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Variational Stability Analysis of Optimal
Control Problems for Systems Governed by
Nonlinear Second Order Evolution Equations*

Stanistaw Migorski

Abstract

The variational stability of optimal control problems governed
by second order nonlinear evolution abstract equations is studied.
First we prove an existence theorem for optimal solutions. Then
admitting perturbations in all the data of the control problem, we
show the results on the asymptotic behavior of optimal solutions to
control problems as well as on the convergence of minimal values
and reachable sets. The notions of 7-convergence of functionals and
the Kuratowski-Mosco convergence of sets are employed. Finally an
example of nonlinear hyperbolic control problem demonstrates the
applicability of the results.
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1 Introduction and Notation

In this paper we investigate the optimal control problems governed by
abstract second order evolution equations. We consider a sequence of such
problems indexed by the parameter n € IN which appears in all the data
including the nonlinear operator of the state equation, the integrand of cost
functional and the control constraint set.

The goal is to identify a “limit problem” which is obtained from the
perturbed control problems as n tends to infinity. First we deal with a
nonlinear second order evolution equation for which we show the results on
existence and uniqueness of solutions and on the continuous dependence
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of the solutions on the data. Next we deliver a theorem on the existence
of optimal solutions for control problems under consideration. Then we
find conditions which are sufficient for the convergence of optimal solutions
of perturbed control problems to an optimal solution of the limit prob-
lem. Moreover, we will show the convergence of the corresponding minimal
values and we provide the stability result for the reachable sets. Finally,
we apply our results to a sequence of Bolza-type, nonlinear hyperbolic,
distributed parameter optimal control problems.

The problem of existence of optimal controls, being an important ques-
tion in optimal control theory, was extensively investigated in the past; see
Lions [16] and Ahmed and Teo [2] and the references therein for control of
distributed-parameter linear systems and Cesari [9] for nonlinear infinite di-
mensional control systems. The sensitivity of optimal control problems for
partial differential equations to changes in the parameter has been studied
by Zolezzi [30], Buttazzo and Dal Maso [7], Migérski [18] who considered
elliptic systems, by Bennati [6], Carja [8], Denkowski and Migérski [11],
Papageorgiou [26], Denkowski and Mortola [12] who examined parabolic
equations and by Migérski in [19], where the hyperbolic state equations
were dealt with. However, in all these works the differential equations
are linear in the state and often the objective functionals are of particular
forms. Recently, the asymptotic limits of control problems have been con-
sidered in Papageorgiou [25], [27] and Migdrski [20] for systems described
by nonlinear parabolic evolution equations. To our knowledge, the problem
of variational stability of control problems for second order equations has
not been treated in the literature. In this paper we study this problem by
considering control problems for a class of systems governed by abstract
monotone equations admitting nonlinearities.

We conduct the sensitivity analysis using the notions of 7-convergence
of functions and the Kuratowski-Mosco convergence of sets. We underline
that the 7-convergence of functions is a particular case of , -convergence
introduced by De Giorgi (see, for instance, [10]) and it can be expressed as
the Kuratowski-Mosco convergence of their epigraphs [3].

Throughout the paper, we make use of the definitions and facts listed
below. Let H denote a separable Hilbert space and V' a subspace of H
having the structure of a reflexive Banach space which is continuously and
densely embedded in H. Identifying H with its dual H', we have the
Gelfand triple V. C H C V', where V' is the dual of V. We will suppose
that these embeddings are compact. Let (-,-) be the duality of V' and
V' as well as the inner product on H, let ||.||, |.| and ||.||v: denote the
norms in V, H and V', respectively. Given a fixed real number 7" > 0
and 2 < p < 400, we introduce the following spaces V = LP(0,T;V),
H = LP(0,T; H), H = L9(0,T; H), V' = L(0,T; V"), (1/p+1/¢ = 1) and
W ={w € V|w' € V'}, where the derivative is understood in the sense of
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vector valued distributions. Clearly W C V C ‘H C V'. The pairing of V
and V' and the duality between H and H’' are denoted by

T
(fro)) = / (F(s),0(s)) ds.

It is well known (see [17], [15], [2], [5]) that every w € W is, after eventual
modification on a set of measure zero, continuous from [0,7] in H and
the embedding W C C(0,T; H) is continuous. Furthermore, if V C H
compactly then also W C 'H compactly; see Lions ([15], Theorem 5.1, p.
57) and Simon [29].

Given a Banach space X, the symbols w — X, s — X are used to indi-
cate the space X equipped with the weak and the strong (norm) topology,
respectively. Let (2, %, u) be a measure space. A multifunction F' defined
on Q with values in the space 2% of all nonempty subsets of X is called
measurable if F7(F) :={w € Q: F(w)N E # 0} € X for every closed set
E C X. We denote by S% (1 < r < oo) the set of all selectors of F' that
belong to L™(; X); ie. Sy ={f € L"(;X) : f(w) € F(w) p a.e.}. It is
known that ST # 0 if and only if w — inf{||z|| : = € F(w)} € L. For
A C 2% we also put |A| = sup{|a| : a € A}.

Given {S,, S}new C 2%, we recall (see [14]) that S, converge to S in
the Kuratowski-Mosco sense (denoted by S, g S), if w—limsup S,, C

n
S C s—liminf §,,, where the sequential Kuratowski upper and lower limits
are defined respectively by s — liminfS,, = {z € X : 3z, € S,,,z, —
zin X, as n — 400} = {z € X : limd(z, S,) =0} and w — limsup S,, =
n n
{zeX:3{n,},zn, € Sn,,2n, >z inw—X, as v — +00}.

We shall denote by , ¢(X) the set of all functions f: X — R U {oo}
which are convex, lower semicontinuous and not identically equal to +oo.
A function f:Q x X — R U {400} is called a normal convex integrand
(cf. [13] and the references therein) if f(-,-) is jointly measurable and
flw,-) €, 0(X) for each w € Q. For a sequence f,, f: X — IR U {400},
n € IN of functions which are not identically +oo, we say (following [3])
that f,, 7-converges to f, as n — +o0 if and only if epif, KM epif, where
the epigraph of a function ¢ is defined as follows epig = {(z,A) € X xR :
g(z) < A}. Furthermore, by [22], we know that f, — f is equivalent to
the following two conditions

(i) if &, —» o in w — X, then f(z) <liminf f,(x,);
n

(ii) for every z € X, there exists z,, — x in s — X such that lim f,,(z,) =
n

f(@).



S. MIGORSKI

This convergence is also equivalent to M ’-convergence studied by Salvadori
in [28] and it is a particular case of De Giorgi’s , -convergence (see [10],
[3]). In the sequel we also need the notion of continuous convergence of
functions. Namely, we say that f,, is sequentially continuously convergent
to fin 0 — X (and we write f, — f) if for every z,, — z in 0 — X, we
have liTan fn(xy) = f(x), where o is a given topology on X.

Finally, by £(V, H) we will denote the space of linear continuous op-
erators from Y into H endowed with the uniform operator topology.

Remark 1.1 It was proved by Nagy in [23] (and exploited, for instance,
in [27], [1]) that if V' is a Hilbert space and V' C H compactly, then the
embedding W C C(0,T;H) is compact. However, in [21], the present
author has delivered an example which shows that the above embedding
can not be compact and therefore the result of Nagy is false.

2 Setting of the Problem and Preliminary Result

In this section, we formulate the control problems and we present an aux-
iliary result on compactness in the space LP(0,7T; X).
We study the following sequence of control problems

inf Jp,(z,u) = my, P),
subject to the state and control constraints
Z(t) + An(t,2(t)) + Brz(t) = fo(t)u(t) a.e.,
z(0) = zg, #(0) = z7, (2.1)
u(t) € Up(t) ae., u€ LY0,T;Y),

where the cost functionals are given by
T
In(2,u) = Un(2(T), &(T)) +/ Ln(t, x(t), £(t), u(t)) dt. (2.2),,
0
We also consider the following unperturbed problem

inf J(z,u) =m (P)

such that
Z(t) + A(t, 2(t)) + Bz(t) = f(t)u(t) a.e.,

z(0) =g, #(0) =z, (2.1)

u(t) € U(t) ae., uwe L 0,T;Y)
4
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and .
J(w,u) = 1(2(T),(T)) + / L(t,a(t), i), ut) dt.  (2:2)

Our aim is to provide conditions under which the optimal solutions to
(P),,, (P) exist and we have their convergence as well as the convergence
of minimal values. By an optimal solution we mean a trajectory-control
pair (z,u) (sometimes denoted also by ((x,2),)) on which the infimum is
attained.

For the problems (P), and (P), we need the following hypotheses.
The control space is modelled by Y which is assumed to be separable and
reflexive Banach space.

H(A): Ap:[0,T] xV - V', neNN, A:[0,T] x V — V' are maps such
that

(1) t - A,(t,v), t — A(t,v) are measurable,

(2) v = Ap(t,v), v = A(t,v) are monotone and hemicontinu-
ous,

(3) (An(t,0),0) > elloll? = dlof? ae. and {A(t,0),0) > el —
dv|? a.e. with ¢ > 0 and d > 0,

(@) [[4n(t V)l < an(t) + bllo][P™" ae. and |JA(t, )]y <
a(t) + b|[v|[P~" ae., with ay,a € LL(0,T), sup{||an]|re :
n € IN} < +oo and b > 0.

: B, € L(V,V'), n € N and B € L(V,V') are symmetric (i.e.
(Bpv,w) = (v, Bow) for all v,w € V') and coercive (i.e. (Bpv,v)
> c||v||? for all v € V with ¢’ > 0).

=
X

o
>

C fo € LO(0,T; L(Y, H)), n € N and f € L®(0,T; L(Y, H)).

=
S

: Up:[0,T] — 2, n € N and U:[0,T] — 2" are measurable
multifunctions with closed, convex values such that |U,(t)| <
v(t), |U(t)] < ~(t) ae. with v € LE(0,T).

(Hp): xy,x0 € V and 27,21 € H for n € IN.

H(L): Ly:[0,T|xVxHxY — RU{+00},n € Nand L: [0,T]xV x Hx
Y — IRU{+o0} are normal convex integrands such that ¢, (t) +
p2(t) (I1211” + [91*) +es@llully < Ln(t,z,y,u), L(t,z,y,u) <
Pi(t) + o (t) (Ilall” + ly?) + vs()l[ull} ae., where 1,91 €
LZ(O,T), @2,@3,1[]2,1/]3 S LOO(O,T)
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H(): 1 VX H—->RU{+00},n€ Nand I: V x H - RU {400} are
lower semicontinuous on (w — V') x (s — H).

In the following we prove a compactness result that will be useful in the
sequel. We use the space of scalarly continuous functions defined by Lions
and Magenes in [17], as follows C,(0,T;V) := {f € L*(0,T;V)|t —
(h, f(t))y v belongs to C([0,T]) for any fixed h € V'}. We have

Lemma 2.1 Let V C H compactly and let {z,} be a sequence which sat-
isfies
Zn — 2z in w—x—L%0,T;V),
4y — % in w— L°(0,T; H), (2.4)
where 6 > 1. Then
zn — 2z in s —Cs(0,T;V). (2.5)

Proof: First, applying Simon (Corollary 4, p.85 in [29]), from (2.3) and
(2.4), we obtain

zZn — 2z in s —C(0,T; H). (2.6)
Next, due to the inclusion L*°(0,7;V)NC(0,T; H) C Cs(0,T;V) (see Lions
and Magenes in [17], Chapter 3, Lemma 8.1), we have that z, belongs to
Cs(0,T;V). We will show that (2.3) and (2.6) imply (2.5). To this end,

it is sufficient to prove that for any h € V' the sequence {(h, zn(t))}n is
Cauchy in C([0,T]). Let h € V', n € H' ~ H. For m,n € IN, we have

[(hy 20 () v x v = (hy 2m () v x v |

<[(h =, 20(t) = 2m(®))vxve + (0, 20(t) — 2m () Hx ]|
< (llznllze(o,7:v) + llzmllz=(o,m5v)) 1h = nllv: + |20 = Zmllc(o,rm | a2

By virtue of (2.6) and the density of H in V', we immediately get that
{{h, zn(t)}} is a Cauchy sequence in C([0,T7]). O

Remark 2.1 The convergence (2.5) implies in particular that z,(t) — z(t)
weakly in V for every fixed ¢ € [0,T].

3 Results on Evolution Problems

In this section we investigate the evolution problems (2.1),, and (2.1). We
address the questions of existence and uniqueness of solutions to these prob-
lems and of the dependence of the solutions on the data. We recall (see [1])
that by a solution to (2.1), we understand a pair (zy,&,) € C(0,7;V)xW
such that (2.1),, is satisfied. Similarly for the problem (2.1).

In the proofs of the next two lemmas, we follow the methods used in
[1].
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Lemma 3.1 Under hypotheses H(A), H(B), H(f), H(U) and (Hy), for
each n € IN, the problems (2.1),, admit unique solutions which satisfy

(i) xn € L*>(0,T;V),

(i) &n € VNL®(0,T;H),

(i11) &p €V,

(iv) An(,2n()) € V"
An analogous statement holds for the problem (2.1).

The proof of Lemma 3.1 follows from standard application of the Galerkin
method (cf. e.g. [16], [1]) and the a priori estimates given in Lemma
3.2. We only remark that by Lemma 2.1, (i) and (ii) of Lemma 3.1 imply
Zn € C(0,T;V) while from (ii) and (iii) we have &, € W.

Lemma 3.2 Letn € IN be fized. Under the hypotheses of Lemma 3.1, if
(%p, &y) is a solution to (2.1),, then

len (I + [Ea(F + linlly < C (14 g1 + 122 +11Bal )
(3.1)
for any t € [0,T] with C > 0 independent of n. A similar conclusion is
valid for the problem (2.1).

Proof: The proof will be given for (2.1), and it holds also for (2.1). Let
n be fixed and (z,,4,) be solution to (2.1),. Then we have

/0(:b'n(s),a':n(s))ds—l-/o(An(s,j:n(s)),:&n(s))ds

+ / (Bun(s),ion(s)) ds = / (Fu(8)tn(5), i (5)) ds

for every ¢t € [0,T] with u,(t) € U,(t) a.e. Using the integration by parts
formula ([5]), Schwarz inequality and H(A)(3), we have

lin(8)? — [En(0)]2 + 2¢ / i ()| ds — 2d / i (3)]? ds

t t
42 [(Bua(s)n(s)) ds <2 [ |fuls)un(o)llin(s) s
0 0
On the other hand, the symmetry of the operator B,, gives
(Bnn(s), 2n(s)) = (1/2)(d/dt)(Bpan(s), zn(s)) a.e.
7
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Hence and from the fact that H(f), H(U) imply
Fa(un (N < Il la)llE < G ace,

using the coerciveness of B),, and applying Cauchy’s inequality, we obtain

t t
i (B)] + 2¢ / it ()| ds — 24 / i (8)]2 ds + ¢ |2 (1)
0 0

n n 2eP t . 20167(1 t
< a1 + 1| Bullcvvn g 12 + " / |Zn (s)[Pds + . / (v(s))"ds
0 0

for every € > 0. Using the fact that |- | < g|| - || with 8 > 0 (recall V.C H
continuously) and then taking ¢ := (1/ﬂ)(pc/2)1/p, we have

ln (B + ¢ / in($)|P ds + ¢ [ln(8)] (3.2)

t
. 20)1C,

< |zm|? B, NIERIE 2d/ w(8)?d (7 1.

< |17 + [Ball ey g 11 + | |%n(s)| S+q(pc)q_1llvlqu

Invoking Gronwall’s inequality, it follows from (3.2) that there exists a
positive constant Cs independent of n such that

|En(t)]* < Co (|27 + [|Ballllzg 1I” +1I7l17.), YVt€[0,T].  (3.3)
Now, again from (3.2) and (3.3), we get
cllénlly + ¢ llzn @I < Cs (1 + [27* + | Ball [l2511) (3.4)

for t € [0,T]. Let us take ( € V. Multiplying our equation in (2.1), in
duality by ¢, we have

(G O < (I An(n)llvr + 1 Bazal o + | Fanl v ) 11¢]
< (27 (llownllze + bllanl5/*) + CallBallll2al lLao,r:v) + Csl1llze ) 1IC]

< Cs <sup{||an||} + [[alB* + 1| Bal [lzallv + ||7||Lq> 1< v

where by gn: Y — V' we denote the Nemitsky operator corresponding to
A, (ie. (Apv)(t) = An(t,v(t)) for a.e. t) and (fv)(t) = f(t)v(t) a.e. Since
¢ is arbitrary, we deduce that

|Znllv < Cr (1 + [[Znllv + [[Ball [|lznllv) - (3.5)
Now, the inequality (3.1) follows immediately from (3.3), (3.4) and (3.5).
This finishes the proof. O

Next we present a result on the continuous dependence of solutions to
(2.1),, with respect to perturbations in the data. We will need the following
hypotheses.
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H(A) : A,,A:[0,T] x V. — V' are maps satisfying H(A) and
An(w(?) = A w())) in s — V' for all w € VN L*®(0,T; H).

H(B),: B, € L(V,V'), n € IN are symmetric, coercive and B,, — B in
LV, V.

H(f)1: fn€ L*=0,T;L(Y,H)),n € Nand f, — fin L=(0,T; L(Y, H)).

HU)y: Un:[0,T] — 2¥, n € IN are measurable multifunctions with
closed, convex values such that |U,(t)] < v(t) a.e. with v €
L%(0,T) and U,(t) "= U(t) ae.

(Hyp)1 : the hypothesis (Hp) holds and x5 — 2o in s —V, 27 — 21 in
s—H.

Remark 3.1 It can be shown (see [25]) that under hypothesis H(U);, the
multifunction U is measurable with nonempty, convex and weakly compact
values and |U(¢t)| < v(¢t) a.e.

Theorem 3.1 If hypotheses H(A)1, H(B)1, H(f)1, HU)1 and (Ho)1
hold, then the sequence {(x,,Zn)} of solutions to (2.1), converges to (x, &)
in C(0,T;V x H), where (x,%) is a solution to the problem (2.1).

Proof: Let (z,,%,) be solution to (2.1),. From H(U); we have ||u,(t)||y
< 9(t) ae., where u, € S, . Since LU(0,T;Y) is reflexive (recall that
1 < ¢ < 2), by Alaoglu’s theorem we know that {u,} is sequentially weakly
compact in this space. Therefore, by passing to a subsequence if necessary,
we may assume that

up, = u in w— LIY0,T;Y). (3.6)

From H(U); and Papageorgiou ([24], Theorem 4.4), it follows that

St KM S{. Hence we deduce that u € S,.

" Let (z, ) be the (unique) solution to (2.1) corresponding to the control
w € Sf;. From (2.1) and (2.1),,, we have

(En(s) = &(s), dn(s) = @(s)) + (An(s, &n(s)) — A(s, 8(5)), En(s) — #(s))
+(Bnn(s) = Br(s),&n(s) — #(s)) = (fals)un(s) = f(s)u(s), n(s) — i(s))

a.e., for every n € IN. Integrating this equality, using the monotonicity of
A, (s,-) and the fact that

(d/dt)(Bu(t),v(t)) = 2(Bi(t),v(t)) ae., (3.7)
we get
I:‘vn(t)—:'v(t)|2—|:'vn(0)—al*(0)l2+2/0 (An(s, ()= A(s, @(s)), dn(s)—(s)) ds

9
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+2/0 (Bnn(s) — Bz, (8), &n(s) — &(s)) ds + (Bxz,(t) — Bx(t), z,(t) — x(t))
—(Bxn(0)=Bx(0),2,(0)—2(0)) < 2/0 ((Fn(s)=f(5))un(s), #n(s)=2(s)) ds

2 [ 0106) 1 (0) = (s)) 2 3) = (5)

for every t € [0,7]. Hence applying Holder inequality and using H(B),
we obtain

[@a(t) — & + ¢ lzn(t) — 2> < ||l |2§ - zoll + |of — 21> (3.8)
+20|A,(#) = A@) v llin = ally + ClIBo = Bl [l [l — 3l

+2/0 Fn(s) = F()ev,mllun(s)]ly [En(s) — &(s)| ds

+2/0 (un(s) —u(s), f*(s)(@n(s) — Z(s)))yy ds, Vt€[0,T],

where C' is a positive constant independent of n. From H(B); and (Hp)1,
by Lemma 3.2, after possible passing to subsequences, we have

Ep — 2z in w—IW and s—H, as n — +o00 (3.9)

with z € W (due to the compactness of the embedding W C H). Since
W c C(0,T; H) continuously, we know that

[in(s) — #(3)] < ellitn — llw (3.10)

for all s € [0,T]. On the other hand, from H(f); and (3.9), we infer that
fO)in() = f()z() in s = LP(0,T;Y"). (3.11)

Using (3.6), (3.9), (3.10), (3.11) and our hypotheses, from (3.8) we get
(Zn(t), 2n(t)) — (z(t),2(t)) in V x H, for every ¢t € [0,T], as n —
+00. Since the solution to (2.1) is unique, we deduce that the whole

sequence {(xy,dn)} converges to (z,4) in C(0,T;V x H). The proof is
completed. 1

4 Existence Theorem for Control Problems

The aim of this section is to demonstrate the existence of optimal pairs for
problems (P), and (P).

10
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Theorem 4.1 If hypotheses H(A), H(B), H(f), H(U), (Hyp), H(L) and
H(l) hold, then the control problems (P) and (P), , for any n fized, admit
an optimal solution.

Proof: It will be carried out for problem (P) and holds also for problems
(P),,- Let {(zk,ur)}r>1 be a minimizing sequence for (P); i.e. the pairs
(g, ur) are admissible for (P) and lilgn J(zp,ur) = m. From Lemma 3.2,

we know that {(xy,&r)}r>1 belongs to a bounded subset of (L*°(0,T;V)N
Whe(0,T; H)) x W. Extracting a subsequence one has

zp —x in w—x—L*0,T;V), (4.1)

Fr — % in w—x—L>0,T;H) andin w—W, (4.2)

as k — o0, where x € L*®(0,T;V) is such that € VN L*(0,T; H),
Z € V'. In view of Lemma 2.1, Remark 2.1 and recalling that WW Cc H
compactly, from (4.1) and (4.2), we deduce that

zp — 2z in CO,T;w-V), (4.3)
i — & in s—H, as k— +oc. (4.4)

From (4.3) and the fact that z;(0) = zo, it follows immediately that
z(0) = zp. (4.5)

Note that by the continuity of the embedding W C C(0,T'; H) and Mazur’s
lemma, the convex set Wy, := {w € W|w(0) = x1} is a weakly closed
subset of W. Since &), € W,,, from (4.2), we have

We claim that
ir — 4 in C(0,T;H), as k — +oo. (4.7)

(We emphasize that (4.7) does not follow from (4.2) merely, since the em-
bedding W C C(0,T; H) is not compact, cf. Remark 1.1). To prove (4.7),
we will first show that

lim sup ((A(iy), @ — ) < 0. (4.8)

Multiplying the equation #j + A\(mk) + Bz, = ]?uk in duality with z; — 2
and integrating by parts, we obtain

(1/2)|2x(T) — &(T)* = (1/2)|2x(0) — #(0)* — (&, 3 — 7)) (4.9)
11



S. MIGORSKI

+((A(ig), dr — &) + ((Bag, i, — &) = (Fug, x — ).

Next, because of H(U), we know that S, is sequentially weakly compact.
Hence, we may suppose that

up — w in w—LY0,T;Y) (4.10)
and u € S{,. Since feL(Ly0,T;Y),H"), we readily deduce that
fup, — fu in w—"H', as k— +oo. (4.11)

Using (4.2), (4.4), (4.6), (4.11), from (4.9) after dropping the positive term,
we obtain

timsup (((A(r), 4 — @) + ((Bog, i — ))) (4.12)
k

< lim sup ({(Fouws, b —£)) + (e = £)) + (1/D)]er = #(0)) = 0.

Utilizing the equality (3.7) and the coerciveness of B, we get
ek (T) = (D)|* + 2((Bz, &k — @) + (B(z1(0) — 2(0)), zx(0) — 2(0))
< 2((Bay, &y — 1))-
From the above inequality, (4.2), (4.3) and (4.5), it follows that

0 < liminf (B, d; — ). (4.13)

Combining (4.12) and (4.13), we easily get (4.8).
Let
pr(t) = (A(t, 2 (t)) — A(t, 2(t)), &1 (t) — &(t))

for a.e. t € (0,7). Applying (4.2) and (4.8), Fatou’s lemma ensures that

T
sup/ pr(s) ds
v 0

T T
0< / liminf pi(s) ds < lim inf/ pr(s)ds <lim
0 k k 0 k

< lim sup (), a4 — &) — lim ((A(@), 34 — £)) < 0.

T
From the above inequalities, we deduce that lilgn/ pr(s)ds = 0, which

implies, thanks to the property pr(t) > 0 a.e., thgut pr — 0 strongly in
LI(O, T). Thus, we may assume, passing to next subsequence if necessary,
that

pr(t) — 0 ae. te(0,T). (4.14)

12
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Using hypothesis H(A)(3)(4), for a.e. t € (0,T), we have

p(t) 2 cllzx (O = dlar ()] — a@®llz@)]] = bllz ()] [l ()P~

= (a(®) + bllaOIP™) [z ()] + cllz(@)1P — dl(t)].

Combining (4.14) and the last inequality, it follows that {||¢x(t)||} is bounded
for a.e. t € (0,T) and k sufficiently large. So we have shown that the se-
quence {Zy, } belongs to a bounded set of L*°(0,T"; V). Moreover, since {Z}
lies in a bounded subset of V' (cf. Lemma 3.2) and V C H compactly, we
infer from the version of the Arzeld-Ascoli theorem (see [29], Corollary 4,
p. 85) that (4.7) holds. This finishes the proof of the claim.

The convergences (4.3), (4.4), (4.10) and H(L) allow us to deduce, by
applying Theorem 2.1 of Balder [4], that

T T
/ L(t,m(t),a’:(t),u(t))dtSlimkinf/ L(t,zp(t), 2 (t), ug(t)) dt. (4.15)
0 0
From (4.3), (4.7) and hypothesis H (), we have
I(z(T),z(T)) < limkinfl(a:k(T),j:k(T)),

which together with (4.15) implies

J(x,u) < limkinf J(xp, up) = m.

In order to show that (z,u) is the optimal “state-control” pair, it is
now sufficient to prove that (x,u) is admissible for (P). To this end, we
observe in view of hypothesis H(A)(4) that {A\mk} is bounded in V'. So we
may suppose that

A(dp) >y in w—V' (4.16)
with x € V'. From H(A)(2), it follows (see Proposition 2.5 in Chapter 2
of [15]) that A has the generalizedApseudomonotone property. Therefore,

(4.2), (4.8) and (4.16) yield x = A(&). As a consequence of (4.2), (4.3),
(4.11) and (4.16), we pass to the limit in the equation

(e, m)) + (Aldr),m)) + ((Bxi,m)) = ((Fur,m)), VneV

and we get ((£, 7)) + ((A(£),n)) + ((Bz,n)) = ((fu,n)), for every n € V.
Thus #(t) + A(t,2(t)) + Bz(t) = f(t)u(t) a.e., which together with (4.5),
(4.6) and w € S}, means that the pair (z,u) is admissible for (P). Hence
we conclude that J(z,u) = m. The proof of Theorem 4.1 is completed. O

Remark 4.1 For a slightly different class of second order state equations
(more general right hand sides with L* controls), a result on existence of
optimal solutions was proved in Theorem 3.1 of [1].

13
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5 Sensitivity of Control Problems

This section is devoted to state and prove the results on the asymptotic
behavior of the sequence of control problems (P), , as n tends to infinity.
We admit the perturbations appear in all the data of the control problem
i.e. in the operators and initial conditions of the state equations, in the
objective functionals, and in the control constraint sets. We provide the
stability theorems for the sets of optimal solutions and for the reachable
sets. We also show the convergence of the minimal values of (P), to a
minimal value of (P).

We introduce the following notation. For every n € IN fixed, let us con-
sider the map p,,: L4(0,T;Y) — C(0,T;V xH)x L0, T;Y) C L'(0,T;V x
H xY) given by pp(u) = (2pn,&n,u), where (z,,&y) is the solution of (2.1),,
corresponding to the control w. Analogously, we define map p which is as-
sociated with problem (2.1). Then, let F},, F: LY(0,T;Y) - R U {+o00} be
functionals respectively given by

Fu(u) = Jn(pn(u)) + XC(0,T;VxH)x SE, (Pn(w)),

F(u) = J(p(u)) + XC(0,T;V x H)x SZ, (p(u)),

where we write Jy,(Zp,&n,u) = Jo(tn,u), J(z,i,u) = J(z,u) and yg
denotes the indicator function of a set E; i.e. xg(e) = 0if e € E and
XE(e) = +oo, otherwise. Under these notations, we have m,, = inf{F,(u) :
w € LY0,7;Y)} and m = inf {F(u) : w € LY(0,T;Y)}. Moreover, we in-
troduce G,,, G: L*(0,T;V x H x V) — IR U {400} defined as follows:

T
Golz,y,u) = / Lt (1), y(t), u(t)) dt

and

T
Gz, y,u) = / L(t, (), y(t), u(t)) dt.

In the first theorem we will study the 7-convergence of functionals F,,. To
this end, we need the following assumptions.

H(L)y : Ly:[0,T]xV x HxY — RU{+o00}, n € IN satisfy H(L) and
Ly(t,---) = L(t,-,-,-) a.e.
H(I); : the hypothesis H(I) holds and I,, — [ in s — (V x H).

Theorem 5.1 If hypotheses H(A)y, H(B)1, H(f)1, H(U)1, (Ho)1, H(L)1
and H(1), hold, then F, == F, as n — +oc.

Proof: It is enough to show that
14



STABILITY ANALYSIS OF OPTIMAL CONTROL

(i) if u € S, up € Sf; and up, — win w — LI(0,T;Y), then F(u) <
lim inf F, (uy,);
n

(ii) if w € Sf;, then there exists u, € Sf;, such that u, — u in s —
L10,T;Y) and F(u) = lim F},(uy).
n

We first prove (i). Let u € Sf;, u,, € Sf; and
Up, — u in w— LY0,T;Y), as n — 4o0. (5.1)

Denote by (z,,%,) (and (z, ) respectively) the unique solutions to (2.1),
(and (2.1) respectively) corresponding to control u, (and u respectively).
Using Theorem 3.1, we know that

(n,En) — (z,%2) in C0,T;V x H). (5.2)
From H(l); and (5.2), we easily get

((T),&(T)) = lim I (24(T), &n(T)). (5.3)

Because of H(L); and Theorem 3.1 of Salvadori [28], we have G,, — G, as
n — 4o00. Thus, by the definition of 7-convergence, using (5.1) and (5.2),
we have

G(z,&,u) <liminf G (@, Tn, Uy). (5.4)

From (5.3) and (5.4) we deduce that F(u) < lim inf F, (uy,).

We demonstrate (ii). Let w € S{,. We deﬁne un € S, such that
d(u, S, ) = llu — unl|pa(o,r;y)- Such u, exists, since St is compact in
w — Lq(O T;Y) and Lq(O T;Y) with 1 < ¢ < 2is reﬁexwe From H(U);

and Theorem 4.4 of Papageorgiou [24], we know that Sf; = S{. Hence
and from the fact that u, € Sf, , we have d(u,Sf; ) — 0, Wthh implies
that

up, —u in s—L%0,T;Y), as n — 4oo. (5.5)

As in part (i) of the proof, by Theorem 3.1, we obtain that the convergence
(5.2) of solutions of (2.1), corresponding to u, holds and (5.3) is satis-

fied. Moreover, since G,, — G, we find a sequence {(fn,ﬂn,ﬂn)}nZI C
L'(0,T;V x H xY) such that

(Zns Un» i) — (z,&,u) in s —L'(0,T;V xHxY) (5.6)

and lim G, (Z,,, Yn, Un) = G(z,2,u). Due to H(L);, Gy(-,-,-) are locally
equilipschitzean and therefore

|Gn($n;i'n;un) - Gn(ﬁn;gnvﬂn”
15
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<M ([len = Zulloro,z5v) + 1En — Unlloro,zsm) + ln — nllzro,ryy) -
In view of (5.5), (5.2), (5.6), we obtain lim G, (2, &n,un) = G(x,z,u).
Hence and from (5.3), we immediately hgve lim F, (u,,) = F(u). This
finishes the proof of (ii) and completes the proofnof the theorem. O

Remark 5.1 We observe that it is not true in general that the 7-limit
of a sum of two 7-convergent sequences of functionals is the sum of their
7-limits. This property holds if we require more than 7-convergence for
one of these sequences, for instance, the continuous convergence. Such a
situation is met in Theorem 5.1; compare the convergences in H(L); and
H(1);. For conditions implying hypothesis H(L);, we refer to Attouch [3].

Theorem 5.2 If the hypotheses of Theorem 5.1 hold, then m,, — m, as
n — +00.

Proof: Let u, € S,q]nbe such that m,, = F,(u,). From H(U);, we may
assume that u,, — u weakly in L?(0,7;Y). The condition (i) of the proof
of Theorem 5.1 yields

m < F(u) < liminf F,,(uy) = lim inf m,,. (5.7)

Next, let u € S{; be such that m = F(u). From the step (ii) of the proof
of Theorem 5.1, we know that there exists u,, € S,q]n such that w,, — w in
s—L%0,T;Y) and

m = lim F,,(uy,) > lim {inf F,,(u) : w € LY(0,T;Y)} = limm,.  (5.8)

The thesis of the theorem follows from (5.7) and (5.8). O

We show a stability result for the set of optimal solutions. We introduce
the following sets:

On = {(z,2,u)|((x,2),u) is an optimal pair for (P),}, n € IN,

O ={(z,z,u) | ((z,%),u) is an optimal pair for (P)}.

Under the hypotheses of Theorem 5.1, the sets O,,, O are nonempty subsets
of C(0,T;V x H) x LY(0,T;Y) (see Theorem 4.1).

Theorem 5.3 Under the same hypotheses as in Theorem 5.1, we have
limsup O,, C O, where C(0,T;V x H) is endowed with its norm topology

and in L9(0,T;Y) we use the weak topology.

16
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Proof: Let (z,%,u) € limsup O,,. By the definition we find (2, , Zn,, Un, )
n

€ Oy, such that (z,,,%,,) — (z,2) in C(0,T;V x H) and up, — u
weakly in L9(0,T;Y). So (Zn,, Tn,, Un, ) is admissible for (P), and m,, =
F,, (ty, ). From Theorem 5.2, we get m = lilgn My, = lilgn F,, (ty, ). Since

s A8l oy, € St and up, converges weakly, we have u € S{,. As
n -

in Theorem 3.1, we obtain that (z,2) is a solution to (2.1) corresponding

to the control w. Then, Theorem 5.1 gives m < F(u) < limkinf Fp, (tn,)-

Hence m = F(u) which implies (z,%,u) € O. O

From Lemma 3.2, Theorems 3.1 and 5.3, we have the following

Corollary 5.1 Under the hypotheses of Theorem 5.1, every sequence
{((xn,Tn), un)} of optimal solutions to (P), possesses a subsequence which
is convergent in C(0,T;V xH) x (w— L%(0,T;Y)) topology to an optimal
solution of the limit problem (P). If the limit problem admits the unique
solution, then the whole sequence {((n,&n),un)} converges to this solu-
tion. Moreover, the minimal values min (P), converge to the minimal value
min (P).

In order to state a theorem on the stability of the reachable sets, for every
t € [0,T], we introduce

R,(t) ={veV x H:v=(z,(t),&n(t)), where (z,,%,) is a solution
to (2.1),, corresponding to some u € S{; },

R(t)={veV x H:v=(z(t),&(t)), where (z,) is a solution
to (2.1) corresponding to some u € S, }.

Theorem 5.4 If the hypotheses of Theorem 5.1 hold, then for every t €
[0,T], we have R,(t) =g R(t), as n — +oo.

Proof: We first prove that w — limsup R,,(t) C R(t) for all ¢t € [0,T]. To
this end, let ¢ € [0,T] and v € w — limsup Ry, (t). So we find vy, € Ry, (t)

n

such that v,, — v weakly in V' x H. Moreover, v,, = (xn, (t),Zn, (t)),
where (n,, ¥n,) is the solution to (2.1), for some u,, € Squnk' By passing
to a further subsequence if necessary, we suppose that u,, — u weakly in
L9(0,T;Y), where u € L4(0,T;Y). Due to the fact that S}, 3" S},
we have u € Sf;. From Theorem 3.1, we get (zp, (1), &n, (t)) — (x(t),2(t))
strongly in V' x H for every ¢ € [0,T], where (z, ) is the solution to (2.1)
corresponding to control u. We obtain v = (z(t), Z(t)) i.e. v € R(¢).

We now show that R(t) C s — limninf R, (t) for every t € [0,T]. Let
t € [0,T], v € R(t). Then v = (z(t),%(t)), where (z,%) solves (2.1)
with some u € S{,. We can find u, € ngn’ defined as in the proof of

17
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Theorem 5.1 such that u, — u weakly in L9(0,7;Y). Again by Theo-
rem 3.1, we know that the sequence of solutions (xy,, Z,) corresponding to
Uy, converges in C(0,T;V x H) to (z,%). We have lirf d(v, Rp(t)) <

lirf [|(zn(t), £n(t)) — (z(t),Z(t))|lvxg = 0. Hence we infer that v €
s —lim inf R, (t). O

6 An Example

In this section we present an example which illustrates the application
of the abstract framework and of results of the theory developed in the
previous sections.

Let Q be a bounded domain in IR with Lipschitz boundary , = 99,
Q=(0,T)xQ, % =(0,T) x,. We consider the following sequence of
nonlinear hyperbolic optimal control problems:

Jn(@: u) = ln(@(T)v Pt (T))

+/ L, (t,z,o(t, ), pe(t, x), u(t, z)) dtde — inf = m,, (6.1),,
Q
where
( 82<p N
i div (a™(t,z, D)) — Z D; (b%(:n)ngo) =
ij=1
= (gn(t,®),u(t,z)) ae. in Q (6'2)n

(10|2 =0, (,0(0,1’) = cpg(:r), cpt(O,m) = (,0?(1’),

Nt N2 ime) S alt) ace

and the limit problem

J(p,u) = U{p(T), o (T))

+/ L(t,z, o(t,x), pe(t, x), u(t,x)) dtde — inf =m (6.1)
Q
such that
( 32<p N
FrRe div (a(t, z, D)) — Z D; (bij(z)Djp) =
ij=1
= (g(t,z),u(t,z)) a.e.in Q (6.2)

<p|2 =0, (,0(0,1’) = (pg(ll’), (pt(o,l') = (101(1’)7

Nt 2 mey < 7(t) ace.

18
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The parentheses on the right hand sides of the state equations denote the
inner product in R¥, D; = 8/8z;, i =1,...,N, Do = (D1p,...,Dxny) is
the gradient of . Let V = H}(Q), H = L*(Q) and V' = H1(Q). We
know that (V, H, V') is an evolution triple with compact embeddings. Let
Y = L3(%; ]Rk) and p = 2. Given positive real constant ¢; and functions
e € L2(Q), c3 € LL(), we define the class M = M(cy, ¢2,¢3) of maps
a:Q x RV — R" which satisfy

(j) a(-,-,&) is measurable for every £ € R",

(jj) a(t,z,-) is continuous a.e. in Q,
(i) (at,z, &) —alt,z,&),6 — &)py > 0 ae in Q, V &,& € RY,
(iv) (a(t,2,€),pn > cifé] ae. in Q, VEeRY,

(V) la(t,z,€)| < es(t, ) + e3(2)[€] ace. in Q, V€€ RY.

Given A > 0, we denote by E()) the class of operators B: Hy (Q) — H™(Q)
such that B = — Efvj 1 Di (bij(x)D;) for some b;; € L*°(Q) and b;; = bys,

/\|£|2 < EZ] 1 zJ( )Ezfj for ¢ € IRN

We introduce the following hypotheses on the data of problems under con-
sideration.

H(A)s: a,a™:Q x RN — RY, n € IN, are such that

(1)  a€ M(er,c2,c3),a™ € M(cr, ey, c3) withey > 0, {c2,c2} C
L3(@), sup[c3]lz2 < +o0 and es € L¥(9),
(2) a"(t,-, Dv(-)) — a(t,-, Dv(-)) a.e. for every v € V.

: B,B,, € E(\), n € IN with some A > 0 and the coefficients b;
of By, satisfy bj; — b;; in L>°(Q2) for all 4,5 = 1,...,n, where b;;
are the coefficients of B.

H(g) 1 0,9n € Loo(oaT7Y))7 n € N SatiSfy gn(ta) - g(ta) ins—-Y
uniformly with respect to t.

H(r): ryrp € LE(0,T), n € IN are such that 7,(t) < n(t) a.e. with an
n e LL(0,T), ro(t) — r(t) a.e.

(Ho)2: g0 €V, 05 = woins =V, o, 01 €H, oI — 1 in s — H.

H(L)s : L,Lyp:Q x R¥? = R U {400} are normal convex (in (w, z,u))

integrands such that

$i(t,x) + Ga(t @) ([wf + [2%) + st @)lfull?

=
X

S L(t7x7w?'Z?u)’Ln(t)m)w)Z’u)
< it ) + ot z) (Jwl® +2)%)
+ Y3t z)||ul]?
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with ¢171/}1 € L2(Q)7 ¢25¢37’¢}27’(/}3 € LOO(Q) and Ln(t,.’I},',',')

- L(t,z,-,-,") a.e. on Q.

We consider the following Dirichlet forms associated to the nonlinear op-
erators appearing in state equations (6.2), and (6.2):

dp(t,u,v) = / (a"(t,z,Du),Dv) dz, n € N, u,v €V,
Q

d(t,u,v) = / (a(t,z, Du), Dv) dz, w,v € V.
Q

Using H(A)» and Holder inequality, we have

1/2

(£ 0, 0)| < </Q|a"(t,a:,Du)|2dm>1/2</Q|Dv|2dm> <
< (2( [ sk de s [ awiour)) i (@0 +5) ol

where &, (t) = V2[[c(t,)l|r2 € L2(0,T) and b = v2||es||1~. Similarly
d(t,u,v) < @) + Bllul)loll with &) = Vallea(t, e € L2(0,T).
Therefore there exist operators A, and A from [0,7] x V to V' such that
dn(t,u,v) = (A, (t,u),v), d(t,u,v) = (A(t,u),v) and moreover they satisfy
condition H(A)(4).

Next, making use of separability of V', from the Pettis measurability
theorem, we get that A,(-,v), A(-,v) are measurable. The continuity of
A(t,-) follows from the relation

|A®, o) = A(t,0)[[ve = S [{A(t, ) = Alt, ), 2)| <

< sup / la(t, z, Dvy,) — a(t,x, Dv)||Dz|dx — 0
lIzl[<1/Q
which is true for every vy, — v in s — V. Analogously one proves the con-
tinuity of A, (t,-). The monotonicity of A, (¢,-) and A(t,-) readily follows
from (jjj) of the definition of the class IM, while (jv) implies that both A,
and A satisfy H(A)(3) with ¢ =¢; and d = 0.
Let w € V. In view of H(A)2(2) we obtain

[| A (t, w) — A(t,w)||v: < sup / |a™(t, z, Dw) — a(t, z, Dw)||Dz|dx — 0,
l1z1I<1 /0

for a.e. t. Applying the dominated convergence theorem, we infer that for
any v € VNL>*(0,T; H), we have liIB [|An(-, () — A(-,v(-)|[y» = 0. So
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we have verified hypothesis H(A); for the operators A, and A. We also
observe that hypothesis H(B); holds as a consequence of H(B),.
Subsequently, we define £(1), fa(t):Y — H by (fF(Ju)(-) = (g(t, ), u(-)
and (fn()u)() = (gn(t,-),u(-)), respectively. It is clear that f, f,, €
L*(0,T; L(Y, H)). Since

fn(®) = FOllev,my = sup |(fult) = £(£))2]a <

2]y <1

< sup |lga(t,-) = g(t)lIvllzlly < llgn(t;-) = g(t,-)lly — 0
lzlly <1
uniformly in ¢, by hypothesis H(g), we deduce that H(f); holds.
Let us define Up(t) = {u € YV : ||ul]ly < rp(t)} and U(t) = {u € YV :
[lully < r(t)}. Due to hypothesis H(r), it is easy to check that H(U); is
satisfied. B B
Finally, we define L,, and L by putting

L,(t,v,w,u) = /QLn(t,a;,v(a:),w(m),u(m)) dr, n €N,

L(t,v,w,u):/QL(t,a:,v(a:),w(a:),u(a:))da:,

where (v,w,u) € V x H xY. From Theorem 3.1 of Salvadori [28] and -
convergence of Ly, to L (see H(L),), it follows that Ly (t, -, -,-) — L(t, -, -, )
a.e. Moreover the growth conditions on fn, L follow from H(L)y. Thus Zn
and L satisfy H(L);.

We observe that the problems (6.1),, and (6.1) can be formulated by
using the above notation in the abstract forms (P), and (P), respectively.
From Theorems 4.1, 5.4 and Corollary 5.1, we conclude

Corollary 6.1 If hypotheses H(A)s, H(B)=2, H(g), H(r), (Ho)2, H(L)2
and H(l)1 hold, then

(1) the control problems (6.1),,, for every n € IN and (6.1) admit optimal
solutions;

(2) every sequence of optimal solutions to (6.1), has a subsequence which
is convergent, asm — +00, to an optimal solution of the problem (6.1)
in C(0,T;V x H) x (w—L10,T;Y)) topology;

(8) My — M, as n — +00;

(4) the reachable sets R,(t) and R(t) for (6.1), and (6.1), respectively,
satisfy Ry (t) = R(t) for every t € [0,T], as n — +o00.
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Remark 6.1 It is easy to see that in the above example, hypothesis H (1),
is satisfied if, for instance, [,[,,: V x H — IR are defined as follows

and

ln(v,w) = |Dpv — 22‘@1 +|Epw — Efﬂ%}z,n eIN

l(v,w) = |Dv — zd|§;1 +|Ew — Ed|§,2,

where Yy, Vs are Hilbert spaces, D,D,, € L(V, 1), D, — D in L(V, ),
E, &, € L(H,Y,), &y — € in L(H,Y,) and {z]} C V1, {Z}j} C V> are two
sequences which converge strongly in )y and )» to z4 and Z4, respectively.
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