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Controllability of Semilinear Integrodi�erential

Systems in Banach Spaces�

K. Balachandran J.P. Dauer P. Balasubramaniam

Abstract

Su�cient conditions for controllability of semilinear integrodif-

ferential systems in a Banach space are established. The results are

obtained using the asymptotic �xed-point theorem for k-set contrac-

tions.
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1 Introduction

Controllability of linear and nonlinear systems represented by ordinary

di�erential equations has been studied by a number of authors. This con-

cept has been extended to in�nite dimensional systems in Banach spaces

with bounded operators by Triggiani [12, 13]. Naito [8, 9] established the

approximate controllability of semilinear control systems using fundamen-

tal assumptions on the systems components. Naito and Park [10] studied

the same problem for delay Volterra control systems by using the Leray

Schauder degree theorem. Yamanoto and Park [14] established necessary

and su�cient conditions for the approximate controllability of a parabolic

equation in a Banach space with uniformly bounded nonlinear term by

estimating solutions to the nonlinear parabolic systems. Nakagiri and

Yamamoto [6] gave a number of criteria for controllability and observ-

ability for retarded systems in general Banach spaces. Zhou [15] derived

a set of su�cient conditions for the approximate controllability of semilin-

ear abstract equation with a distributed control. Exact controllability of

abstract semilinear equations has been studied by Lasiecka and Triggiani

[5]. Conditions for approximate controllability for a nonlinear Volterra

equation without any local restriction on reachable sets have been derived
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by Naito [9]. Recently Kwun et al. [4] investigated controllability and ap-

proximate controllability of delay Volterra systems by using the �xed-point

theorem due to Nussbaum [11]. In this paper we shall also use the Nuss-

baum �xed-point technique in our study of the controllability of semilinear

integrodi�erential systems in Banach spaces.

2 Preliminaries

Consider a semilinear integrodi�erential equation of the form

_xt(�) +A(t)xt(�) =

Z t

�1

f(t; s; xs(�))ds + (Bu)(t);

t 2 J = [0; T ]; x(t) = �(t); t 2 (�1; 0] (2.1)

where the state takes values x(t) in the Banach space X and the control

function u is given in L2(J; U), a Banach space of admissible control func-

tions with U a Banach space. Here the linear operator A(t) generates a
strongly continuous evolution system fX(t; s)g on X and is continuously

initially observable [4]. Let C be a Banach space of all bounded uniformly

continuous functions from I = (�1; 0] to X endowed with the supremum

norm

k�kC = supfk�(�)k: � 2 Ig:

The nonlinear operator f :R+ � R � C ! X is compact and continuous.

Then for the system (1) there exists a mild solution of the following form

[3]

xt(�) = X(t; 0)�(0) +

Z t

0

X(t; s)

�Z s

�1

f(s; �; x� (�))d�

�
ds

+

Z t

0

X(t; s)(Bu)(s)ds; t 2 J (2.2)

x(t) = �(t); t 2 (�1; 0]; � 2 C:

De�nition System (2.1) is said to be controllable on the interval J if for

every continuous initial function � de�ned on (�1; 0] and every v 2 X ,

there exists a control u 2 L2(J; U) such that the solution xt(�) of (1)

satis�es xT (�) = v. Throughout this work we let kzk2 denote the L
2 norm

on the space L2(J;M) for whatever Banach space M is associated with

z: J !M . We assume the following hypotheses (i) through (v):

(i) For the linear operator W from U to X de�ned by

Wu =

Z T

0

X(T; s)Bu(s)ds
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there is an invertible operator W�1 de�ned on L2(J; U)=ker W and

there exists a real valued function L(�) on J with positive values such

that 
Z
�

0

X(�; s)Bu(s)ds

 � L(�)kuk2

where L(�) is increasing and L(0) = 0.

(ii) The evolution operator fX(t; s): 0 � s � t � Tg is a compact map-

ping from X to itself, satisfying X(t; s)x 2 X \ U for all x 2 X ,

0 � s � t and

kX(t; s)xkX � p(t)kxkX ; kpk2 = c <1

kX(t; s)xkU � q(t)kxkX ; kqk2 = d <1:

(iii) The nonlinear function f(t; s; y) is continuous and satis�es

kf(t; s; xs(�)) � f(t; s; ys(�))k � g(t; s)kxs(�)� ys(�)kC

where g(kxs(�)k, kys(�)k) = g(t; s) is continuous on J�J , g(t; s)! 0

as t! 0 and f(t; s; 0) = 0 for 0 � s � t � T .

(iv) The function Q(s) = lim
a!1

�Z 0

�a

f(s; �; �) d�

�
exists.

(v) A real number  is chosen so that the following conditions hold

(c+ L(t)d) sup

�Z t

0

g(k�(s)k; 0)ds : k�k � 

�
� k < 1;

c sup

�Z t

0

Z s

0

g(t; s)dsdt : 0 � �(t);  (t) � 

�
� k < 1:

Now equation (2.2) can be written as

xt(�) = X(t; 0)�(0) +

Z t

0

X(t; s)

�Z s

0

f(s; �; x� (�))d� +Q(s)

�
ds

+

Z t

0

X(t; s)(Bu)(s)ds; t 2 J (2.3)

x(t) = �(t); t 2 (�1; 0]; � 2 C:

To prove our main results we need the following result due to Nussbaum

[6].

Theorem 1 Suppose that S is a closed, bounded convex subset of a Banach

space X, and that �1;�2 are continuous mappings from S into X such that
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(i) (�1 + �2)S � S,

(ii) k�1x��1x
0k � kkx� x0k for all x; x0 2 S where k is a constant and

0 � k < 1,

(iii) the closure �2(S) is compact.

Then the operator �1 +�2 has a �xed point in S.

3 Main Result

Theorem 2 If the hypotheses (i){(v) are satis�ed, then the system (2:1)
can be steered in the interval J from the initial state � to any �nal state v
satisfying

kvkU �
�
(1� k) � (c+ Ld)(k�kC + kQ(s)kC)

�
=L:

Proof: Using the hypothesis (i), de�ne the control

u(t) = W�1

�
v �X(T; 0)�(0)�

Z T

0

X(T; �)Q(�)d�

�

Z T

0

X(T; �)

�Z �

0

f(�; �; x� (�))d�

�
d�

�
(t):

This control is substituted into the equation (2.3) to de�ne an operator �

by

�xt(�) = �(t); for t 2 (�1; 0]

�xt(�) = x(t; 0)�(0) +

Z t

0

X(t; s)Q(s)ds

+

Z t

0

X(t; s)

�Z s

0

f(x; �; x� (�))d�

�
ds

+

Z t

0

X(t; s)BW�1

�
v �X(T; 0)�(0)�

Z T

0

X(T; �)Q(�)d�

�

Z T

0

X(T; �)

�Z �

0

f(�; �; x� (�))d�

�
d�

�
(s)ds; t 2 J:

Clearly �xT (�) = v, which means that the control u steers the system from

the initial state � to v in time T provided we can obtain a �xed point of

the nonlinear operator �. For that we de�ne

�1xt(�) = X(t; 0)�(0) +

Z t

0

X(t; �)Q(�)d�

+

Z t

0

X(t; �)

�Z �

0

f(�; �; x� (�))d�

�
d�
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and

�2xt(�) =

Z t

0

X(t; s)BW�1

�
v �X(T; 0)�(0)�

Z T

0

X(T; �)Q(�)d�

�

Z T

0

X(T; �)

�Z �

0

f(�; �; x� (�))d�

�
d�

�
(s)ds:

We can apply Theorem 1 with

S = fxt(�)(�) 2 C: kxt(�)k � g:

Then the set S is closed, bounded and convex. From the de�nition, we

have

�xt(�)(0) = �1xt(�)(0) + �2xt(�)(0):

Thus, for any xt(�)(�) 2 S,

k�xt(�)(�)kX = k�xt+�(�)(0)k � kX(t+ �; 0)�(0)k

+

Z t+�

0

kX(t+ �; s)Q(s)kds

+

Z t+�

0

X(t+ �; s)

�Z s

0

f(s; �; x� (�))d�

� ds
+

Z t+�

0

X(t+ �; s)BW
�1

�
v �X(T; 0)�(0)�

Z T

0

X(T; �)Q(�)d�

�
Z T

0

X(T; �)

�Z �

0

f(�; �; x(�))d�

�
d�

�
(s)

ds
� (c+ Ld)[k�kC + kQ(s)kC ] + Lkvk2 + k

� (1� k) + k = ; �h � � � 0:

Hence

sup
�
k�xt(�)(�)kX :�h � � � 0

	
= k�xt(�)kC � :

Hence �1xt(�)(0) + �2xt(�)(0) 2 S for all xt(�) 2 S. Which means that part

(i) of Theorem 1 is satis�ed. To prove the part (ii) of Theorem 1, consider two

functions xt(�), x̂t(�) 2 S, then

k�1xt(�)(�)� �1x̂t(�)(�)kX

�

Z t+�

0

X(t+ �; s)

�Z s

0

jf(s; �; x� (�))� f(s; �; x̂t(�))jd�
�
ds


X

� c

Z t

0

Z s

0

g(s; t)dsdt(kx�(�)� x̂t(�)kC :

Consequently,

k�1xt(�)� �1x̂t(�)kC � kkx� (�)� x̂� (�)kC ; 0 � k < 1:
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Finally we must show that �1 and �2 are completely continuous. For this consider

k�1(xt(�) + �)(�)� �1xt(�)(�)kX
= k�1(xt+�(�) + �)(0)� �1xt+�(�)(0)kX

=


Z t+�

0

X(t+ �; s)

�Z s

0

ff(s; �; x� (�) + �)� f(s; �; x�(�))gd�
�
ds


X

� kpk2
�Z t

0

Z s

0

g(s; � )d�ds

�
k�kC :

Hence

supfk�1(xt(�) + �)(�)��1xt(�)(�)kX :�h � � � 0g
= k�1(xt(�) + �)��1xt(�)kC

� kpk2
�Z t

0

Z s

0

g(s; � )d�ds

�
k�kC ! 0 as � ! 0:

Similarly

supfk�2(xt(�) + �
0)�)� �2xt(�)(�)kX :�h � � � 0g

= k�2(xt(�) + �
0

)� �2xt(�)kC

� Lkqk2
�Z T

0

Z s

0

g(s; �)d�ds

�
k�0kC ! as �

0 ! 0:

Thus �1 and �2 are continuous. Using the Arzela{Ascoli theorem we show that

�2 maps S into a precompact subset of S. To show this de�ne

�2xt�"(�)(�) =

Z t+��"

0

X(t+ �; s)BW�1

�
v �X(T; 0)�(0)

�
Z T

0

X(T; �)Q(�)d�

�
Z T

0

X(T; �)

�Z �

0

f(�; �; x� (�))d�

�
d�

�
(s)ds

for all xt(�) 2 S. Thus, we have

�2xt�"(�)(�) = X(t+ �; t+ � � ") �

�
Z t+��"

0

X(t+ � � "; s)BW
�1

�
v �X(T; 0)(�)(0)

�
Z T

0

X(T; �)Q(�)d�

�
Z T

0

X(T; �)

�Z �

0

f(�; �; x�(�))d�

�
d�

�
(s)ds:
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Since X(t+ �; t+ � � ") is a compact operator, the set

K2[xt(�)(�)] = f�2xt�"(�)(�):xt(�) 2 Sg

is precompact. Also

k�2xt(�)(�)� �2xt�"(�)(�)kX

=


Z t+�

t+��"

X(t+ �; s)BW
�1

�
v �X(T; 0)(�)(0)

�
Z T

0

X(T; �)Q(�)d�

�
Z T

0

X(T; �)

�Z �

0

f(�; �; x�(�))d�

�
d�

�
(s)ds


X

� L(")

�
kvk2 + d

�
k�(0)kC + kQ(s)kC

+

Z T

0

Z s

0

g(�; �)d�ds

�
kx� (�)kC

�
! 0

as "! 0. Hence

supfk�2xt(�)(�)� �2xt�"(�)(�)kX :�h � � � 0g
= k�2xt+�(�)� �2xt+��"(�)kC

� L(")

�
kvk2 + d

�
k�(0)kC + kQ(s)kC

+

�Z T

0

Z s

0

g(s; � )d�ds

��
kx� (�)kC

�
! 0 as "! 0:

Thus there are compact sets arbitrarily close to the set

K2[xt(�)(�)] = f�2xt(�)(�):xt(�) 2 Sg

and therefore K2[xt(�)(�)] is precompact. We next show that �2 maps the func-

tions in S into an equicontinuous family of functions. For equicontinuous from

the left we take t > " > t
0

> 0, then

k�2xt(�)(�) � �2xt�t0
(�)(�)k

X

=


Z

t+�

0

X(t + �; s)BW
�1

�
v � X(T; 0)(�)(0)

�

Z
T

0

X(T; �)Q(�)d� �

Z
T

0

X(T; �)

�Z
�

0

f(�; �; x� (�)) d�

�
d�

�
(s)ds

�

Z
t�t

0+�

0

X(t � t
0
+ �; s)BW

�1

�
v � X(T; 0)�(0) �

Z
T

0

X(T; �)Q(�)d�

�

Z
T

0

X(T; �)

�Z
�

0

f(�; �; x� (�))d�

�
d�

�
(s)dsk

X
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�


Z

t+��"

0

X(t + �; s)BW
�1

�
v �X(T; 0)�(0) �

Z
T

0

X(T; �)Q(�)d�

�

Z
T

0

X(T; �)

Z
�

0

f(�; �; x� (�))d�d�

�
(s)ds

�

Z
t+��"

0

X(t � t
0
+ �; s)BW

�1

�
v � X(T; 0)�(0) �

Z
T

0

X(T; �)Q(�)d�

�

Z
T

0

X(T; �)

Z
�

0

f(�; �; x� (�))d�d�

�
(s)dsk

X

+


Z

t+�

t+��"

X(t + �; s)BW
�1

�
v � X(T; 0)�(0) �

Z
T

0

X(T; �)Q(�)d�

�

Z
T

0

X(T; �)

Z
�

0

f(�; �; x� (�))d�d�

�
(s)ds


X

+


Z

t�t
0+�

t+��"

X(t � t
0
+ �; s)BW

�1

�
v �X(T; 0)�(0) �

Z
T

0

X(T; �)Q(�)d�

�

Z
T

0

X(T; �)

Z
�

0

f(�; �; x� (�))d�d�

�
(s)ds


X

� kX(t + �; t � t
0
+ �) � Ik

Z
t+��"

0

X(t � t
0
+ �; s)BW

�1

�
v � X(T; 0)�(0)

�

Z
T

0

X(T; �)Q(�)d� �

Z
T

0

X(T; �)

Z
�

0

f(�; �; x� (�))d�d�

�
(s)


X

ds

+

Z
t+�

t+��"

X(t + �; s)BW
�1

�
v � X(T; 0)�(0) �

Z
T

0

X(T; �)Q(�)d�

�

Z
T

0

X(T; �)

Z
�

0

f(�; �; x� (�))d�d�

�
(s)


X

ds

+


Z

t�t
0+�

t+��"

X(t � t
0
+ �; s)BW

�1

�
v �X(T; 0)�(0)

�

Z
T

0

X(T; �)Q(�)d� �

Z
T

0

X(T; �)

Z
�

0

f(�; �; x� (�))d�d�

�
(s)


X

ds

� kX(t + �; t � t
0
+ �) � I kL(t + � � ")kuk

X

+L(")kuk
X

+ L(" � t
0
)kuk

X
! 0

as " ! 0, since L(t) ! 0 as t ! 0 and X(t; s) is continuous in (s; t). Thus we

have

supfk�2xt(�)(�)� �2xt�t0(�)(�)kX :�h � � � 0g
= k�2xt(�)� �2xt�t0(�)k ! 0 as t0 ! 0:
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The equicontinuity from the right is similar. Hence by Theorem 1, � has a

�xed point.

4 Example

Let 
 be a domain in R3 with smooth boundary. Consider the integrodi�erential

equation

@y

@t
=

@
2
y

@x2
+

Z t

�1

g(t� s)h(ry)ds+ u(t) (4.1)

y(x; t) = 0; (x; t) 2 �
�R

y(x; t) = �(x; t); t 2 (�1; 0]

where the operator A = �
2
=�x

2:H2(0; 1) \ H
1

0
(0; 1) ! H

1

0
(0; 1) generates a

strongly continuous compact semigroup [see 1, 2] given by

X(t)y =

1X
i=1

exp(�n2�2t)(y; �n)�n;

where �n = (
p
2) sin(n�x), g(�):R+ ! R is continuous and g(t�s)! 0 as t! s,

the nonlinearity h:R3 ! R vanishes at zero and has the property that there exist

a c0 > 0 such that

jh(u)� h(v)j � c0

3X
i=1

jui � vij; for u; v 2 L
2

(J; L
2

(0; 1)):

It is known [1] that the linear version for (4.1)

@y

@t
=

@
2
y

@x2
+ u(t)

is controllable in H
1

0
(0; 1) where

H
1

0 (0; 1) =

(
z 2 L

2

(0; 1):
X
n

n
2jhz; �nij2 <1

)
:

Further, the constants c, d and L are �nite. Let

r = sup

�Z t

0

g(t� s)ds: 0 � t � 1

�

be such that r < k=(c + Ld) � 1. Hence all the conditions (ii){(v) are satis�ed,

by Theorem 2 the system (4.1) is controllable on H
1

0
(0; 1).
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