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Abstract

The variational stability of optimal control problems governed

by second order nonlinear evolution abstract equations is studied.

First we prove an existence theorem for optimal solutions. Then

admitting perturbations in all the data of the control problem, we

show the results on the asymptotic behavior of optimal solutions to

control problems as well as on the convergence of minimal values

and reachable sets. The notions of � -convergence of functionals and

the Kuratowski-Mosco convergence of sets are employed. Finally an

example of nonlinear hyperbolic control problem demonstrates the

applicability of the results.
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1 Introduction and Notation

In this paper we investigate the optimal control problems governed by
abstract second order evolution equations. We consider a sequence of such
problems indexed by the parameter n 2 IN which appears in all the data
including the nonlinear operator of the state equation, the integrand of cost
functional and the control constraint set.

The goal is to identify a \limit problem" which is obtained from the
perturbed control problems as n tends to in�nity. First we deal with a
nonlinear second order evolution equation for which we show the results on
existence and uniqueness of solutions and on the continuous dependence
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of the solutions on the data. Next we deliver a theorem on the existence
of optimal solutions for control problems under consideration. Then we
�nd conditions which are su�cient for the convergence of optimal solutions
of perturbed control problems to an optimal solution of the limit prob-
lem. Moreover, we will show the convergence of the corresponding minimal
values and we provide the stability result for the reachable sets. Finally,
we apply our results to a sequence of Bolza-type, nonlinear hyperbolic,
distributed parameter optimal control problems.

The problem of existence of optimal controls, being an important ques-
tion in optimal control theory, was extensively investigated in the past; see
Lions [16] and Ahmed and Teo [2] and the references therein for control of
distributed-parameter linear systems and Cesari [9] for nonlinear in�nite di-
mensional control systems. The sensitivity of optimal control problems for
partial di�erential equations to changes in the parameter has been studied
by Zolezzi [30], Buttazzo and Dal Maso [7], Mig�orski [18] who considered
elliptic systems, by Bennati [6], Carja [8], Denkowski and Mig�orski [11],
Papageorgiou [26], Denkowski and Mortola [12] who examined parabolic
equations and by Mig�orski in [19], where the hyperbolic state equations
were dealt with. However, in all these works the di�erential equations
are linear in the state and often the objective functionals are of particular
forms. Recently, the asymptotic limits of control problems have been con-
sidered in Papageorgiou [25], [27] and Mig�orski [20] for systems described
by nonlinear parabolic evolution equations. To our knowledge, the problem
of variational stability of control problems for second order equations has
not been treated in the literature. In this paper we study this problem by
considering control problems for a class of systems governed by abstract
monotone equations admitting nonlinearities.

We conduct the sensitivity analysis using the notions of � -convergence
of functions and the Kuratowski-Mosco convergence of sets. We underline
that the � -convergence of functions is a particular case of �-convergence
introduced by De Giorgi (see, for instance, [10]) and it can be expressed as
the Kuratowski-Mosco convergence of their epigraphs [3].

Throughout the paper, we make use of the de�nitions and facts listed
below. Let H denote a separable Hilbert space and V a subspace of H
having the structure of a reexive Banach space which is continuously and
densely embedded in H . Identifying H with its dual H 0, we have the
Gelfand triple V � H � V 0, where V 0 is the dual of V . We will suppose
that these embeddings are compact. Let h�; �i be the duality of V and
V 0 as well as the inner product on H , let jj:jj, j:j and jj:jjV 0 denote the
norms in V , H and V 0, respectively. Given a �xed real number T > 0
and 2 � p < +1, we introduce the following spaces V = Lp(0; T ;V ),
H = Lp(0; T ;H), H0 = Lq(0; T ;H), V 0 = Lq(0; T ;V 0), (1=p+1=q = 1) and
W = fw 2 V jw0 2 V 0g; where the derivative is understood in the sense of
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vector valued distributions. Clearly W � V � H � V 0. The pairing of V
and V 0 and the duality between H and H0 are denoted by

hhf; vii =
Z T

0

hf(s); v(s)i ds:

It is well known (see [17], [15], [2], [5]) that every u 2 W is, after eventual
modi�cation on a set of measure zero, continuous from [0; T ] in H and
the embedding W � C(0; T ;H) is continuous. Furthermore, if V � H

compactly then also W � H compactly; see Lions ([15], Theorem 5.1, p.
57) and Simon [29].

Given a Banach space X , the symbols w �X , s�X are used to indi-
cate the space X equipped with the weak and the strong (norm) topology,
respectively. Let (
;�; �) be a measure space. A multifunction F de�ned
on 
 with values in the space 2X of all nonempty subsets of X is called
measurable if F�(E) := f! 2 
 : F (!) \ E 6= ;g 2 � for every closed set
E � X . We denote by SrF (1 � r � 1) the set of all selectors of F that
belong to Lr(
;X); i.e. SrF = ff 2 Lr(
;X) : f(!) 2 F (!) � a:e:g: It is
known that SrF 6= ; if and only if ! 7! inffjjxjj : x 2 F (!)g 2 Lr+. For
A � 2X we also put jAj = supfjaj : a 2 Ag.

Given fSn; Sgn2IN � 2X , we recall (see [14]) that Sn converge to S in

the Kuratowski-Mosco sense (denoted by Sn
K�M�! S), if w � lim sup

n
Sn �

S � s� lim inf
n

Sn, where the sequential Kuratowski upper and lower limits

are de�ned respectively by s � lim inf
n

Sn = fx 2 X : 9xn 2 Sn; xn !
x in X; as n! +1g = fx 2 X : lim

n
d(x; Sn) = 0g and w � lim sup

n
Sn =

fx 2 X : 9 fn�g; xn� 2 Sn� ; xn� ! x in w �X; as � ! +1g:
We shall denote by �0(X) the set of all functions f :X ! IR [ f1g

which are convex, lower semicontinuous and not identically equal to +1.
A function f : 
 � X ! IR [ f+1g is called a normal convex integrand
(cf. [13] and the references therein) if f(�; �) is jointly measurable and
f(!; �) 2 �0(X) for each ! 2 
. For a sequence fn; f :X ! IR [ f+1g,
n 2 IN of functions which are not identically +1, we say (following [3])

that fn � -converges to f , as n! +1 if and only if epifn
K�M�! epif , where

the epigraph of a function g is de�ned as follows epig = f(x; �) 2 X � IR :

g(x) � �g. Furthermore, by [22], we know that fn
��! f is equivalent to

the following two conditions

(i) if xn ! x in w �X , then f(x) � lim inf
n

fn(xn);

(ii) for every x 2 X , there exists xn ! x in s�X such that lim
n
fn(xn) =

f(x).
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This convergence is also equivalent toMw
s -convergence studied by Salvadori

in [28] and it is a particular case of De Giorgi's �-convergence (see [10],
[3]). In the sequel we also need the notion of continuous convergence of
functions. Namely, we say that fn is sequentially continuously convergent
to f in � �X (and we write fn

c�! f) if for every xn ! x in � �X , we
have lim

n
fn(xn) = f(x), where � is a given topology on X .

Finally, by L(V;H) we will denote the space of linear continuous op-
erators from Y into H endowed with the uniform operator topology.

Remark 1.1 It was proved by Nagy in [23] (and exploited, for instance,
in [27], [1]) that if V is a Hilbert space and V � H compactly, then the
embedding W � C(0; T ;H) is compact. However, in [21], the present
author has delivered an example which shows that the above embedding
can not be compact and therefore the result of Nagy is false.

2 Setting of the Problem and Preliminary Result

In this section, we formulate the control problems and we present an aux-
iliary result on compactness in the space Lp(0; T ;X).
We study the following sequence of control problems

inf Jn(x; u) = mn (P)n

subject to the state and control constraints

8>>><
>>>:

�x(t) +An(t; _x(t)) +Bnx(t) = fn(t)u(t) a:e:;

x(0) = xn0 ; _x(0) = xn1 ;

u(t) 2 Un(t) a:e:; u 2 L1(0; T ;Y );

(2:1)n

where the cost functionals are given by

Jn(x; u) = ln(x(T ); _x(T )) +

Z T

0

Ln(t; x(t); _x(t); u(t)) dt: (2:2)n

We also consider the following unperturbed problem

inf J(x; u) = m (P)

such that 8>>><
>>>:

�x(t) +A(t; _x(t)) +Bx(t) = f(t)u(t) a:e:;

x(0) = x0; _x(0) = x1;

u(t) 2 U(t) a:e:; u 2 L1(0; T ;Y )

(2:1)
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and

J(x; u) = l(x(T ); _x(T )) +

Z T

0

L(t; x(t); _x(t); u(t)) dt: (2:2)

Our aim is to provide conditions under which the optimal solutions to
(P)n, (P) exist and we have their convergence as well as the convergence
of minimal values. By an optimal solution we mean a trajectory-control
pair (x; u) (sometimes denoted also by ((x; _x); u)) on which the in�mum is
attained.

For the problems (P)n and (P), we need the following hypotheses.
The control space is modelled by Y which is assumed to be separable and
reexive Banach space.

H(A): An: [0; T ]� V ! V 0, n 2 IN, A: [0; T ]� V ! V 0 are maps such
that

(1) t! An(t; v), t! A(t; v) are measurable,

(2) v ! An(t; v), v ! A(t; v) are monotone and hemicontinu-
ous,

(3) hAn(t; v); vi � cjjvjjp � djvj2 a.e. and hA(t; v); vi � cjjvjjp �
djvj2 a.e. with c > 0 and d � 0,

(4) jjAn(t; v)jjV 0 � �n(t) + bjjvjjp�1 a.e. and jjA(t; v)jjV 0 �
�(t) + bjjvjjp�1 a.e., with �n; � 2 L

q
+(0; T ), supfjj�njjLq :

n 2 INg < +1 and b > 0.

H(B): Bn 2 L(V; V 0), n 2 IN and B 2 L(V; V 0) are symmetric (i.e.
hBnv; wi = hv;Bnwi for all v; w 2 V ) and coercive (i.e. hBnv; vi
� c0jjvjj2 for all v 2 V with c0 > 0).

H(f): fn 2 L1(0; T ;L(Y;H)), n 2 IN and f 2 L1(0; T ;L(Y;H)).

H(U): Un: [0; T ] ! 2Y , n 2 IN and U : [0; T ] ! 2Y are measurable
multifunctions with closed, convex values such that jUn(t)j �
(t), jU(t)j � (t) a.e. with  2 Lq+(0; T ).

(H0): x
n
0 ; x0 2 V and xn1 ; x1 2 H for n 2 IN.

H(L): Ln: [0; T ]�V�H�Y ! IR[f+1g, n 2 IN and L: [0; T ]�V�H�
Y ! IR[f+1g are normal convex integrands such that '1(t)+
'2(t)

�jjxjj2 + jyj2� + '3(t)jjujj2Y � Ln(t; x; y; u); L(t; x; y; u) �
 1(t) +  2(t)

�jjxjj2 + jyj2� +  3(t)jjujj2Y a.e., where '1;  1 2
L2(0; T ), '2; '3;  2;  3 2 L1(0; T ).
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H(l): ln:V �H ! IR[ f+1g, n 2 IN and l:V �H ! IR[ f+1g are
lower semicontinuous on (w � V )� (s�H).

In the following we prove a compactness result that will be useful in the
sequel. We use the space of scalarly continuous functions de�ned by Lions
and Magenes in [17], as follows Cs(0; T ;V ) := ff 2 L1(0; T ;V ) j t !
hh; f(t)iV�V 0 belongs to C([0; T ]) for any �xed h 2 V 0g. We have

Lemma 2.1 Let V � H compactly and let fzng be a sequence which sat-

is�es

zn ! z in w � � � L1(0; T ;V ); (2:3)

_zn ! _z in w � L�(0; T ;H); (2:4)

where � > 1. Then

zn ! z in s� Cs(0; T ;V ): (2:5)

Proof: First, applying Simon (Corollary 4, p.85 in [29]), from (2.3) and
(2.4), we obtain

zn ! z in s� C(0; T ;H): (2:6)

Next, due to the inclusion L1(0; T ;V )\C(0; T ;H) � Cs(0; T ;V ) (see Lions
and Magenes in [17], Chapter 3, Lemma 8.1), we have that zn belongs to
Cs(0; T ;V ). We will show that (2.3) and (2.6) imply (2.5). To this end,
it is su�cient to prove that for any h 2 V 0 the sequence fhh; zn(t)ign is
Cauchy in C([0; T ]). Let h 2 V 0, � 2 H 0 ' H . For m;n 2 IN, we have

jhh; zn(t)iV�V 0 � hh; zm(t)iV �V 0 j
� jhh� �; zn(t)� zm(t)iV �V 0 + h�; zn(t)� zm(t)iH�H j

� �jjznjjL1(0;T ;V ) + jjzmjjL1(0;T ;V )

� jjh� �jjV 0 + jjzn � zmjjC(0;T ;H)jj�jjH :
By virtue of (2.6) and the density of H in V 0; we immediately get that
fhh; zn(t)ig is a Cauchy sequence in C([0; T ]).

Remark 2.1 The convergence (2.5) implies in particular that zn(t)! z(t)
weakly in V for every �xed t 2 [0; T ].

3 Results on Evolution Problems

In this section we investigate the evolution problems (2:1)n and (2.1). We
address the questions of existence and uniqueness of solutions to these prob-
lems and of the dependence of the solutions on the data. We recall (see [1])
that by a solution to (2:1)n we understand a pair (xn; _xn) 2 C(0; T ;V )�W
such that (2:1)n is satis�ed. Similarly for the problem (2.1).

In the proofs of the next two lemmas, we follow the methods used in
[1].
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Lemma 3.1 Under hypotheses H(A), H(B), H(f), H(U) and (H0), for
each n 2 IN, the problems (2:1)n admit unique solutions which satisfy

(i) xn 2 L1(0; T ;V );

(ii) _xn 2 V \ L1(0; T ;H);

(iii) �xn 2 V 0;
(iv) An(�; _xn(�)) 2 V 0:

An analogous statement holds for the problem (2.1).

The proof of Lemma 3.1 follows from standard application of the Galerkin
method (cf. e.g. [16], [1]) and the a priori estimates given in Lemma
3.2. We only remark that by Lemma 2.1, (i) and (ii) of Lemma 3.1 imply
xn 2 C(0; T ;V ) while from (ii) and (iii) we have _xn 2 W .

Lemma 3.2 Let n 2 IN be �xed. Under the hypotheses of Lemma 3.1, if

(xn; _xn) is a solution to (2:1)n, then

jjxn(t)jj2 + j _xn(t)j2 + jj _xnjj2W � C
�
1 + jjxn0 jj2 + jxn1 j2 + jjBnjj2L(V;V 0)

�
(3:1)

for any t 2 [0; T ] with C > 0 independent of n. A similar conclusion is

valid for the problem (2.1).

Proof: The proof will be given for (2:1)n and it holds also for (2.1). Let
n be �xed and (xn; _xn) be solution to (2:1)n. Then we have

Z t

0

h�xn(s); _xn(s)i ds+
Z t

0

hAn(s; _xn(s)); _xn(s)i ds

+

Z t

0

hBnxn(s); _xn(s)i ds =
Z t

0

hfn(s)un(s); _xn(s)i ds

for every t 2 [0; T ] with un(t) 2 Un(t) a.e. Using the integration by parts
formula ([5]), Schwarz inequality and H(A)(3), we have

j _xn(t)j2 � j _xn(0)j2 + 2c

Z t

0

jj _xn(s)jjp ds� 2d

Z t

0

j _xn(s)j2 ds

+2

Z t

0

hBnxn(s); _xn(s)i ds � 2

Z t

0

jfn(s)un(s)jj _xn(s)j ds:

On the other hand, the symmetry of the operator Bn gives

hBnxn(s); _xn(s)i = (1=2)(d=dt)hBnxn(s); xn(s)i a:e:
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Hence and from the fact that H(f), H(U) imply

jfn(s)un(s)jq � jjfn(s)jjqL(Y;H)
jjun(s)jjqY � C1((s))

q a:e:;

using the coerciveness of Bn and applying Cauchy's inequality, we obtain

j _xn(t)j2 + 2c

Z t

0

jj _xn(s)jjp ds� 2d

Z t

0

j _xn(s)j2 ds+ c0jjxn(t)jj2

� jxn1 j2 + jjBnjjL(V;V 0)jjxn0 jj2 +
2"p

p

Z t

0

j _xn(s)jpds+
2C1"

�q

q

Z t

0

((s))q ds

for every " > 0. Using the fact that j � j � �jj � jj with � > 0 (recall V � H

continuously) and then taking " := (1=�)(pc=2)
1=p

, we have

j _xn(t)j2 + c

Z t

0

jj _xn(s)jjp ds+ c0jjxn(t)jj2 (3:2)

� jxn1 j2 + jjBnjjL(V;V 0)jjxn0 jj2 + 2d

Z t

0

j _xn(s)j2 ds+ (2�)qC1

q(pc)q�1
jjjjqLq :

Invoking Gronwall's inequality, it follows from (3.2) that there exists a
positive constant C2 independent of n such that

j _xn(t)j2 � C2

�jxn1 j2 + jjBnjj jjxn0 jj2 + jjjjqLq
�
; 8 t 2 [0; T ]: (3:3)

Now, again from (3.2) and (3.3), we get

cjj _xnjjpV + c0jjxn(t)jj2 � C3

�
1 + jxn1 j2 + jjBnjj jjxn0 jj2

�
(3:4)

for t 2 [0; T ]. Let us take � 2 V . Multiplying our equation in (2:1)n in
duality by �, we have

jhh�xn; �iij �
�
jj bAn( _xn)jjV0 + jjBnxnjjV0 + jj bfnunjjV0

�
jj�jjV

�
�
21=p

�
jj�njjLq + bjj _xnjjp=qV

�
+ C4jjBnjj jjxnjjLq(0;T ;V ) + C5jjjjLq

�
jj�jjV

� C6

�
sup
n
fjj�njjg+ jj _xnjjp=qV + jjBnjj jjxnjjV + jjjjLq

�
jj�jjV ;

where by bAn:V ! V 0 we denote the Nemitsky operator corresponding to
An (i.e. ( bAnv)(t) = An(t; v(t)) for a.e. t) and ( bfv)(t) = f(t)v(t) a.e. Since
� is arbitrary, we deduce that

jj�xnjjV0 � C7 (1 + jj _xnjjV + jjBnjj jjxnjjV) : (3:5)

Now, the inequality (3.1) follows immediately from (3.3), (3.4) and (3.5).
This �nishes the proof.

Next we present a result on the continuous dependence of solutions to
(2:1)n with respect to perturbations in the data. We will need the following
hypotheses.
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H(A)1 : An; A: [0; T ] � V ! V 0 are maps satisfying H(A) and

An(�; w(�)) ! A(�; w(�)) in s� V 0 for all w 2 V \ L1(0; T ;H).

H(B)1 : Bn 2 L(V; V 0), n 2 IN are symmetric, coercive and Bn ! B in

L(V; V 0).
H(f)1 : fn 2 L1(0; T ;L(Y;H)), n 2 IN and fn ! f in L1(0; T ;L(Y;H)).

H(U)1 : Un: [0; T ] ! 2Y , n 2 IN are measurable multifunctions with
closed, convex values such that jUn(t)j � (t) a.e. with  2
Lq+(0; T ) and Un(t)

K�M�! U(t) a.e.

(H0)1 : the hypothesis (H0) holds and x
n
0 ! x0 in s � V , xn1 ! x1 in

s�H .

Remark 3.1 It can be shown (see [25]) that under hypothesis H(U)1, the
multifunction U is measurable with nonempty, convex and weakly compact
values and jU(t)j � (t) a.e.

Theorem 3.1 If hypotheses H(A)1, H(B)1, H(f)1, H(U)1 and (H0)1
hold, then the sequence f(xn; _xn)g of solutions to (2:1)n converges to (x; _x)
in C(0; T ;V �H), where (x; _x) is a solution to the problem (2.1).

Proof: Let (xn; _xn) be solution to (2:1)n. From H(U)1 we have jjun(t)jjY
� (t) a.e., where un 2 S

q
Un
. Since Lq(0; T ;Y ) is reexive (recall that

1 < q � 2), by Alaoglu's theorem we know that fung is sequentially weakly
compact in this space. Therefore, by passing to a subsequence if necessary,
we may assume that

un ! u in w � Lq(0; T ;Y ): (3:6)

From H(U)1 and Papageorgiou ([24], Theorem 4.4), it follows that

S
q
Un

K�M�! S
q
U . Hence we deduce that u 2 SqU .

Let (x; _x) be the (unique) solution to (2.1) corresponding to the control
u 2 SqU . From (2.1) and (2:1)n, we have

h�xn(s)� �x(s); _xn(s)� _x(s)i+ hAn(s; _xn(s))�A(s; _x(s)); _xn(s)� _x(s)i
+hBnxn(s)�Bx(s); _xn(s)� _x(s)i = hfn(s)un(s)� f(s)u(s); _xn(s)� _x(s)i
a.e., for every n 2 IN. Integrating this equality, using the monotonicity of
An(s; �) and the fact that

(d=dt)hBv(t); v(t)i = 2hB _v(t); v(t)i a:e:; (3:7)

we get

j _xn(t)� _x(t)j2�j _xn(0)� _x(0)j2+2
Z t

0

hAn(s; _x(s))�A(s; _x(s)); _xn(s)� _x(s)i ds

9
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+2

Z t

0

hBnxn(s)�Bxn(s); _xn(s)� _x(s)i ds+ hBxn(t)�Bx(t); xn(t)�x(t)i

�hBxn(0)�Bx(0); xn(0)�x(0)i � 2

Z t

0

h(fn(s)�f(s))un(s); _xn(s)� _x(s)i ds

+2

Z t

0

hf(s) (un(s)� u(s)) ; _xn(s)� _x(s)i ds;

for every t 2 [0; T ]. Hence applying H�older inequality and using H(B)1,
we obtain

j _xn(t)� _x(t)j2 + c0jjxn(t)� x(t)jj2 � jjBjj jjxn0 � x0jj+ jxn1 � x1j2 (3:8)

+2jj bAn( _x)� bA( _x)jjV0 jj _xn � _xjjV + CjjBn �Bjj jjxnjjV jj _xn � _xjjV

+2

Z t

0

jjfn(s)� f(s)jjL(Y;H)jjun(s)jjY j _xn(s)� _x(s)j ds

+2

Z t

0

hun(s)� u(s); f�(s)( _xn(s)� _x(s))iY�Y 0 ds; 8 t 2 [0; T ];

where C is a positive constant independent of n. From H(B)1 and (H0)1,
by Lemma 3.2, after possible passing to subsequences, we have

_xn ! z in w �W and s�H; as n! +1 (3:9)

with z 2 W (due to the compactness of the embedding W � H). Since
W � C(0; T ;H) continuously, we know that

j _xn(s)� _x(s)j � cjj _xn � _xjjW (3:10)

for all s 2 [0; T ]. On the other hand, from H(f)1 and (3.9), we infer that

f�(�) _xn(�)! f�(�)z(�) in s� Lp(0; T ;Y 0): (3:11)

Using (3.6), (3.9), (3.10), (3.11) and our hypotheses, from (3.8) we get
(xn(t); _xn(t)) ! (x(t); _x(t)) in V � H , for every t 2 [0; T ], as n !
+1. Since the solution to (2.1) is unique, we deduce that the whole
sequence f(xn; _xn)g converges to (x; _x) in C(0; T ;V � H). The proof is
completed.

4 Existence Theorem for Control Problems

The aim of this section is to demonstrate the existence of optimal pairs for
problems (P)n and (P).

10
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Theorem 4.1 If hypotheses H(A), H(B), H(f), H(U), (H0), H(L) and
H(l) hold, then the control problems (P) and (P )n, for any n �xed, admit

an optimal solution.

Proof: It will be carried out for problem (P) and holds also for problems
(P)n. Let f(xk ; uk)gk�1 be a minimizing sequence for (P); i.e. the pairs
(xk ; uk) are admissible for (P) and lim

k
J(xk ; uk) = m. From Lemma 3.2,

we know that f(xk; _xk)gk�1 belongs to a bounded subset of (L1(0; T ;V )\
W 1;1(0; T ;H))�W . Extracting a subsequence one has

xk ! x in w � � � L1(0; T ;V ); (4:1)

_xk ! _x in w � � � L1(0; T ;H) and in w �W ; (4:2)

as k ! +1, where x 2 L1(0; T ;V ) is such that _x 2 V \ L1(0; T ;H),
�x 2 V 0. In view of Lemma 2.1, Remark 2.1 and recalling that W � H
compactly, from (4.1) and (4.2), we deduce that

xk ! x in C(0; T ;w � V ); (4:3)

_xk ! _x in s�H; as k ! +1: (4:4)

From (4.3) and the fact that xk(0) = x0, it follows immediately that

x(0) = x0: (4:5)

Note that by the continuity of the embeddingW � C(0; T ;H) and Mazur's
lemma, the convex set Wx1 := fw 2 W jw(0) = x1g is a weakly closed
subset of W . Since _xk 2 Wx1 , from (4.2), we have

_x(0) = x1: (4:6)

We claim that

_xk ! _x in C(0; T ;H); as k ! +1: (4:7)

(We emphasize that (4.7) does not follow from (4.2) merely, since the em-
bedding W � C(0; T ;H) is not compact, cf. Remark 1.1). To prove (4.7),
we will �rst show that

lim sup
k

hh bA( _xk); _xk � _xii � 0: (4:8)

Multiplying the equation �xk + bA( _xk) + Bxk = bfuk in duality with _xk � _x
and integrating by parts, we obtain

(1=2)j _xk(T )� _x(T )j2 � (1=2)j _xk(0)� _x(0)j2 � hh�x; _xk � _xii (4:9)

11
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+hh bA( _xk); _xk � _xii+ hhBxk ; _xk � _xii = hh bfuk; _xk � _xii:
Next, because of H(U), we know that SqU is sequentially weakly compact.
Hence, we may suppose that

uk ! u in w � Lq(0; T ;Y ) (4:10)

and u 2 SqU . Since bf 2 L(Lq(0; T ;Y );H0), we readily deduce that

bfuk ! bfu in w �H0; as k ! +1: (4:11)

Using (4.2), (4.4), (4.6), (4.11), from (4.9) after dropping the positive term,
we obtain

lim sup
k

�
hh bA( _xk); _xk � _xii + hhBxk ; _xk � _xii

�
(4:12)

� lim sup
k

�
hh bfkuk; _xk � _xii+ hh�x; _xk � _xii+ (1=2)jx1 � _x(0)j2

�
= 0:

Utilizing the equality (3.7) and the coerciveness of B, we get

c0jjxk(T )� x(T )jj2 + 2hhBx; _xk � _xii+ hB(xk(0)� x(0)); xk(0)� x(0)i

� 2hhBxk ; _xk � _xii:
From the above inequality, (4.2), (4.3) and (4.5), it follows that

0 � lim inf
k

hhBxk ; _xk � _xii: (4:13)

Combining (4.12) and (4.13), we easily get (4.8).
Let

�k(t) = hA(t; _xk(t))�A(t; _x(t)); _xk(t)� _x(t)i
for a.e. t 2 (0; T ). Applying (4.2) and (4.8), Fatou's lemma ensures that

0 �
Z T

0

lim inf
k

�k(s) ds � lim inf
k

Z T

0

�k(s) ds � lim sup
k

Z T

0

�k(s) ds

� lim sup
k

hh bA( _xk); _xk � _xii � lim
k
hh bA( _x); _xk � _xii � 0:

From the above inequalities, we deduce that lim
k

Z T

0

�k(s) ds = 0, which

implies, thanks to the property �k(t) � 0 a.e., that �k ! 0 strongly in
L1(0; T ). Thus, we may assume, passing to next subsequence if necessary,
that

�k(t)! 0 a:e: t 2 (0; T ): (4:14)

12
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Using hypothesis H(A)(3)(4), for a.e. t 2 (0; T ), we have

�k(t) � cjj _xk(t)jjp � dj _xk(t)j2 � a(t)jj _x(t)jj � bjj _x(t)jj jj _xk(t)jjp�1

� �a(t) + bjj _x(t)jjp�1� jj _xk(t)jj+ cjj _x(t)jjp � dj _x(t)j2:
Combining (4.14) and the last inequality, it follows that fjj _xk(t)jjg is bounded
for a.e. t 2 (0; T ) and k su�ciently large. So we have shown that the se-
quence f _xkg belongs to a bounded set of L1(0; T ;V ). Moreover, since f�xkg
lies in a bounded subset of V 0 (cf. Lemma 3.2) and V � H compactly, we
infer from the version of the Arzel�a-Ascoli theorem (see [29], Corollary 4,
p. 85) that (4.7) holds. This �nishes the proof of the claim.

The convergences (4.3), (4.4), (4.10) and H(L) allow us to deduce, by
applying Theorem 2.1 of Balder [4], that

Z T

0

L(t; x(t); _x(t); u(t)) dt � lim inf
k

Z T

0

L(t; xk(t); _xk(t); uk(t)) dt: (4:15)

From (4.3), (4.7) and hypothesis H(l), we have

l(x(T ); _x(T )) � lim inf
k

l(xk(T ); _xk(T ));

which together with (4.15) implies

J(x; u) � lim inf
k

J(xk ; uk) = m:

In order to show that (x; u) is the optimal \state-control" pair, it is
now su�cient to prove that (x; u) is admissible for (P). To this end, we

observe in view of hypothesis H(A)(4) that f bA _xkg is bounded in V 0. So we
may suppose that bA( _xk)! � in w � V 0 (4:16)

with � 2 V 0. From H(A)(2), it follows (see Proposition 2.5 in Chapter 2

of [15]) that bA has the generalized pseudomonotone property. Therefore,

(4.2), (4.8) and (4.16) yield � = bA( _x). As a consequence of (4.2), (4.3),
(4.11) and (4.16), we pass to the limit in the equation

hh�xk; �ii + hh bA( _xk); �ii+ hhBxk ; �ii = hh bfuk; �ii; 8 � 2 V

and we get hh�x; �ii + hh bA( _x); �ii + hhBx; �ii = hh bfu; �ii; for every � 2 V .
Thus �x(t) + A(t; _x(t)) + Bx(t) = f(t)u(t) a.e., which together with (4.5),
(4.6) and u 2 S

q
U means that the pair (x; u) is admissible for (P). Hence

we conclude that J(x; u) = m. The proof of Theorem 4.1 is completed.

Remark 4.1 For a slightly di�erent class of second order state equations
(more general right hand sides with L1 controls), a result on existence of
optimal solutions was proved in Theorem 3.1 of [1].

13



S. MIG�ORSKI

5 Sensitivity of Control Problems

This section is devoted to state and prove the results on the asymptotic
behavior of the sequence of control problems (P)n, as n tends to in�nity.
We admit the perturbations appear in all the data of the control problem
i.e. in the operators and initial conditions of the state equations, in the
objective functionals, and in the control constraint sets. We provide the
stability theorems for the sets of optimal solutions and for the reachable
sets. We also show the convergence of the minimal values of (P)n to a
minimal value of (P).

We introduce the following notation. For every n 2 IN �xed, let us con-
sider the map pn:L

q(0; T ;Y )! C(0; T ;V �H)�Lq(0; T ;Y ) � L1(0; T ;V �
H�Y ) given by pn(u) = (xn; _xn; u), where (xn; _xn) is the solution of (2:1)n
corresponding to the control u. Analogously, we de�ne map p which is as-
sociated with problem (2.1). Then, let Fn; F :L

q(0; T ;Y )! IR[ f+1g be
functionals respectively given by

Fn(u) = eJn(pn(u)) + �C(0;T ;V�H)�Sq
Un

(pn(u));

F (u) = eJ(p(u)) + �C(0;T ;V�H)�S
q

U
(p(u));

where we write eJn(xn; _xn; u) = Jn(xn; u), eJ(x; _x; u) = J(x; u) and �E
denotes the indicator function of a set E; i.e. �E(e) = 0 if e 2 E and
�E(e) = +1, otherwise. Under these notations, we have mn = inffFn(u) :
u 2 Lq(0; T ;Y )g and m = inf fF (u) : u 2 Lq(0; T ;Y )g. Moreover, we in-
troduce Gn; G:L

1(0; T ;V �H � Y )! IR [ f+1g de�ned as follows:

Gn(x; y; u) =

Z T

0

Ln(t; x(t); y(t); u(t)) dt

and

G(x; y; u) =

Z T

0

L(t; x(t); y(t); u(t)) dt:

In the �rst theorem we will study the � -convergence of functionals Fn. To
this end, we need the following assumptions.

H(L)1 : Ln: [0; T ]� V �H � Y ! IR [ f+1g, n 2 IN satisfy H(L) and

Ln(t; �; �; �) ��! L(t; �; �; �) a.e.
H(l)1 : the hypothesis H(l) holds and ln

c�! l in s� (V �H).

Theorem 5.1 If hypotheses H(A)1, H(B)1, H(f)1, H(U)1, (H0)1, H(L)1
and H(l)1 hold, then Fn

��! F , as n! +1.

Proof: It is enough to show that

14
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(i) if u 2 S
q
U , un 2 S

q
Un

and un ! u in w � Lq(0; T ;Y ), then F (u) �
lim inf

n
Fn(un);

(ii) if u 2 S
q
U , then there exists un 2 S

q
Un

such that un ! u in s �
Lq(0; T ;Y ) and F (u) = lim

n
Fn(un).

We �rst prove (i). Let u 2 SqU , un 2 SqUn and

un ! u in w � Lq(0; T ;Y ); as n! +1: (5:1)

Denote by (xn; _xn) (and (x; _x) respectively) the unique solutions to (2:1)n
(and (2.1) respectively) corresponding to control un (and u respectively).
Using Theorem 3.1, we know that

(xn; _xn)! (x; _x) in C(0; T ;V �H): (5:2)

From H(l)1 and (5.2), we easily get

l(x(T ); _x(T )) = lim
n
ln(xn(T ); _xn(T )): (5:3)

Because of H(L)1 and Theorem 3.1 of Salvadori [28], we have Gn
��! G, as

n ! +1. Thus, by the de�nition of � -convergence, using (5.1) and (5.2),
we have

G(x; _x; u) � lim inf
n

Gn(xn; _xn; un): (5:4)

From (5.3) and (5.4) we deduce that F (u) � lim inf
n

Fn(un).

We demonstrate (ii). Let u 2 SqU . We de�ne un 2 SqUn such that
d(u; SqUn) = jju � unjjLq(0;T ;Y ). Such un exists, since SqUn is compact in
w � Lq(0; T ;Y ) and Lq(0; T ;Y ) with 1 < q � 2 is reexive. From H(U)1

and Theorem 4.4 of Papageorgiou [24], we know that SqUn
K�M�! S

q
U . Hence

and from the fact that un 2 SqUn , we have d(u; SqUn) ! 0, which implies
that

un ! u in s� Lq(0; T ;Y ); as n! +1: (5:5)

As in part (i) of the proof, by Theorem 3.1, we obtain that the convergence
(5.2) of solutions of (2:1)n corresponding to un holds and (5.3) is satis-

�ed. Moreover, since Gn
��! G, we �nd a sequence f(exn; eyn; eun)gn�1 �

L1(0; T ;V �H � Y ) such that

(exn; eyn; eun)! (x; _x; u) in s� L1(0; T ;V �H � Y ) (5:6)

and lim
n
Gn(exn; eyn; eun) = G(x; _x; u). Due to H(L)1, Gn(�; �; �) are locally

equilipschitzean and therefore

jGn(xn; _xn; un)�Gn(exn; eyn; eun)j
15
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�M
�jjxn � exnjjL1(0;T ;V ) + jj _xn � eynjjL1(0;T ;H) + jjun � eunjjL1(0;T ;Y )

�
:

In view of (5.5), (5.2), (5.6), we obtain lim
n
Gn(xn; _xn; un) = G(x; _x; u).

Hence and from (5.3), we immediately have lim
n
Fn(un) = F (u). This

�nishes the proof of (ii) and completes the proof of the theorem.

Remark 5.1 We observe that it is not true in general that the � -limit
of a sum of two � -convergent sequences of functionals is the sum of their
� -limits. This property holds if we require more than � -convergence for
one of these sequences, for instance, the continuous convergence. Such a
situation is met in Theorem 5.1; compare the convergences in H(L)1 and
H(l)1. For conditions implying hypothesis H(L)1, we refer to Attouch [3].

Theorem 5.2 If the hypotheses of Theorem 5.1 hold, then mn ! m, as

n! +1.

Proof: Let un 2 S
q
Un
be such that mn = Fn(un). From H(U)1, we may

assume that un ! u weakly in Lq(0; T ;Y ). The condition (i) of the proof
of Theorem 5.1 yields

m � F (u) � lim inf
n

Fn(un) = lim inf
n

mn: (5:7)

Next, let u 2 S
q
U be such that m = F (u). From the step (ii) of the proof

of Theorem 5.1, we know that there exists un 2 SqUn such that un ! u in
s� Lq(0; T ;Y ) and

m = lim
n
Fn(un) � lim

n
finf Fn(u) : u 2 Lq(0; T ;Y )g = lim

n
mn: (5:8)

The thesis of the theorem follows from (5.7) and (5.8).

We show a stability result for the set of optimal solutions. We introduce
the following sets:

On = f(x; _x; u) j ((x; _x); u) is an optimal pair for (P)ng ; n 2 IN;

O = f(x; _x; u) j ((x; _x); u) is an optimal pair for (P)g :

Under the hypotheses of Theorem 5.1, the sets On, O are nonempty subsets
of C(0; T ;V �H)� Lq(0; T ;Y ) (see Theorem 4.1).

Theorem 5.3 Under the same hypotheses as in Theorem 5.1, we have

lim sup
n

On � O, where C(0; T ;V �H) is endowed with its norm topology

and in Lq(0; T ;Y ) we use the weak topology.

16
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Proof: Let (x; _x; u) 2 lim sup
n

On. By the de�nition we �nd (xnk ; _xnk ; unk)

2 Onk such that (xnk ; _xnk ) ! (x; _x) in C(0; T ;V � H) and unk ! u

weakly in Lq(0; T ;Y ). So (xnk ; _xnk ; unk) is admissible for (P)nk and mnk =
Fnk (unk). From Theorem 5.2, we get m = lim

k
mnk = lim

k
Fnk (unk). Since

S1Un
K�M�! S1U , unk 2 SqUnk and unk converges weakly, we have u 2 SqU . As

in Theorem 3.1, we obtain that (x; _x) is a solution to (2.1) corresponding
to the control u. Then, Theorem 5.1 gives m � F (u) � lim inf

k
Fnk (unk ).

Hence m = F (u) which implies (x; _x; u) 2 O.
From Lemma 3.2, Theorems 3.1 and 5.3, we have the following

Corollary 5.1 Under the hypotheses of Theorem 5.1, every sequence

f((xn; _xn); un)g of optimal solutions to (P)n possesses a subsequence which

is convergent in C(0; T ;V �H)� (w�Lq(0; T ;Y )) topology to an optimal

solution of the limit problem (P). If the limit problem admits the unique

solution, then the whole sequence f((xn; _xn); un)g converges to this solu-

tion. Moreover, the minimal values min (P)n converge to the minimal value

min (P).

In order to state a theorem on the stability of the reachable sets, for every
t 2 [0; T ], we introduce

Rn(t) = fv 2 V �H : v = (xn(t); _xn(t)); where (xn; _xn) is a solution
to (2:1)n corresponding to some u 2 SqUng;

R(t) = fv 2 V �H : v = (x(t); _x(t)); where (x; _x) is a solution
to (2:1) corresponding to some u 2 SqUg:

Theorem 5.4 If the hypotheses of Theorem 5.1 hold, then for every t 2
[0; T ], we have Rn(t)

K�M�! R(t), as n! +1.

Proof: We �rst prove that w � lim sup
n

Rn(t) � R(t) for all t 2 [0; T ]. To

this end, let t 2 [0; T ] and v 2 w � lim sup
n

Rn(t). So we �nd vnk 2 Rnk(t)
such that vnk ! v weakly in V � H . Moreover, vnk = (xnk (t); _xnk (t)),
where (xnk ; _xnk ) is the solution to (2:1)nk for some unk 2 S

q
Unk

. By passing

to a further subsequence if necessary, we suppose that unk ! u weakly in

Lq(0; T ;Y ), where u 2 Lq(0; T ;Y ). Due to the fact that S1Un
K�M�! S1U ,

we have u 2 SqU . From Theorem 3.1, we get (xnk (t); _xnk (t)) ! (x(t); _x(t))
strongly in V �H for every t 2 [0; T ], where (x; _x) is the solution to (2.1)
corresponding to control u. We obtain v = (x(t); _x(t)) i.e. v 2 R(t).

We now show that R(t) � s � lim inf
n

Rn(t) for every t 2 [0; T ]. Let

t 2 [0; T ], v 2 R(t). Then v = (x(t); _x(t)), where (x; _x) solves (2.1)
with some u 2 S

q
U . We can �nd un 2 S

q
Un
, de�ned as in the proof of

17
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Theorem 5.1 such that un ! u weakly in Lq(0; T ;Y ). Again by Theo-
rem 3.1, we know that the sequence of solutions (xn; _xn) corresponding to
un converges in C(0; T ;V � H) to (x; _x). We have lim

n!+1
d(v;Rn(t)) �

lim
n!+1

jj(xn(t); _xn(t)) � (x(t); _x(t))jjV�H = 0. Hence we infer that v 2
s� lim inf

n
Rn(t).

6 An Example

In this section we present an example which illustrates the application
of the abstract framework and of results of the theory developed in the
previous sections.
Let 
 be a bounded domain in IRN with Lipschitz boundary � = @
,
Q = (0; T ) � 
, � = (0; T ) � �. We consider the following sequence of
nonlinear hyperbolic optimal control problems:

Jn('; u) = ln('(T ); 't(T ))

+

Z
Q

Ln(t; x; '(t; x); 't(t; x); u(t; x)) dtdx ! inf = emn; (6:1)n

where 8>>>>>>>>>><
>>>>>>>>>>:

@2'

@t2
� div (an(t; x;D't))�

NX
i;j=1

Di

�
bnij(x)Dj'

�
=

= (gn(t; x); u(t; x)) a:e: in Q

'j� = 0; '(0; x) = 'n0 (x); 't(0; x) = 'n1 (x);

jju(t; �)jjL2(
;IRk) � rn(t) a:e:

(6:2)n

and the limit problem

J('; u) = l('(T ); 't(T ))

+

Z
Q

L(t; x; '(t; x); 't(t; x); u(t; x)) dtdx ! inf = em (6:1)

such that 8>>>>>>>>>><
>>>>>>>>>>:

@2'

@t2
� div (a(t; x;D't))�

NX
i;j=1

Di (bij(x)Dj') =

= (g(t; x); u(t; x)) a:e: in Q

'j� = 0; '(0; x) = '0(x); 't(0; x) = '1(x);

jju(t; �)jjL2(
;IRk) � r(t) a:e:

(6:2)
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The parentheses on the right hand sides of the state equations denote the
inner product in IRk, Di = @=@xi, i = 1; : : : ; N , D' = (D1'; : : : ; DN') is
the gradient of '. Let V = H1

0 (
), H = L2(
) and V 0 = H�1(
). We
know that (V , H , V 0) is an evolution triple with compact embeddings. Let
Y = L2(
; IRk) and p = 2. Given positive real constant c1 and functions
c2 2 L2

+(Q), c3 2 L1+ (
), we de�ne the class lM = lM(c1; c2; c3) of maps

a:Q� IRN ! IRN which satisfy

(j) a(�; �; �) is measurable for every � 2 IRN ,

(jj) a(t; x; �) is continuous a.e. in Q,

(jjj) (a(t; x; �1)� a(t; x; �2); �1 � �2)IRN � 0 a.e. in Q, 8 �1; �2 2 IRN ,

(jv) (a(t; x; �); �)IRN � c1j�j2 a.e. in Q, 8 � 2 IRN ,

(v) ja(t; x; �)j � c2(t; x) + c3(x)j�j a.e. in Q, 8 � 2 IRN .

Given � > 0, we denote by E(�) the class of operatorsB:H1
0 (
)! H�1(
)

such that B = �PN
i;j=1Di (bij(x)Dj) for some bij 2 L1(
) and bij = bji,

�j�j2 �PN
i;j=1 bij(x)�i�j for � 2 IRN .

We introduce the following hypotheses on the data of problems under con-
sideration.

H(A)2 : a; a
n:Q� IRN ! IRN , n 2 IN, are such that

(1) a 2 lM(c1; c2; c3); a
n 2 lM(c1; c

n
2 ; c3) with c1 > 0, fcn2 ; c2g �

L2
+(Q), sup

n
jjcn2 jjL2 < +1 and c3 2 L1+ (
),

(2) an(t; �; Dv(�))! a(t; �; Dv(�)) a.e. for every v 2 V .
H(B)2 : B;Bn 2 E(�), n 2 IN with some � > 0 and the coe�cients bnij

of Bn satisfy bnij ! bij in L
1(
) for all i; j = 1; : : : ; n, where bij

are the coe�cients of B.

H(g) : g; gn 2 L1(0; T ;Y )), n 2 IN satisfy gn(t; �) ! g(t; �) in s � Y

uniformly with respect to t.

H(r) : r; rn 2 Lq+(0; T ), n 2 IN are such that rn(t) � �(t) a.e. with an

� 2 Lq+(0; T ), rn(t)! r(t) a.e.

(H0)2 : '
n
0 ; '0 2 V , 'n0 ! '0 in s� V , 'n1 ; '1 2 H , 'n1 ! '1 in s�H .

H(L)2 : L;Ln:Q� IRk+2 ! IR [ f+1g are normal convex (in (w; z; u))
integrands such that

�1(t; x) + �2(t; x)
�jwj2 + jzj2�+ �3(t; x)jjujj2

� L(t; x; w; z; u); Ln(t; x; w; z; u)

�  1(t; x) +  2(t; x)
�jwj2 + jzj2�

+  3(t; x)jjujj2
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with �1;  1 2 L2(Q); �2; �3;  2;  3 2 L1(Q) and Ln(t; x; �; �; �)
��! L(t; x; �; �; �) a.e. on Q:

We consider the following Dirichlet forms associated to the nonlinear op-
erators appearing in state equations (6:2)n and (6:2):

dn(t; u; v) =

Z



(an(t; x;Du); Dv) dx; n 2 IN; u; v 2 V;

d(t; u; v) =

Z



(a(t; x;Du); Dv) dx; u; v 2 V:

Using H(A)2 and H�older inequality, we have

jdn(t; u; v)j �
�Z




jan(t; x;Du)j2 dx
�1=2�Z




jDvj2 dx
�1=2

�

�
�
2

�Z



jcn2 (t; x)j2 dx+
Z



c23(x)jDuj2
��1=2

jjvjj �
�e�n(t) +eb

�
jjujj jjvjj;

where e�n(t) = p
2jjcn2 (t; �)jjL2 2 L2

+(0; T ) and
eb = p

2jjc3jjL1 . Similarly

jd(t; u; v)j � (e�(t) + ebjjujj)jjvjj with e�(t) =
p
2jjc2(t; �)jjL2 2 L2

+(0; T ).
Therefore there exist operators An and A from [0; T ]� V to V 0 such that
dn(t; u; v) = hAn(t; u); vi, d(t; u; v) = hA(t; u); vi and moreover they satisfy
condition H(A)(4).

Next, making use of separability of V 0, from the Pettis measurability
theorem, we get that An(�; v); A(�; v) are measurable. The continuity of
A(t; �) follows from the relation

jjA(t; vk)�A(t; v)jjV 0 = sup
jjzjj�1

jhA(t; vk)�A(t; v); zij �

� sup
jjzjj�1

Z



ja(t; x;Dvk)� a(t; x;Dv)jjDzj dx! 0

which is true for every vk ! v in s� V . Analogously one proves the con-
tinuity of An(t; �). The monotonicity of An(t; �) and A(t; �) readily follows
from (jjj) of the de�nition of the class lM, while (jv) implies that both An
and A satisfy H(A)(3) with c = c1 and d = 0.

Let w 2 V . In view of H(A)2(2) we obtain

jjAn(t; w)�A(t; w)jjV 0 � sup
jjzjj�1

Z



jan(t; x;Dw)� a(t; x;Dw)jjDzj dx! 0;

for a.e. t. Applying the dominated convergence theorem, we infer that for
any v 2 V \L1(0; T ;H), we have lim

n!+1
jjAn(�; v(�))�A(�; v(�))jjV0 = 0: So

20



STABILITY ANALYSIS OF OPTIMAL CONTROL

we have veri�ed hypothesis H(A)1 for the operators An and A. We also
observe that hypothesis H(B)1 holds as a consequence of H(B)2.
Subsequently, we de�ne f(t); fn(t):Y ! H by (f(t)u)(�) = (g(t; �); u(�))
and (fn(t)u)(�) = (gn(t; �); u(�)), respectively. It is clear that f; fn 2
L1(0; T ;L(Y;H)). Since

jjfn(t)� f(t)jjL(Y;H) = sup
jjzjjY�1

j(fn(t)� f(t))zjH �

� sup
jjzjjY�1

jjgn(t; �)� g(t; �)jjY jjzjjY � jjgn(t; �)� g(t; �)jjY ! 0

uniformly in t, by hypothesis H(g), we deduce that H(f)1 holds.
Let us de�ne Un(t) = fu 2 Y : jjujjY � rn(t)g and U(t) = fu 2 Y :
jjujjY � r(t)g. Due to hypothesis H(r), it is easy to check that H(U)1 is
satis�ed.

Finally, we de�ne eLn and eL by putting

eLn(t; v; w; u) =
Z



Ln(t; x; v(x); w(x); u(x)) dx; n 2 IN;

eL(t; v; w; u) =
Z



L(t; x; v(x); w(x); u(x)) dx;

where (v; w; u) 2 V �H � Y . From Theorem 3.1 of Salvadori [28] and � -

convergence of Ln to L (seeH(L)2), it follows that eLn(t; �; �; �) ��! eL(t; �; �; �)
a.e. Moreover the growth conditions on eLn; eL follow from H(L)2. Thus eLn
and eL satisfy H(L)1.

We observe that the problems (6:1)n and (6:1) can be formulated by
using the above notation in the abstract forms (P)n and (P), respectively.
From Theorems 4.1, 5.4 and Corollary 5.1, we conclude

Corollary 6.1 If hypotheses H(A)2, H(B)2, H(g), H(r), (H0)2, H(L)2
and H(l)1 hold, then

(1) the control problems (6:1)n, for every n 2 IN and (6:1) admit optimal
solutions;

(2) every sequence of optimal solutions to (6:1)n has a subsequence which

is convergent, as n! +1, to an optimal solution of the problem (6.1)

in C(0; T ;V �H)� (w � Lq(0; T ;Y )) topology;

(3) emn ! em, as n! +1;

(4) the reachable sets Rn(t) and R(t) for (6:1)n and (6:1), respectively,

satisfy Rn(t)
K�M�! R(t) for every t 2 [0; T ], as n! +1.
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Remark 6.1 It is easy to see that in the above example, hypothesis H(l)1
is satis�ed if, for instance, l; ln:V �H ! IR are de�ned as follows

ln(v; w) = jDnv � znd j2Y1 + jEnw � znd j2Y2 ; n 2 IN

and

l(v; w) = jDv � zdj2Y1 + jEw � zdj2Y2 ;
where Y1, Y2 are Hilbert spaces, D;Dn 2 L(V;Y1), Dn ! D in L(V;Y1),
E ; En 2 L(H;Y2), En ! E in L(H;Y2) and fznd g � Y1, fzndg � Y2 are two
sequences which converge strongly in Y1 and Y2 to zd and zd, respectively.
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