T = H(k)�̂(k � 1) (6.46)

where the matrix H(k) is given by (3:17).

In order to obtain the adaptive controller parameters, the vector �̂(k�1)
is frozen up to time k + n + N � 1 in the future. Because the unknown
parameters are assumed to be slowly varying, freezing the estimates in the
future will not destabilize the closed-loop system.

The objective is to design the following adaptive regulator

u(k) = Ĉ(q; k)D̂�1(q; k)(r(k) � y(k)) (6.47)

such that the following equality is satis�ed

Â(q; k)D̂(q; k) + B̂(q; k)Ĉ(q; k) = R(q) (6.48)

where again R(q) is a Hurwitz polynomial, and Â(q; k), B̂(q; k) are given
by

Â(q; k) = q
n + q

n�1
ân�1(k + 1) + � � �+ â0(k + n)

B̂(q; k) = q
n�1

b̂n�1(k + 1) + � � �+ b̂0(k + n) (6.49)

and Ĉ(q; k), D̂(q; k) are given by

Ĉ(q; k) =

N�1X
i=0

ĉi(k)q
i

D̂(q; k) = q
N�1 +

N�2X
i=0

d̂i(k)q
i
:

The time-varying Bezout identity (6:48) can be solved using the resultant

matrix �̂N (k) which is given by (2:12) except that the estimates âi(k), b̂i(k)
are used instead of the coe�cients ai(k), bi(k).

As in Equation (5:35), the regulator coe�cients can then be given by

X(k+N�1) = �̂TN (k+N�1)(�̂N(k+N�1)�̂TN(k+N�1)�1Ẑ(k+N�1)

and so using (5:27), (5:28), the adaptive regulator is given by

u(k) =

N�1X
i=0

ĉi(k)v(k + i�N + 1) (6.50)
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v(k) = �(
N�2X
i=0

d̂i(k)v(k + i�N + 1)) + r(k) � y(k): (6.51)

In the next theorem, the main result is given.

Theorem 4 Given the plant (2:9), (3:18) with the assumptions A:1, A:2,

and A:3, consider the adaptive regulator (6:47) (6:50), (6:51) which con-

sists of the parameter estimator (4:23), (4:24) and the control law (3:22).
There exist real numbers v�1 > 0 and �� > 0 such that if v1 in (3:19) satis-
�es v1 � v

�

1 and � in (3:21) satis�es � � �
�, then for a su�ciently large

normalization factor 
(k � 1) and a bounded reference input r(k), the re-

sulting closed-loop system is globally stable (i.e., all signals are bounded for

any initial conditions).

The proof is given in Appendix B.

Example 6.1:

In this example, the performance of the adaptive pole-placement reg-
ulator discussed in this section is investigated. For comparison reasons,
the adaptive regulator considered in [11], which is based on the generalized
Kleinman's method [13], is also evaluated. For convenience, the adaptive
regulator discussed in this section is denoted by Regulator 1, and the one
considered in [11] is referred to as Regulator 2.

Consider the second-order system de�ned for k � 0 and given by

y(k) = a1(k)y(k�1)+a0(k)y(k�2)+b1u(k�1)+b0u(k�2)+�(k) (6.52)

where

a1(k) = a11(k) + a12cos(2k) a0(k) = a01 + a02sin(2k)

with a12, a01, a02, b1, b0 equal to 3;�2; 1; 1; 3 respectively and a11(k) is
shown in Figure 1. It should be noted that in the above equations the
coe�cients a11(k), a12, a01, a02, b1, b0 constitute the unknown part and
the functions cos(2k) and sin(2k) are the known rapidly-varying terms.
Moreover �(k) is given by

�(k) = 0:008�(k) + 0:5sin(k): (6.53)

Before considering the adaptive case, we assume that all the coe�cients
of the nominal model of (6:52) (�(k) = 0) are known. As shown in Figure
2, a pole-placement regulator based on the frozen-time approach does not
achieve stabilization of the closed-loop system. On the other hand, as
shown in Figure 3, Regulator 1 and Regulator 2 both satisfy the regulation
objective.
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Figure 1: Time-varying coe�cient

Now consider the nominal model of (6:52). With initial conditions

y(1) = 1, y(2) = 3 and with initial estimates set to �̂(0) = [�4:5 4:5 �3 1:5
1:5 4:5], re
ecting a 50 percent error of the initial true parameters, the sys-
tem is simulated using Regulator 1 and Regulator 2 and the output response
is shown in Figure 4. Note that both regulators yield the same performance
in this case.

Consider the system (6:52) where �(k) is given by (6:53). As shown in
Figure 5, the regulation response of Regulator 1 and Regulator 2 is similar.
However, if the rate of variations of the coe�cient a11(k) is increased as
shown in Figure 6, Regulator 1 (Figure 7(a)) yields a much better perfor-
mance than Regulator 2 (Figure 7(b)).

The conclusion which can be drawn from these simulations is that while
Regulator 1 performs like Regulator 2 in the case of low rate of parameter
variations, Regulator 1 outperforms Regulator 2 in the case of relatively
high rate of parameter variations.

7 Conclusion

In this paper, we considered the adaptive pole-placement regulation of time-
varying discrete-time non-stably invertible systems whose parameters are
allowed to vary arbitrarily fast. In this case, regulators that are based on
the frozen-time approach will not be applicable. To handle the case of
rapidly-varying parameters, the control law must be based on the nomi-
nal model viewed as a time-varying system, not as a parameterized time-
invariant system. This approach is taken in designing a pole-placement
regulator in the framework of polynomial di�erence operators. Unlike the
work of Ioannou and Tsakalis [8] in the continuous-time case, it is not
required that the plant di�erence polynomials are coprime. Since we are
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Figure 2: Pole-placement regulator based on the frozen-time approach
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Figure 3: The output response with known system parameters
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Figure 4: The output response
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Figure 5: The output response with uncertainties
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Figure 6: Time-varying coe�cient
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not assuming coprimeness, it does not appear to be possible to extend the
approach in [8] to the discrete-time case considered here. This work is
based on the weaker assumption that the system is N -step reachable for
all parameter values in a convex region. Moreover, the plant coe�cients
consist of a known fast-varying part and unknown slowly-varying parame-
ters which are to be estimated. The unknown part is required to be slowly
varying. In Section 6, it was shown that the adaptive regulator guarantees
global stability of all signals in the closed-loop system if the unknown pa-
rameter variations and the normalized model errors are su�ciently small
regardless of the overall rate of variations. This result is a contribution to
the adaptive control �eld in that the class of systems that can be treated
is much larger than the class considered in the literature. Through a simu-
lation example, the adaptive regulator discussed in this paper is compared
with an existing regulator which is known as the generalized Kleinman's
method [11]. Simulations have shown that the adaptive pole-placement reg-
ulator performs better in general than the adaptive regulator that is based
on the generalized Kleinman's method, especially if the rate of unknown
parameter variations is relatively high.

This paper addresses the regulation problem of time-varying discrete-
time systems. A fundamental open problem is whether it is possible to
design adaptive controllers that can achieve tracking for the general class
of systems considered in this paper.

A Proof of Theorem 1

Consider �rst the state-space model (2:3). We can write the left side of
(2:2) as

h
T

k�1X
i=�1

�(k; i+ 1)gz(i) = h
T
F (k � 1)(

k�2X
i=�1

�(k � 1; i+ 1)gz(i))

= [0 � � � 10](
k�2X

i=�1

�(k � 1; i+ 1)gz(i)):

Repeating n� 1 times, it follows that

h
T

k�1X
i=�1

�(k; i+ 1)gz(i) = g
T (

k�nX
i=�1

�(k � n+ 1; i+ 1)gz(i)): (A.1)

To prove Theorem 1, the mathematical induction argument is used.
(i) Consider z(k) = P (q; k)y(k) an element of S, the objective is to establish
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the equality y(k) = P
�1(q; k)z(k) or

y(k) = h
T

k�1X
i=k0

�(k; i+ 1)gz(i) 8k � k0 + n:

First, it should be veri�ed that

y(k0 + n) = h
T

k0+n�1X
i=k0

�(k0 + n; i+ 1)gz(i):

Using (A:1), it follows

h
T

k0+n�1X
i=k0

�(k0 + n; i+ 1)gz(i) = g
T

k0X
i=k0

�(k0 + 1; i+ 1)gz(i)

= g
T
gz(k0) = z(k0):

Knowing that z(k0) = P (q; k0)y(k0) and the initial state vector x(k0) = 0,
it follows that z(k0) = y(k0 + n).
Now assume that

y(k) = h
T

k�1X
i=k0

�(k; i+ 1)gz(i) = h
T
x(k);

the goal is to establish that

y(k + 1) = h
T

kX
i=k0

�(k + 1; i+ 1)gz(i): (A.2)

The left side of (A:2) can be written as

h
T

kX
i=k0

�(k + 1; i+ 1)gz(i) = h
T
F (k)(F (k � 1):::F (k0)gz(k0 � 1)

+ � � �+ gz(k � 1)) + h
T
gz(k)

= h
T
x(k + 1) = y(k + 1)

and this concludes the proof for the �rst part.

(ii) Now consider  (k) = P
�1(q; k)y(k) which belongs to S, the objective

is to show that
P (q; k) (k) = y(k) (A.3)

for all k � k0.
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It should be �rst be veri�ed that (A:3) holds for the initial condition at
time k0 for which it follows

P (q; k0) (k0) =  (k0 + n) + an�1(k0) (k0 + n� 1) + � � �+ a0(k0) (k0):

Again since the initial state x(k0) = [ (k0 + n� 1) � � � (k0)]T is set equal
to zero, we get

P (q; k0) (k0) =  (k0 + n)

= h
T

k0+n�1X
i=k0

�(k0 + n; i+ 1)gy(i): (A.4)

Using (A:1), (A:4) becomes

P (q; k0) (k0) = g
T

k0X
i=k0

�(k0 + 1; i+ 1)gy(i)

= g
T
gy(k0) = y(k0):

Now assume that P (q; k) (k) = y(k), the goal is to check whether

P (q; k + 1) (k + 1) = y(k + 1):

Consider the following equation

P (q; k + 1) (k + 1) =  (k + n+ 1) + an�1(k + 1) (k + n) + � � �

+a0(k + 1) (k + 1): (A.5)

Inserting (A:3) in (A:5), it follows that

P (q; k + 1) (k + 1) =  (k + n+ 1) + (an�2(k + 1)� an�1(k + 1)

an�1(k)) (k + n� 1) + (an�3(k + 1)

�an�1(k + 1)an�2(k)) (k + n� 2) + � � �

+(a0(k + 1)� an�1(k + 1)a1(k)) (k + 1)

�an�1(k + 1)a0(k) (k)

+an�1(k + 1)y(k): (A.6)

Using (A:1), it follows that

 (k + n+ 1) = g
T

k+1X
i=k0

�(k + 2; i+ 1)gy(i)

 (k + n� 1) = g
T

k�1X
i=k0

�(k; i+ 1)gy(i)
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...

 (k) = [0 � � � 01]
k�1X
i=k0

�(k; i+ 1)gy(i):

Using the above equalities, (A:6) becomes

P (q; k + 1) (k + 1) = g
T
F (k + 1)F (k)(

k�1X
i=k0

�(k; i+ 1)gy(i))

+gTF (k + 1)gy(k) + y(k + 1)

+[an�2(k + 1)� an�1(k + 1)an�1(k)

� � � � an�1(k + 1)a0(k)]

:(

k�1X
i=k0

�(k; i+ 1)gy(i)) + an�1(k + 1)y(k)):

(A.7)

Knowing that

g
T
F (k+1)F (k) = [an�2(k+1)+an�1(k+1)an�1(k) � � � an�1(k+1)a0(k)]

and
g
T
F (k + 1)g = �an�1(k + 1);

(A:7) becomes
P (q; k + 1) (k + 1) = y(k + 1)

and this proves the theorem. 2

B Proof of Theorem 4

Recall that the output prediction ŷ(k) is given by

ŷ(k) = �
T (k)�̂(k � 1): (B.1)

Equation (B:1) can also be expressed in terms of the polynomial di�erence
operator as

Â(q; k)ŷ(k) = B̂(q; k)u(k) + N̂(q; k)e(k) (B.2)

where again e(k) is the output prediction error, Â(q; k), B̂(q; k) are given
by (6:49), and N̂(q; k) is given by

N̂(q; k) = Â(q; k)� q
n
:
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Given that e(k) = ŷ(k)� y(k), it follows that

Â(q; k)y(k) = Â(q; k)ŷ(k)� Â(q; k)e(k): (B.3)

Using (B:2), (B:3) becomes

Â(q; k)y(k) = B̂(q; k)u(k) + (N̂(q; k)� Â(q; k))e(k)

= B̂(q; k)u(k)� q
n
e(k): (B.4)

Now given the adaptive regulator (6:47), u(k) and y(k) can be expressed
in terms of the inverse Hurwitz polynomial R�1(q) as

u(k) = Ĉ(q; k)D̂�1(q; k)(r(k) � y(k))

= Ĉ(q; k)R�1(q)[Â(q; k)D̂(q; k) + B̂(q; k)Ĉ(q; k)]

D̂
�1(q; k)(r(k) � y(k))

= Ĉ(q; k)R�1(q)Â(q; k)(r(k) � y(k))

+Ĉ(q; k)R�1(q)B̂(q; k)Ĉ(q; k)D̂�1(q; k)(r(k) � y(k))

= Ĉ(q; k)R�1(q)Â(q; k)r(k) � Ĉ(q; k)R�1(q)

(Â(q; k)y(k)� B̂(q; k)u(k)):

(B.5)

Using (B:4) in (B:5), it follows that

u(k) = Ĉ(q; k)R�1(q)(Â(q; k)r(k) + q
n
e(k)): (B.6)

Moreover, using (B:4), y(k) can be expressed as

y(k) = Â
�1(q; k)(B̂(q; k)u(k)� q

n
e(k)): (B.7)

Inserting (6:47), (B:7) becomes

y(k) = Â
�1(q; k)(B̂(q; k)Ĉ(q; k)D̂�1(q; k)(r(k) � y(k))� q

n
e(k))

= r(k) � [1 + Â
�1(q; k)B̂(q; k)Ĉ(q; k)D̂�1(q; k)]�1r(k)

[1 + Â
�1(q; k)B̂(q; k)Ĉ(q; k)D̂�1(q; k)]�1Â�1qne(k)

= r(k) � D̂(q; k)[Â(q; k)D̂(q; k) + B̂(q; k)Ĉ(q; k)]�1Â(q; k)r(k)

�D̂(q; k)[Â(q; k)D̂(q; k) + B̂(q; k)Ĉ(q; k)]�1qne(k)

= r(k) � D̂(q; k)R�1(q)Â(q; k)r(k) � D̂(q; k)R�1(q)qne(k):

(B.8)

Now consider the signal z(k) 2 S which is given by

z(k) = D̂(q; k)x(k) (B.9)
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where x(k) is de�ned by

x(k) = R
�1(q)qne(k); (B.10)

(B:10) can be written as

x(k+N+n�1) = �rN+n�2x(k+N+n�2)�� � ��r0x(k)+e(k+n) (B.11)

or

x(k +N � 1) = �rN+n�2x(k +N � 2)� � � � � r0x(k � n) + e(k): (B.12)

By de�ning the state �(k) as

�(k) = [x(k +N � 2) � � �x(k � n)]T

(B:12) can be expressed as

�(k + 1) = A�(k) + be(k)

where b = [1 0 � � � 0]T and A is given by

A =

2
66664
��N+n�2 � � � � � � ��0

1 0 � � �
. . . 0

0 1 0

3
77775 :

Using (B:9), z(k) can be given by

z(k) = h
T (k)�(k + 1) (B.13)

where h(k) = [ 1 dN�2(k) � � � d0(k) 0 � � � 0 ]T , with the number
of zeros in h(k) is n� 1.

Now given that R(q) is a Hurwitz polynomial and since r(k) is a bounded
signal for all k � k0 for some integer k0, it follows that there exist �0, �1
such that

jy(k)j; ju(k)j � �0 + �1

kX
i=k0

�
k�ije(i)j (B.14)

where � is the dominant pole of R(q).
Using Shwartz inequality, (B:14) becomes

y
2(k); u2(k) � �2 + �3

kX
i=k0

�
k�i

e
2(i): (B.15)
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Now, consider a function v(k) which includes the signals u(k), y(k). By
proving that v(k) is exponentially stable, the boundedness of all signals in
the closed-loop system is established. This proof technique is inspired by
the work of Ioannou and Tsakalis [8], although details in this context di�er
from that in [8]. Speci�cally, let v(k) be chosen as

v(k) = k1g(k) +m(k) (B.16)

where
g(k) = u

2(k) + y
2(k)

and m(k) is de�ned as

m(k) = 
(k � 1) + �

kX
i=k0

�
k�i(u2(i) + y

2(i)) (B.17)

where � satis�es the following equation

� = sup
k

[

sX
k0=1

f
2
k0
]: (B.18)

Inserting (B:17) and (B:15) in (B:16), it follows that

v(k) � k1(�4 + �5

kX
i=k0

�
k�i

e
2(i))

+
(k � 1) + �

kX
i=k0

�
k�i(u2(i) + y

2(i)): (B.19)

Given that the function 
(k � 1) is known to be bounded for all k � k0,
(B:19) can be written as

v(k) � �6 +

kX
i=k0

�
k�i[k1�5e

2(i) + �(u2(i) + y
2(i))]

� �6 +

k�1X
i=k0

�
k�i�1[k1�5

e
2(i)

m(i)
+

�

k1

][k1g(i) +m(i)]: (B.20)

At this point, the objective is to introduce the normalized output prediction
error �e(k) in the above inequality. In order to achieve that, consider the
function m(i) de�ned by (B:17) which can be written as

m(i) = 
(i� 1) + �(

i�1X
r=i�n

�
i�1�r(u2(r) + y

2(r))

+�(u2(i) + y
2(i)) +

i�n�1X
r=k0

�
i�n�1�r(u2(r) + y

2(r)))
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where again n is the order of the model (2:10). If the parameter � , intro-
duced in (3:14), is chosen such that 0 < � �

p
� and if � satis�es (B:18),

it follows that
m(i) � 
(i� 1) + �

T (i)�(i): (B.21)

Therefore, equation (B:20) can be written as

v(k) � �6 +

kX
i=k0

�
k�i[k1�5

e
2(i)


(i� 1) + �T (i)�(i)
+

�

k1

]v(i): (B.22)

Multiplying both sides in (B:22) by �k0�k�1, the above inequality becomes

�
k0�k�1v(k) � �6 +

kX
i=k0

[k1�5�e
2(i) +

�

k1

]v(i)�k0�i�1: (B.23)

Using Bellman Gronwall lemma, (B:23) is expressed as

�
k0�k�1v(k) � �6

kY
i=k0

[1 + �5k1�e
2(i) +

�

k1

]: (B.24)

Multiplying through by �k�k0+1

v(k) � �6

kY
i=k0

�[1 + �5k1�e
2(i) +

�

k1

]: (B.25)

Now given the following inequality

k�1Y
i=k0

ai � [
1

k � k0 + 1

kX
i=k0

ai]
k�k0+1;

inequality (B:25) becomes

v(k) � �6�[1 +
�

k1

+
k1�5

k � k0 + 1

kX
i=k0

�e2(i)]k�k0+1:

Given inequality (4:26) in Theorem 2, it follows

v(k) � �6[�+ �
�

k1

+ �
k1�5

k � k0 + 1
((D2 + 3Dv0 + 2�v0)

+(2D�+ 2�2 + 3Dv1 + 2�v1)(k � k0 + 1))]k�k0+1: (B.26)

For su�ciently small v1 and �, there exists some k1 such that as k goes to
in�nity, the following inequality is obtained

�+ �
�

k1

+ �k1�5[2D�+ 2�2 + 3Dv1 + 2�v1] < 1
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and thus v(k) is asymptotically stable.
From (B:16), it follows that the signals y(k) and u(k) are globally sta-

ble. This implies that the regression vector �(k) is bounded and since the
parameter error ~�(k) is also bounded, it can be concluded that the output
prediction error e(k) is bounded. This concludes the proof.2
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