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Abstract

This paper deals with the analysis of the convergence rate of

adaptive asymptotically optimal control strategies when applied to

linear, stationary, multidimensional objects belonging to some class

which might include a moving average control term. A general type

of performance index, which is the sum of a quadratic form in the

output signal plus a quadratic form in the input signal, is consid-

ered. Finally, it is shown that for any adaptive control scheme, the

corresponding state space trajectories do not di�er less than some

lower bound, which is sharp, from those corresponding to an op-

timal control scheme (where full information on the parameters is

available). Single input - single output (SISO) and two dimensional

case (MIMO) examples are presented.

1 Introduction

Many di�erent papers have been devoted to the synthesis and analysis of
adaptive control strategies for the class of stationary linear objects, per-
turbed with stationary (in the wide sense) stochastic noise [1], [2], [3], [4],
[7], [8]. It has been shown that di�erent adaptive control algorithms have
di�erent convergence rates in some functional sense. In other words, they
guarantee di�erent adaptation rates. So two algorithms of adaptive control
have been studied in [6].

The convergence of the outputs of a system controlled using an adaptive
scheme to the outputs of the system whose parameters are the true ones, has
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been considered. However, the convergence rate analysis of these outputs
has not be included. Other publications [1]-[5] also did not touch this
problem.

It is clear that any characteristic of the adaptation process is depen-
dent on the particular adaptive strategy employed, on the external per-
turbations and on the class of objects (plants) considered. Hence, if we
desire to suggest any characteristic, which is a general one for some groups
of objects, we must consider a class of objects and formulate a problem
for this class. So, in [8] an approach for �nding the lower bound for the
optimal convergence rate of adaptive strategies was suggested for the class
of linear multidimensional stationary plants without moving average terms
in the input, considering a simple performance functional which contains
only the losses of the output signal.

This paper is devoted to the generalization of the approach given in [8],
for the class of linear controllable systems with moving average terms in
the input and with a general criterion that includes losses of the output
and input signals. The paper is organized as follows:

after the notation, a description of the class of controllable objects as
well as the statement of the problem on the computation of the lower
bound of the converge rate are presented;

the second part contains the main results which consist on two state-
ments concerning some information inequality for determining the
limiting boundary value for the rate of adaptation of any adaptive
control strategy belonging to some class;

the next section is devoted to the consideration of two partial cases
which are important in practical applications: regulation and tracking
problems;

the last section deals with three examples for computing information
inequalities in some concrete SISO and MIMO ARX systems;

the conclusions contain some discussion concerning the use of nonlin-
ear identi�cators for achieving of this bound.

2 Description of a Class of Adaptive Control Strate-

gies and Statement of the Problem

Let us consider the following sequences of random variables:

fyng; fung; f�ng
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which are de�ned on the probability space (
;F ; P ) and are connected by
the following recurrent equation

yn = �

NaX
i=1

Aiyn�i +

NbX
j=0

Bjun�j + �n (2.1)

where

fyng (n = 1; 2; � � �) is a sequence of outputs of the system (2.1), yn 2 Rm,
and the initial conditions y0; y�1; � � � ; y1�Na

are �xed vectors;

fung is a sequence of inputs of the system (2.1), un 2 RK ; and the initial
conditions are given by: u0 = u�1 = � � � = u1�Nb

= 0 (for the
simplicity);

f�ng is a sequence of external disturbances of the system ( 2.1), �n 2 Rm

Ai 2 Rm�m (i = 1; � � � ; Na); and Bi 2 Rm�K (i = 0; � � � ; Nb) are constant
matrices describing the system (2.1).

Here we assume that the sequences fyng and fung are observable; i.e.
we can use these values for constructing control strategies.

If we denote
N := Na +Nb

� := [A1 � � �ANa
;B1 � � �BNb

]

zn :=
�
yTn�1 � � � y

T
n�Na;�u

T
n�1 � � � � uTn�Nb

�T
;

then we can rewrite the given ARX (auto-regression with exogenous inputs)
model (2.1) in the standard form:

yn = ��zn +B0un + �n: (2.2)

Consider the following performance index (objective function) J which
includes losses in the control and the output of the system (2.1):

J(fung) := lim sup
n!1

1

n

nX
t=1

EfyTt Qyt + uTt Rutg (2.3)

where the matrices Q and R are given.

De�nition 1 Let us say that any sequence of F-measurable Borel func-

tions

un := un(u1; y1; � � � ; un�1; yn�1)
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is an Lp-realizable strategy (p > 1) if for any random trajectory f�ng

such that

lim sup
n!1

1

n

nX
t=1

Efk�tk
p
g <1 (2.4)

the following inequality holds

lim sup
n!1

1

n

nX
t=1

Efkutk
p + kytk

p
g <1: (2.5)

The next lemma gives a lower bound estimation for the performance index
J = J(fung) (2.3).

Lemma 2.1 . Let us assume that:

1. the sequence f�ng of independent random vectors �n is a stationary

random process (in wide sense), i.e.

Ef�ng = 0; Ef�n�
T
n g = D > 0 8n 2 N;

2. the operators �(z�1) of the feedback

�(z�1) := [R+BT
0 QB(z

�1)]�1BT
0 Q[A(z

�1)� I ]

and Ac(z
�1) of the closed loop system de�ned by

Ac(z
�1) :=

�
A(z�1)�B(z�1)�(z�1)

��1
are stable; here:

A(z�1) :=

NaX
i=0

Aiz
�i; A0 := I; B(z�1) :=

NbX
i=0

Biz
�i; z�iyn := yn�i;

3. given matrices Q 2 Rm�m and R 2 RK�K such that

Q = QT
� 0; R = RT > 0:

Then for any ARX model (2.1) and for any Lp-realizable strategy

(p > 2) fung; the following inequality holds

J(fung) = lim inf
n!1

Jn(fung)
a:s:

� J� (2.6)
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where

Jn(fung) :=
1

n

nX
t=1

( yTt Q yt + uTt R ut)

and

J� := Tr(QDy�) + Tr(RDu�)

Dy� =
1

2�

�Z
��

Ac(e
i!)D AT

c (e
�i!)d!

Du� =
1

2�

�Z
��

�(ei!)Ac(e
i!)D

�
�(e�i!)Ac(e

�i!)
�T

d!

correspond to the locally optimal strategy fu�ng de�ned in the following way:

u�n := argmin
un2LP

Jn(un)

Jn(un) := EfyTnQyn + uTnRun=Fn�1g (2.7)

where

Fn�1 := �(u1; �1; : : : ; un�1; �n�1)

is the �-algebra generated by (u1; �1; : : : ; un�1; �n�1):

Proof: From the equation

rJn(u
�
n)

a:s:
= 0;

we obtain:

[R+BT
0 QB(z

�1)] u�n = BT
0 Q[A(z

�1)� I ] yn

or
u�n = �(z�1) yn: (2.8)

Substituting this relation in equation (2.1), we derive that:

y�n := yn =
�
A(z�1)�B(z�1)�(z�1)

��1
�n +O (�n); j�j < 1 (2.9)

u�n = �(z�1)
�
A(z�1)�B(z�1)�(z�1)

��1
�n +O (�n): (2.10)

The result of this lemma follows from these identities and Parseval's theo-
rem [12]. The lemma is proved. 2
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Comment 1: The loss of function, which has been investigated in [6] for
two types of concrete adaptive strategies, has the following form:

lim sup
n!1

1

n

nX
t=1

Efkyt � y�t k
2
=Ft�1g

and hence, use the operation of conditional mathematical expectation. It
has been shown that this criterion reaches a minimal possible value 
2; but
the convergence rate has not been studied. Criterion (2.6), considered here,
does not use any averaging on the sample space 
, in comparison with the
corresponding functional in other publications [1]-[6], [8].

Comment 2: Condition 2) of the stability of the operator �
�
z�1
�
practi-

cally presents some generalization of \the minimal phase property" for the
considered class of systems as for R = 0; this condition is equivalent to the
stability of the operator B

�
z�1
�
:

De�nition 2 A sequence fung is called an almost surely asymptoti-

cally optimal Lp-realizable strategy if it is an Lp-realizable strategy

and

lim sup
n!1

Jn (fung)
a:s:
= lim sup

n!1
Jn (fu

�
ng) = J�:

Hereafter we will denote by U�p (�) the set of all almost surely asymptoti-

cally optimal Lp-realizable strategies fung.

Comment 3:

Notice that the Lp-realizable optimal strategy fu
�
ng, de�ned in (2.8), is

an almost surely asymptotically optimal Lp-realizable strategy, i.e.

fu�ng 2 U�p (�) :

Lemma 1 gives the possibility to formulate the following problem.

Statement of the problem:

For any realizable strategy fung 2U
�
p (�) ; estimate the sharp (reach-

able) lower bound of the value of a possible convergence rate of the trajec-

tories fyn; ung to the optimal trajectories fy�n; u
�
ng which use information

on parameters of the controlled system.

This bound presents some generalization of the well-known Cramer-Rao
inequality in statistics [13]:

E
n
kcn � c�k

2
o
�

tr
�
I�1(q)

	
n

+ o(
1

n2
)

where cn is any \regular" estimation of the vector c�; which uses only
available information , i.e.

cn = cn(y1;:::; yn�1):
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The random variables (y1;:::; yn) are suggested to be distributed with a
regular density p(y1;:::; yn; c

�):

0 < I(q) = E
�
r ln p(yn; c

�)rT ln p(yn; c
�)
	
<1:

Here I(q) is the Fisher information matrix of a single independent measure-
ment. For the nonstationary case (when unknown parameters c�t change in
time) such inequality can be rewritten in "a more general form" :

lim inf
n ! 1

1

ln(n)

nX
t=1

E
n
kct � c�t k

2
P

o
� tr

�
PI�1(q)

	
; 0 � P = P T :

The next section states such type of inequalities for adaptive asymptotically
optimal control strategies fu�ng 2 U�p (�) for the class of ARX models.

3 General Information Inequality

This section presents two main theorems concerning the estimation of lower
bounds for the performance index (2.3). The second theorem is a particular
case of the �rst one for the special choice of the free vector-parameter h.

Theorem 1 Let us assume that

1. �n (n = 1; 2 : : :) are independent, identically distributed random vari-

ables with

Ef�ng = 0; Ef�n�
T
n g = D > 0 8n 2 N

and with a piecewise continuous di�erentiable density q(x) and �nite

non singular and bounded Fisher information matrix I(q), i.e.

0 < I(q) =

Z
rq(x)rT q(x)

q(x)
dx <1;

Z
krq(x)k

q(x)

2

x2dx <1:

2. A dynamic system described by equation (2.1) is controllable by any

almost surely asymptotically optimal L4-realizable strategy

fung 2 U�4 (�)

where � is an open and convex set, � � Rm�(Nam+NbK) and � 2 �.

Then for any vector

h 2 Rm+K ; h 6= 0; h =

�
h1
h2

�
; h1 2 Rm; h2 2 RK
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such that

0 < G := hT1 I
�1(q)h1Nam+ �T (h2) I

�1(q)� (h2)Nbmin(m;K)

the following inequality holds:

lim inf
n ! 1

sup
�2�

1

ln(n)

nX
t=1

E

�
< P 1=2

�
yn � y�n
un � u�n

�
; h >2

�
�

H2

G
(3.1)

where

0 � P = P T
2 R(m+K)�(m+K)

is some given matrix, and

H := hT�I�1(q)
�
h1NaTr

n
D1=2D

�1=2
y�

o
+ � (h2)NbTr

n
D1=2UD

�1=2
u� �

o�

� := P 1=2

�
B0

IK�K

� �
BT
0 QB0 +R

��1
BT
0 Q

U := f�i;jg i = 1; : : : ;m; j = 1; : : : ;K; �i;j - Kronecker symbol

� :=
1

2�i

I
kqk=1

�(q) [A(q)�B(q)�(q)]
�1

qNa�1dq

�T
�
a1; : : : ; aK

�
:=

( �
a1; : : : aK ; 0; : : : ; 0

�T�
a1; : : : ; am

�T K < m

K � m
:

Proof: We separate (for more clarity) this proof into several intermediate
steps (statements).

Without lost of generality, we can consider � = V (�0; r) de�ned by the
following way:

V (�0; r) :=
n
� 2 Rm�(Nam+NbK)

j k � � �0k < r
o

for some positive constant r > 0. De�ne also

b#n := �
[a;b]

��
P 1=2

�
yTn

...uTn

�
; h

��

where �
[a;b]

denote the projection operator on the real interval [a; b]

a := h��0 zn; hi � r k�hk kznk ; b := h��0 zn; hi+ r k�hk kznk

and
"n := b#n � h�� zn; hi :

8
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Then we derive ����
�
P 1=2

�
yTn

...uTn

�
; h

�
� h�� zn; hi

���� =
=
���b#n � h�� zn; hi

���+ inf
x2[a;b]

����x�
�
P 1=2

�
yTn

...uTn

�
; h

����� �
�

���b#n � h�� zn; hi
��� = "n:

Hence

E

(�
P 1=2

�
yn � y�n
un � u�n

�
; h

�2
)
� E

�
"2n
	
: (3.2)

Statement 1 Consider the function �n

�n : Rm�(Nam+NbK)
! Rm�(Nam+NbK)

which is de�ned for any � 2 Rm�(Nam+NbK) as follows:

�n (�) = Ef"nWng

Wn := [Wn
1 ; : : : ;W

n
N ] ; Wn

i := �ih�
nT
i Ci (3.3)

where matrices �i 2 Rm�(m+K), Ci 2 Rm�mi are de�ned as

�i :=

8<
:

I�1:(q)
h
Im�m

... 0

i
I�1:(q)

h
0

... U

i i = 1; : : : ; Na

i = Na + 1; : : : ; Na +Nb

Ci :=

(
D�1=2D

�1=2
y�

D�1=2UD
�1=2
u�

i = 1; : : : ; Na

i = Na + 1; : : : ; Na +Nb

�ni := yn�i + � zn�i �B0un�i

(which coincide with �n�i if n > i).
Then for some positive constant k1; the following inequality holds:

div�n(�) +

NX
i=1

hT��ihE
�
�nTi Ci z

n
i

	

� k1

NX
i=1

E1=2
�
"2n
	
E1=2

(
NX
i=1



 zn�ii



2)+

+

NX
i=1

E1=2
�
"2n
	
E1=2

n�
Tr
�
Wn

i
TGn

i

��2o
: (3.4)
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Proof of statement 1: Consider the joint density of �1; ::::; �n

Qn = Qn (�; y1; ::::; yn) :=

nY
t=1

q
�
�t0
�
:

De�ne

mi :=

�
m i = 1; :::; Na

K i = Na + 1; :::; Na +Nb

and calculate div�n(�)

div�n(�) =

NX
i=1

mX
j=1

miX
k=1

@

@�ij k

Z



"n (W
n
i )jk Qn

nY
t=1

dyt

=

NX
i=1

mX
j=1

miX
k=1

Ef�(hT�)j (z
n
i )k (W

n
i )jk +

+"n((�ih)j ([Ci]j k

�
zn�ii

�
k
+ (Wn

i )jk (G
n
i )jk)g

where

Gn
i :=

nX
t=1

rln(xt) z
t T
i (3.5)

xt := yt + � zt �B0ut

rln(xt) := rln(x) jx=xt :

So, we obtain

div�n(�) +

NX
i=1

hT��ihE
�
�Tn�iC

n
i zni

	
=

NX
i=1

E

(
"n

 
NX
i=1

hT�iC
T
i z

n�i
i + Tr

�
Wn

i
TGn

i

�!)
:

Then (3.4) follows from this relation if we apply the Cauchy-Bounia-
kowsky inequality to the last term. 2

Let f�ng be any sequence of functions such that

�n : V (�0; r)! R:

De�ne now the averaging operator EV ;n as follows:

EV ;n f�ng :=
1

n

nX
t=n1

1

vol(V (�0; r))

Z
V (�0;r)

E f�t(�)g dv

10
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n � n1; n1 := 1 + 2N:

Dividing (3.4) by n and then applying the operator EV ;n to both sides
of this inequality, we obtain

1

vol(V (�0; r))

Z
V (�0;r)

1

n

nX
t=n1

1

t
div�t(�)dv+

+
1

n

nX
t=n1

1

t

NX
i=1

hT��ihE
�
�tTi Ci z

t
i

	
�

� E
1=2

V ;n

�
"2n
	 

k1E
1=2

V;n

(
1

n2

2NX
i=1

k zni k
2

)
+

+E
1=2

V;n

(
1

n2

NX
i=1

Tr
�
Wn

i
TGn

i

�2)!
: (3.6)

We will try now to investigate the behavior of the term

E
1=2

V ;n

(
1

n2

NX
i=1

Tr
�
Wn

i
TGn

i

�2)
:

Statement 2: Let 
 > 0 and

	(j; s; i; t) := hT�Tj r ln q(xs)r
T ln q(xt)�ih 2 R1:

Then there exists a positive constant k3 such that

E
1=2

V ;n

(
1

n2

NX
i=1

Tr
�
WnT

i Gn
i

�2)
�

�
1

n

nX
t=n1

1

t2
[(1 + 
)

NX
i=1

t�N�1X
k=1

E f	(i; k; i; k)gEV

�
zk T
i CT

i �
t
i �

tT
i Ciz

k
i

	

+ (1 + 
�1)k3 sup
l2N

supEV

n
kzlk

2
o
]1=2 (3.7)

where

EV fXg :=
1

vol(V (�0; r))

Z
V (�0;r)

X(�)dv:

Proof of statement 2: From the de�nition of Gn
i it follows that

Gn
i = Gn�N�1

i +

nX
t=n�N+1

rln(x) jx=xt zt Ti :

11
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Applying now the inequality

(a+ b)2 � (1 + 
)a2 + (1 + 
�1)b2; 8 
 > 0; (3.8)

we obtain 
NX
i=1

TrWn
i
TGn

i

!2

� (1 + 
)

 
NX
i=1

TrWn
i
TGn�N�1

i

!2

+

+ (1 + 
�1)

 
NX
i=1

nX
t=n�N

TrWn
i
T
rln(x) zt Ti

!2

: (3.9)

Taking into account that

 
NX
i=1

TrWn
i
TGn�N�1

i

!2

=

 
NX
i=1

n�N�1X
t=1

TrWn
i
T
rln(xt) z

t T
i

!2

=

NX
i=1

n�N�1X
t=1

NX
j=1

n�N�1X
s=1

fzt Tj CT
j �

n
j h

T�Tj r ln q(xs)r
T ln q(xt)�ih�

nT
i Ciz

t
ig

and using the de�nition of 	(i; t; i; t) :

E f	(i; t; i; t)g = hT�Ti I(q)�ih;

we obtain

E

�
NP
i=1

Tr
�
WnT

i Gn�N�1
i

�2�
=

=
NP
i=1

n�N�1P
t=1

E f	(i; t; i; t)gE
�
zt Ti CT

i �
n
i �

nT
i Ciz

t
i

	
and hence the following inequality is ful�lled:

E

8<
:
 

NX
i=1

nX
t=n�N

TrWnT
i rln(xt) z

t T
i

!2
9=
; � k2

NX
i=1

nX
t=n�N

E
n

 zti 

2o

for some positive constant k2: Then (3.7) immediately follows from these
relations.

Statement 3. For each t de�ne the variable vt as follows

vt :=
(1 + 
)

t2

NX
i=1

t�N�1X
k=1

E f	(i; k; i; k)gEV

�
zk T
i CT

i �
t
i �

tT
i Ciz

k
i

	
: (3.10)
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Then
a) there exist two positive constants k4 and k5 such that

1

n

nX
t=n1

1

t

NX
i=1

hT��ihE
�
�tTi Ci z

t
i

	
�

�

 
sup

�2V (�0;r)

En

�
"2n
	!1=2 

1

n

nX
t=n1

vt

!1=2

+

+

 
sup

�2V (0;r)

EV;n

�
"2n
	!1=2

 
k4

n1=2
+ (2 + 
�1)k5EV;n

(
1

n2

2NX
i=1

k zni k
2

)!
(3.11)

where

En f�ng :=
1

n

nX
t=n1

E f�t(�)g :

b) The following presentation holds:

lim
n!1

tvt = (1+
)
�
hT1 I

�1(q)h1Nam+ �T (h2) I
�1(q)� (h2)Nbmin(m;K)

�
(3.12)

Proof of statement 3.

a) Using the de�nitions (3.3), (3.5), (3.10) and applying the inequalities
(3.8) and (3.9), we derive

E
1=2

V ;n

(
1

n2

NX
i=1

Tr
�
WnT

i Gn
i

�2)
�

�

 
1

n

nX
t=n1

vt + (1 + 
�1)k3EV;n

(
1

n2

2NX
i=1

k zni k
2

)!1=2

and hence
1

vol(V (�0; r))

Z
V (�0;r)

1

n

nX
t=n1

1

t
div�n(�)dv+

1

n

nX
t=n1

1

t

NX
i=1

hT��ihE
�
�tTi Ci z

t
i

	

� E
1=2

V ;n

�
"2n
	
k1E

1=2

V;n

(
1

n2

2NX
i=1

k zni k
2

)
+
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+E
1=2

V ;n

�
"2n
	 1

n

nX
t=n1

vt + (1 + 
�1)k3EV;n

(
1

n2

2NX
i=1

k zni k
2

)!1=2

:

Applying the Gauss-Ostrogradskii theorem, which states that

1

vol(V (�o; r))

Z
V (�0;r)

div

 
1

n

nX
t=n1

1

t
�t(�)

!
dv =

=

Z
@V (�0;r)

<
� � �0

r
;
1

n

nX
t=n1

1

t
�t(�) > dv � �

Z
@V (�0;r)

1

n

nX
t=n1

1

t
k �t(�)k dv;

and taking into account the inequalities

k�t(�)k
2
� E

�
"2t
	
E
n
k Wtk

2
o
� k4E

�
"2t
	

which are true for some positive constant k4; we obtain the estimation

1

n

nX
t=n1

1

t
k �t(�)k �

1

n

nX
t=n1

1

t
k4E

1=2
�
"
2

t

	
� k4n

1=2

�
sup

�2V (�0;r)

En

�
"
2

n

	�1=2

From these inequalities, taking into account Jensen's inequality, we �-
nally derive (3.11).

b) Using the inequality from a) we can conclude that

 
1

n

nX
t=n1

vt

!1=2

sup
�2V (0;r)

E
1=2

n

�
"2n
	
+

+

 
k4

n1=2
+ (2 + 
�1)k5EV;n

(
1

n2

2NX
i=1

k zn�ik
2

)!
sup

�2V (0;r)

E
1=2

n

�
"2n
	
�

�
1

n

nX
t=n1

1

t

NaX
i=1

hT��ihTr(E
n
D1=2D

�1=2
y�

o
)+

+
1

n

nX
t=n1

1

t

NX
i=Na+1

hT��ihTr(D
1=2UD

�1=2
u� E

�
ut�i+Na

�Tt�i
	
):

Also we have

tvt :=
(1 + 
)

t

NaX
i=1

t�N�1X
k=1

hT1 I
�1(q)h1EV

�
zk T
i CT

i DCiz
k
i

	
+
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+
(1 + 
)

t

NX
i=1

t�N�1X
k=1

E f	(i; k; i; k)gEV

�
zk T
i CT

i �
t
i �

tT
i Ciz

k
i

	
:

Calculating the limit in the last expression, we obtain (3.12).
Now we return to the proof of the main theorem. If we take into account

the following facts:
1) if

lim
n!1

an = a;

then (T�oeplitz's lemma)

lim
n!1

1

lnn

nX
t=1

1

t
at = a:

2) If
i = Na + 1; : : : ; Na +Nb;

then
E
�
�tTi Ci z

t
i

	
= E

n
D�1=2UD

�1=2
u� �D

o
where

� =
1

2�i

I
k qk=1

�(q) [A(q)�B(q)�(q)]
�1

qNa�1dq:

Taking into account (3.2), (3.4), (3.11), (3.12), we �nally obtain (for any
r > 0)

lim inf
n ! 1

sup
�2�

En

�
"
2

n

	
�

�

h
hT�I�1(q)

�
h1NaTrE

n
D1=2D

�1=2

y�

o
+ � (h2)NbTrE

n
D1=2UD

�1=2

u� �

o�i
2

(1 + 
) (hT
1
I�1(q)h1Nam+ �T (h2) I�1(q)� (h2)Nbmin(m;K))

The main result follows from this inequality, if we consider that 
 is any
positive number. 2

Theorem 2 Under the assumptions of theorem 1 the following inequality

holds:

lim inf
n ! 1

sup
�2�

1

lnn

nX
t=1

E

(



 yn � y�n
un � u�n






2

P�

)
� �1 +�2 (3.13)

where

�1 :=
Na

m

NaX
i=1

��
�I�1(q)

�
Im�m

...0

��
ii

�2

Tr2
n
D1=2D

�1=2
y�

o
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�2 :=
Nb

min(m;K)

Na+min(m;K)X
i=Na+1

��
�I�1(q)

�
0
...U

��
ii

�2

Tr
2

n
D
1=2

UD
�1=2

u� �
o

P
� := P

1=2�P 1=2
; � :=

m+min(m;K)X
i=1

eie
T
i

and feig
m+K
i=1 represents the canonical base of Rm+K :

Proof: Applying sequentially the result of theorem 1 to the vector

h =
��
I�1(q)

�
ii

�1=2
ei; i = 1; :::;m+min(m;K)

h =
��
I�1(q)

�
i�m;i�m

�1=2
ei; i = m+ 1; :::;m+min(m;K)

and adding these inequalities, we obtain (3.13). 2

Comment 4:

Note that the relation (3.13) depends on the a priori constraint on
� 2 V (�0; r) and hence, depends on the radius r > 0 of \a priori knowledge

." Results, given in [6], are not dependent on a priori information on the
parameters of the system. They are stated for any concrete value �0 (which
is �xed, but is not known). Making r ! 0 in the inequality (3.13), we have:

V (�0; r)! �0;

i.e., we could be able to estimate the convergence rate of the procedure,
suggested in [6], as a partial case of the main inequality.

Using the inequality (3.13) we can suggest the following de�nition of
\the convergence rate" notion.

De�nition 3 For the class of adaptive control problems (under assump-

tions of the theorem 1) we can call the value

Cr :=

"
lim inf
n ! 1

sup
�2�

1

lnn

nX
t=1

E

(



 yn � y�n
un � u�n






2

P

)#�1

the convergence rate of the corresponding adaptive asymptotically opti-

mal L4 -realizable control strategy fung 2 U�4 (�).

De�nition 4 The quantity

C�r = C�r (Q;R; P ) := [�]
�1

is called to be the maximal possible convergence rate in the class

of the problems under consideration. If there exists some adaptive strategy

fu�ng 2 U�4 (�) such that C�r = Cr; then the information inequality, written

in the form

C�r � Cr

is said to be sharp.
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4 Two Partial Cases

Using the previous theorem we can derive the corresponding information
inequalities for two very important (from the practical point of view) prob-
lems of the adaptive control: regulation and tracking problems.

4.1 Regulation problem for ARX models in L4, with-
out delay in control action (Nb = 0)

Consider the system (2.1), then try to �nd the strategy fu�ng 2 U�4 (�)
such that

J(fung) = lim sup
n!1

1

n

nX
t=1

E
n
kynk

2
o

reaches its minimum value.
It can be shown that the optimal trajectory fy�ng is precisely equal to

f�ng. Then the main theorem applied to this problem gives the lower bound
for the convergence rate of the adaptive optimal control strategies without
complete information on true values of parameters. Under assumptions of
the main theorem we obtain [8]:

Corollary 1

lim inf
n ! 1

sup
�2�

1

lnn

nX
t=1

�
E
n
kynk

2
o
� Tr(D)

�
� NmTr(I�1(q)): (4.1)

Proof: This inequality follows directly from (3.1), if we accept

P =

�
Im�m 0
0 0

�
; Q = I; B0 = I; Nb = 0 (i:e: Na = N):

2

4.2 Tracking problem for ARX models in L4

Consider again the system (2.1). Find the strategy fu�ng 2 U�4 (�) ; which
minimizes the criterion:

J(fung) := lim sup
n!1

1

n

nX
t=1

E
n
kynk

2
Q + kunk

2
R

o
:

The optimal trajectories fy�ng and fu
�
ng satisfy (2.9) and (2.10) respec-

tively. Considering the \tracking problem" for the optimal trajectories fy�ng
and fu�ng and applying the basic information inequality (3.1), we obtain:

17
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Corollary 2

lim inf
n ! 1

sup
�2�

1

lnn

nX
t=1

E
n
kyn � y�nk

2
Q + kun � u�nk

2
R

o
� �1 +�2 (4.2)

�1 :=
Na

m
Tr2

n
D1=2D

�1=2
y�

o mX
i=1

h
Q1=2B0

�
BT
0 QB0 +R

��1
BT
0 QI

�1(q)
i2
ii

�2 :=
NbTr

2
n
D1=2D

�1=2
u� �

o
min(m;K)

mX
i=1

h
R1=2B0

�
BT
0 QB0 +R

��1
BT
0 QI

�1(q)
i2
ii

Proof: This inequality follows directly from (3.1) if we accept

m = K; P =

�
Q 0
0 R

�

and apply the formula 3.13. 2

5 Examples

The next examples illustrate the approach suggested above for the estima-
tion of the maximum possible adaptation rate for the di�erent models.

1. Regulation problem for an ARX model in L4 (SISO-case).

Consider the system described by the following di�erence equation:

yn = 1:7yn�1 � 0:7yn�2 + un + 0:5un�1 + �n

where f�ng is a centered random sequence with independent and nor-
mal distributed values with variance

D = Ef�2ng = �2� :

The optimal control strategy fu�ng 2 U�4 (�) which minimizes the
criterion

J(fung) := lim sup
n!1

1

n

nX
t=1

E
n
kynk

2
o

can be calculated in accordance to expression (2.10) and is equal to:

u�n = �0:5u�n�1 � 1:7yn�1 + 0:7yn�2;

furthermore, y�n = �n: Thus, applying the formula (4.1) for the Gaus-
sian case, when

Dy� = D = I�1(q) = �2�

18
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Na = 2; K = m = 1; Nb = 1; B0 = 1; Q = 1; R = 0;

we obtain the following inequality and

lim inf
n ! 1

sup
�2�

1

ln(n)

nX
t=1

�
E
n
jynj

2
o
� �2�

�
� 2�2�

which is true for any adaptive strategy fung 2 U�4 (�).

2. Tracking problem for ARX models in L4 (SISO-case).

Consider the system given by

yn = �2yn�1 + yn�2 + un � 2:5un�1 + �n:

For

Q := 1; R := 1; P :=

�
1 0
0 1

�
; D = 1

from lemma 1 it follows that:

�(z�1) =
2z�2 � 4z�1

5z�1 � 4

Ac(z
�1) =

5z�1 � 4

2z�2 + z�1 � 4

�(z�1)Ac(z
�1) =

2z�2 � 4z�1

2z�2 + z�1 � 4

u�n = 1:25un�1 + yn�1 � 0:5yn�2

Dy� = 2:33:: Du� = 1:33:: � = �0:25::

E
n
jyn � y�nj

2
Q + jun � u�nj

2
R

o
= E

n
jyn � y�nj

2
+ jun � u�nj

2
o
;

J� = 3:66 : : :

and applying inequality (4.2), we obtain the �nal result for R = Q =
1:

lim inf
n ! 1

sup
�2�

1

ln(n)

nX
t=1

E
n
jyn � y�nj

2
+ jun � u�nj

2
o
� 0:9I�1(q):

3. Tracking problem for ARX models in L2 (MIMO-case):

Consider the system

A(z�1)yn = B(z�1)un + �n
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with

A(z�1) :=

�
0:1 + z�1 0:06z�1

�0:2z�1 0:3 + z�1

�

B(z�1) :=

�
1 + 2z�1 1 + 0:6z�1

0:5 + 0:4z�1 1 + 0:3z�1

�
:

Let f�ng be some i.i.d. random process. Let us calculate the control
strategy fu�ng 2 U�4 (�) ; which minimizes

J(fung) := lim sup
n!1

1

n

nX
t=1

E
n
kynk

2
+ kunk

2
o
:

Applying now the result of corollary (4.2) for R = Q = I; we derive
the following information inequality:

lim inf
n ! 1

sup
�2�

1

ln(n)

nX
t=1

E
n
kyn � y�nk

2
+ kun � u�nk

2
o
�

� 0:4149�211+0:3926�11�12+0:0968�212+0:0034�12�22+0:0008�222

where

I�1(p) =

�
�11 �12
�12 �22

�

is the Fisher Information matrix of each random variable �n. Notice
that for the Gaussian processes I�1(p) = D.

6 Concluding Remarks

� This paper suggests an information bound on the convergence rate for
the class of adaptive strategies in the ARX model Control Problem.

� This bound gives an objective estimation of the quality of any
available adaptive algorithm with respect to the optimal control strat-
egy which uses full information about the parameters of a controlled
system. If some considered algorithm reaches this bound it can be
considered as \an e�ective adaptive strategy."

� If not, we can call such procedure \not good," because there exist
some other algorithms, [7] and [8], which are better (\more close" to
the optimal strategy ) than the considered one. In [7] an algorithm
has been described. It contains the nonlinear transformation ' in
the identi�cation part of the adaptive control strategy, in order to
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reach the optimal converge rate. This identi�cation algorithm for the
system under consideration given by the equation

yn = �

NaX
i=1

aiyn�i + un + �n

has the following structure:

b�n = ��

nb�n�1 + �nzn' ("n)
o

(6.1)

where

�
T := [a1; :::; aNa] ; z

T
n := [�yn�1; :::;�yn�Na ] ; "n := yn � b�Tn�1zn � un

and �� is the projection operator to a given convex set � of a priori
values of the unknown parameters.

� From the proof of the Information Inequality derived above (see (3.2),
we can conclude that for any concrete adaptive strategy the adapta-
tion rate depends on the applied identi�cation algorithm:

if the estimates, generated by this algorithm, are \asymptotically

e�ective," then the corresponding adaptation process is \e�ective"

too.

Such asymptotically e�ective identi�cation procedure can be given in
the form (6.1) with the nonlinear transformation of a residual [10]:

' (z) = �I�1 (q�)r ln q� (z) :

So, only for Gaussian noise distribution can we use a linear identi�cation
algorithm with ' (z) = z:
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