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Controllability of Semilinear Integrodifferential
Systems in Banach Spaces*

K. Balachandran J.P. Dauer P. Balasubramaniam

Abstract

Sufficient conditions for controllability of semilinear integrodif-
ferential systems in a Banach space are established. The results are
obtained using the asymptotic fixed-point theorem for k-set contrac-
tions.
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1 Introduction

Controllability of linear and nonlinear systems represented by ordinary
differential equations has been studied by a number of authors. This con-
cept has been extended to infinite dimensional systems in Banach spaces
with bounded operators by Triggiani [12, 13]. Naito [8, 9] established the
approximate controllability of semilinear control systems using fundamen-
tal assumptions on the systems components. Naito and Park [10] studied
the same problem for delay Volterra control systems by using the Leray
Schauder degree theorem. Yamanoto and Park [14] established necessary
and sufficient conditions for the approximate controllability of a parabolic
equation in a Banach space with uniformly bounded nonlinear term by
estimating solutions to the nonlinear parabolic systems. Nakagiri and
Yamamoto [6] gave a number of criteria for controllability and observ-
ability for retarded systems in general Banach spaces. Zhou [15] derived
a set of sufficient conditions for the approximate controllability of semilin-
ear abstract equation with a distributed control. Exact controllability of
abstract semilinear equations has been studied by Lasiecka and Triggiani
[5]. Conditions for approximate controllability for a nonlinear Volterra
equation without any local restriction on reachable sets have been derived
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by Naito [9]. Recently Kwun et al. [4] investigated controllability and ap-
proximate controllability of delay Volterra systems by using the fixed-point
theorem due to Nussbaum [11]. In this paper we shall also use the Nuss-
baum fixed-point technique in our study of the controllability of semilinear
integrodifferential systems in Banach spaces.

2 Preliminaries

Consider a semilinear integrodifferential equation of the form

(6) + Aai() = / £(t,5,24(8))ds + (Bu)(2),
te J=1[0,T], z(t) = ¢(t), t € (—00,0] (2.1)

where the state takes values z(¢) in the Banach space X and the control
function u is given in L?(.J,U), a Banach space of admissible control func-
tions with U a Banach space. Here the linear operator A(t) generates a
strongly continuous evolution system {X(¢,s)} on X and is continuously
initially observable [4]. Let C' be a Banach space of all bounded uniformly
continuous functions from I = (—o0,0] to X endowed with the supremum
norm

[6llc = sup{[|¢(8)[|:6 € I}.

The nonlinear operator f: Rt x R x C — X is compact and continuous.
Then for the system (1) there exists a mild solution of the following form
3]

n() = X(6,0)6(0) + /OtX<t,s> [/_;f(smwr(@)dT s

+ /t X(t,s)(Bu)(s)ds, teJ (2.2)
0
z(t) = @(t), t € (—00,0], ¢ € C.

Definition System (2.1) is said to be controllable on the interval J if for
every continuous initial function ¢ defined on (—oc,0] and every v € X,
there exists a control u € L?(J,U) such that the solution z(¢) of (1)
satisfies 7(¢) = v. Throughout this work we let ||z||2 denote the L? norm

on the space L2(.J, M) for whatever Banach space M is associated with
z:J — M. We assume the following hypotheses (i) through (v):

(i) For the linear operator W from U to X defined by
T
Wu = / X(T,s)Bu(s)ds
0
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there is an invertible operator W~! defined on L?(J,U)/ker W and
there exists a real valued function L(-) on J with positive values such
that

where L(-) is increasing and L(0) = 0.

s)Bu(s)ds|| < L(-)[|ull2

(ii) The evolution operator {X(¢,5):0 < s <t < T} is a compact map-

ping from X to itself, satisfying X (t,s)x € X NU for all z € X,
0<s<tand

Xt s)xllx < p@d)llzllx, llpll2=c<oo
X s)zllo < q@llzllx, llgllz =d < oco.

(iii) The nonlinear function f(t,s,y) is continuous and satisfies

1f(E,8,24(0) = f(t 5,95 (D)) < g(t, 5)l|zs(0) — ys(D)llo

where g(||zs (D), llys(d)]]) = g(t, s) is continuous on J x J, g(t,s) — 0
ast— 0and f(¢,5,0)=0for 0<s<t<T.

0
(iv) The function Q(s) = lim [ f(s,7,0) dr} exists.

(v) A real number ~ is chosen so that the following conditions hold

(¢ + L(t)d) sup {/0 g(llo(s)ll,0)ds : |l¢ll < 7} <k<1,

csup{// (t,8)dsdt : 0 < @(t),¥(t) < }<k<1

Now equation (2.2) can be written as

To prove our main results we need the following result due to Nussbaum
[6].

Theorem 1 Suppose that S is a closed, bounded convex subset of a Banach
space X, and that ®1, @2 are continuous mappings from S into X such that
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(i) (@1 +®2)S C S,

(i) |1z — @12'|| < kl|lx —2'|| for all z,2" € S where k is a constant and
0<k<1,

(iii) the closure ®2(S) is compact.

Then the operator ®1 + ®5 has a fized point in S.

3 Main Result

Theorem 2 If the hypotheses (1)—(v) are satisfied, then the system (2.1)
can be steered in the interval J from the initial state ¢ to any final state v
satisfying

lollr < [(1 = k)y = (c+ Ld)(ll¢llc +1Q(s)lle)] /L-
Proof: Using the hypothesis (i), define the control

T
ut) = Wl{v—m,omm)— | x@. e

- [ "X {10 7tonar f an] o

This control is substituted into the equation (2.3) to define an operator ®
by
(Dxt((b) = ¢(t)a fort € (_0070]

Buy(d) = a(t,0)p(0) + / X(t, 5)Q(s)ds

v X(t9) [ t.maeonir o

t T
+ X(t,s>Bwl[v—X<T,o>¢<o>— | x@ e

0

T 4
[ x@o{ [ 1o} ] s, ve
0 0
Clearly ®z7(¢) = v, which means that the control u steers the system from

the initial state ¢ to v in time 7" provided we can obtain a fixed point of
the nonlinear operator ®. For that we define

Bio(d) = X(,0)$(0) + / X(t,p)Q(p)dp

v/ X(t.p) L[ sto.metonir ) ap
4
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and

®o14(0) /thBW (T,0)¢ /XTp

{v_
/XTpU“mnmwwﬁ¢m&

We can apply Theorem 1 with

§={z:(9)(-) € C: [l ()] < 7}-

Then the set S is closed, bounded and convex. From the definition, we
have

Px4(4)(0) = 2124(4)(0) + P224(9)(0).
Thus, for any z:(#)(-) € S,

[@2:(4)(O)llx = |Bze10(H)(0)]] < [|X (¢ +6,0)0(0)]

t+6
n / IX(t 46, 5)Q(s) s
(0]

+/0 t+9s{/f”,xr }
+/t+ X(t+6,s)BW™ { /XTP
/XTp{/fp,m; dr}dp]()

(c+ Lad)(ll¢lle +1Q(s)llc] + Lilvll> + ky
1-ky+ky=~v -h<6<0.

ds

ds

INIA

Hence
sup{[|®z(¢)(0)lIx: —h < 0 <0} = ||z (d)]lc < 7-

Hence ®1z:(4)(0) + ®22:(¢)(0) € S for all z(¢) € S. Which means that part
(i) of Theorem 1 is satisfied. To prove the part (ii) of Theorem 1, consider two
functions z:(¢), £:(¢) € S, then

[@12¢(4)(8) — 12:(4)(O)]|x

t+6
< X t+9 S |:/ |f S, T, xr(d))) f(S,T,it(¢))|dT:| ds
b'e
< / | st tyasar(le o)~z
Consequently,

®12:(¢) — ®r2:(P)llo < kllzr(d) —2-(P)lle, 0<k <1
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Finally we must show that ®; and ®» are completely continuous. For this consider

@1 (ze(0) +m)(6) — Prze(4)(0)llx
= |®1(ze10(0) +m)(0) = Pr12146(4)(0)[Ix

t+6
X(t+0,s [/ {f(s,m,z-(¢) + 1) — f(S,T,$T(¢))}dT]dS

Il (/ [ ate.rrama ) e

sup{[|®1 (z¢(¢) + 77)(9) ®124(¢)(0)lIx: —h < 6 < 0}
= ||®1(ze(¢ — ®1zi(9)lle

< lpll2 </ / (s,7 deS) [Inllc = 0 as n— 0.

sup{[|®2(z¢(d) +1')0) — P2a¢(4)(0)||x: —h < 6 < 0}
= [|®2(x:(¢) + 1) — P2ze(d)llc

T s
< Ll ( / / g(s,r)dnts) llo — as o — 0.
0] 0

Thus ®; and ®» are continuous. Using the Arzela—Ascoli theorem we show that
®, maps S into a precompact subset of S. To show this define

X

IN

Hence

Similarly

t+0—¢
Doz (9)(6) = / X(t+9,s)BW1[v—X(T,0)¢(0)

- / X(T,p)Qp)dp
_ / X(T,m{ / f(p,r,zr(qﬁ))dr}dp](s)ds

for all z;(¢) € S. Thus, we have

Doz (4)(0) = X(t+0,t+60—¢)-
té‘ 5
/+ X(t+6—¢,s)BW™ { — X(T,0)(¢)(0)
TX

/TX (T, ) {/ Fo,m. xr(¢))dr}dp}( ).
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Since X (t +0,t+ 60 — ¢) is a compact operator, the set
Ka[ze(6)(0)] = {®22:--()(0): z:(0) € S}

is precompact. Also
[®22:(4)(6) — 2x:—=(6)(0)]|x
t+6
= ‘ / X(t+6,s)BW™! [1} — X(T,0)(¢)(0)

+60—¢
_ / X(T,p){ f(p,T,xr(qﬁ))dT}dp](s)ds

T

X

IN

L(e){nvnz td {u«sw)uc Q)
n / / ol T)drds] ||z»(¢>||o} ~0
as € — 0. Hence

sup{||Paxs(4)(0) — Powi—=(p)(0)||x: —h < 0 <0}
= || P2x¢49(¢p) — Poxit9-c(d)]|c

< L(6){|Ivllz +d {|I¢(0)|lc + Qe

+ </0T /Osg(s,r)drdsﬂ ||xf(¢)||0} 0 ase—0.

Thus there are compact sets arbitrarily close to the set

Ka[z:(4)(0)] = {®22¢()(0): x:(4) € S}

and therefore K[z:(¢)(0)] is precompact. We next show that ®; maps the func-
tions in § into an equicontinuous family of functions. For equicontinuous from
the left we take t > ¢ >t > 0, then

l@oms(£)(8) — @ow, _,/ (#)(0)] x

t+6
/ X(t+0,s)BW ! [v — X (T, 0)($)(0)
o]
T T P
- / X (T, p)Q(p)dp — / Xx(T, o){/ flp, 7,27 (0)) df}dp:| (s)ds
0 0 0
t—t/ 46 T
- / x(t -+t +6,s)Bw ! [v — X(T,0)$(0) — / X (T, p)Q(p)dp
0 0
T P
- / X(T, p) {/ IS wf(z»))dr} dp] (s)ds |l x
o] o]
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t+60—¢ T
/ X(t+0,s)BW ! {u — X(T,0)6(0) — / X(T, p)Q(p)dp
0 0
T P
- x(T, ,,)/ Fpo ™ mrw))drdp] (s)ds
0 0
t+60—¢ T
- / x(t—t +0,9)Bw! [v — X(T,0)$(0) — / X(T, p)Q(p)dp
] 0
T P
- / X (T, ,,)/ fpo ™ mrw))drdp] (s)dsll x
0 0
146 T
/ X(t+0,s)Bw ™! {v — X(T,0)$(0) — / X(T, p)Q(p)dp
t+60—¢ 0
T P
- / x(T, P)/ flp, wr(¢))d7d9:| (s)ds
o] o] X
t—t' 46 T
/ x(t—t +o,s)Bw! [v — X (T, 0)$(0) — / X(T, p)Q(p)dp
t+6—¢ 0
T P
- / X(1T, ,,)/ flo, 7 wf(z»))drdp] (s)ds
o] o]
t+60—¢
< HX(t+9,t7t’+9)fI|I/
0
T T P
- / X (T, p)Q(p)dp — / x(T, o)/ fp, T, mr(d>))dfdp:| (s)
0 0 0
t4+6
¥
t+60—¢
T P
- / x(T, 0)/ flp, T, m-r(d>))d‘rdp:| (s)
0 0 X
t—t' 46
/ X(t—t +6,s)BW L |:v—X(T, 0)¢(0)
t+6—¢

T T P
- / X(T, p)Q(p)dp — / x(T, P)/ flp, 7, wr(¢))dfd9:| (s)
0 0 0

SUX(t+6,t—t' +60)—IIL(t+0—)lullx

<

+

+

X

x(t—t +0,s)Bw1 |:v — X (T, 0)¢(0)

ds

X

T
X(t+0,s)Bw ™! {v — X(T,0)$(0) — / X(T, p)Q(p)dp
0

ds

+

ds

X

+L()Nullx +L(e —t)ullx — 0

as ¢ — 0, since L(t) — 0 as t — 0 and X (¢, s) is continuous in (s,t). Thus we
have
sup{[|®22+(4)(0) — P21 (#)(0)[|x: —h < 6 < 0}
= [@224(8) — Bz w () — 0 as ¢ — 0,
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The equicontinuity from the right is similar. Hence by Theorem 1, ® has a
fixed point.

4 Example

Let Q be a domain in R* with smooth boundary. Consider the integrodifferential
equation

% - % /m g(t — $)h(Vy)ds + u(t) (4.1)
y(z,t) =0, (z,t) € 6Q X R
’y(il?,t) = ¢($,t), te (_0070]

where the operator A = §2/6z%: H?(0,1) N H3(0,1) — Hj(0,1) generates a
strongly continuous compact semigroup [see 1, 2] given by

Xty = exp(=n’7t)(y, ¢n)$n,
i=1

where ¢, = (v/2)sin(nrz), g(-): Rt — R is continuous and g(t—s) — 0 as t — s,
the nonlinearity h: R> — R vanishes at zero and has the property that there exist
a co > 0 such that

3
|h(u) — h(v)| < co Z lui — vi|, for u,v € L*(J,L*(0,1)).

i=1

It is known [1] that the linear version for (4.1)

is controllable in Hg(0,1) where

H(0,1) = {z € L*(0,1): > n*[(z,0a)]° < oo} :

Further, the constants ¢, d and L are finite. Let

t
r=sup{/ g(t—s)ds:OStSl}
0

be such that r < k/(c + Ld) < 1. Hence all the conditions (ii)—(v) are satisfied,
by Theorem 2 the system (4.1) is controllable on H}(0,1).
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