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Abstract

We consider semi{discrete approximations of optimal con-

trol problems for linear distributed parameter dynamical systems,

with cost functionals in Bolza or in�nite horizon form. We give

conditions for the convergence of approximate value functions and

prove that the approximate optimal controls are a minimizing se-

quence for the continuous problem. We also show some concrete

applications.
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1 Introduction

The theory of optimal control of distributed parameter dynamical systems
has been mainly developed for linear evolution equations of the form:(

y
0(t) = Ay(t) +Bu(t)

y(0) = x
(1:1)

posed in some Hilbert spaceH , and mostly for quadratic costs. The numer-
ical approximation has been studied in the framework of classical optimal
control (i.e., by means of Pontryagin's Maximum Principle). Several au-
thors have proved the convergence of optimal solutions obtained by internal
approximations of the dynamical system. The case of a Galerkin spectral
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R. FERRETTI

scheme is treated in [15], whereas more general results may be found in [11],
[14] (see also [3] for parabolic evolution equations and [18] for boundary
control problems).

The basic technique considered in these works to discretize a control
problem in some Hilbert space H requires the approximation of equation
(1.1) by means of a sequence of ODE systems in suitable subspacesHn � H

of increasing dimension. We write here this (semi{discrete) approximation
as: (

y
0
n(t) = Anyn(t) +Bnun(t)

yn(0) = xn

: (1:1n)

The typical endpoint of this analysis is the convergence of solutions ob-
tained by approximate Riccati feedback operators. The next step for nu-
merical computation is to solve the new control problem posed in Rn by a
numerical scheme for �nite{dimensional problems.

On the other hand, in recent years there has been a great development in
the theory of Hamilton{Jacobi (HJ) equations in Hilbert spaces (see [BD],
[5]). This is partly motivated by the use of more general cost functionals.
The Galerkin technique for reducing the problem to �nite dimension is
used in a Dynamic Programming framework in [2] (chapter 3) for the case
of convex hamiltonians and bounded linear terms, and in [5] (part IV), for
general form HJ equations with unbounded linear terms.

The aim of this paper is to extend the existing approximation results to
problems with non{quadratic cost. Working with Dynamic Programming
techniques, we will give a general convergence result (in terms of approx-
imate value functions) for this discretization procedure and prove explicit
error estimates, provided the dynamical system satis�es some proper ap-
proximability assumptions. We will also show that the convergence of ap-
proximate value functions ensures the convergence of approximate optimal
solutions obtained by means of open{loop techniques. This result may be
seen as a sort of abstract \convergence" for the semi{discretized control
problems.

It is worth mentioning that other approximation results have been ob-
tained in [1], [20], [17] via a completely di�erent approach, based on time
discretization, but they seem not to be of direct use for computational
purposes.

The outline of the paper is the following. Section 2 sets the basic as-
sumptions about the dynamical system and recalls the known results about
semi{discrete approximations. Sections 3 and 4 give the main theorems
of existence, uniqueness and convergence of discrete value functions, for
respectively the in�nite horizon and the �nite horizon problem, whereas
section 5 treats the convergence of approximate optimal solutions. Lastly,
in section 6 we discuss the problems related to this approach, and give

2



APPROXIMATION OF CONTROL PROBLEMS IN HILBERT SPACES

some concrete application.

2 The Evolution Equation and Its Approximation

Let us consider the dynamical system described by (1.1), where for any t,
y(t), x belong to a separable real Hilbert space H , A is a linear operator
mapping D(A) � H into H , the control u(t) is a real function from [0;+1[
into a closed bounded subset U of a (possibly �nite{dimensional) separable
real Hilbert space V , and B is a linear bounded operator mapping U � V

into H .
For the sake of clarity, in the sequel the solution of (1.1) will be usually

denoted by y(x; t; u); < �; � > and k � k will denote respectively the scalar
product and the related norm in H , whereas L(V;H) will denote the space
of linear bounded operators mapping V into H , and L(H) = L(H;H).

We assume that:
u 2 U = L

1([0;+1[;U): (h1a)

A generates a strongly continuous semigroup T (t) = e
At
: (h1b)

There exist two real constants K 0, �0 such that keAtkL(H) � K
0
e
�0t

(h1c)
where U denotes the set of admissible controls. Under these assumptions,
it is well known (see [19]) that (1.1) admits a unique mild solution y(t) 2
C([0;+1[;H), given by:

y(t) = e
At
x+

Z t

0

e
A(t�s)

Bu(s)ds: (2:1)

We will consider now a �nite{dimensional approximation of (1.1) by
means of the classical method of semi{discretization (see [22], [12]), follow-
ing the convergence theory due to P. Lax. Let Hn, Vn be two sequences of
vector spaces, and Pn, �n be two sequences of projections, and assume:

Hn � H ; dim Hn = kn (h2a)

Vn � V ; dim Vn = hn (h2b)

Pn : H ! Hn and �n : V ! Vn are linear mappings such that:

lim
n!1

kx� Pnxk = 0 for any x 2 H (h2c)

lim
n!1

ku��nukV = 0 for any u 2 V (h2d)

xn = Pnxn for any xn 2 Hn, un = �nun for any un 2 Vn (h2e)

�nU � U (h2f)
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with kn; hn ! 1. Assumption (h2f) is a somewhat less trivial require-
ment, but it is satis�ed, for instance, if U is a closed ball and �n is the
orthogonal projection into Vn. If V has �nite dimension, we will set Vn � V ,
hn � dim V and �n � I (identity operator).

On the other hand, we assume there exist two sequences of approxi-
mating operators:

An : Hn ! Hn

Bn : Vn ! Hn

and consider the (semi{discretized) approximation of (1.1) given by (1:1n),
where for any t, yn(t) 2 Hn, xn 2 Hn, un 2 Un = L

1([0;+1[;Un), and:

un(t) = �nu(t)

xn = Pnx:

Here and in the sequel Un := U \ Vn is the discretization of U obtained
imposing the constraints of U on the elements of Vn.

Approximation (1:1n) is assumed to be consistent. In other words, we
assume, in addition to (h2), that there exist Û dense in L1([0;+1[;V ), Ĥ
dense in H such that, if (x; u) 2 Ĥ � Û , then:

lim
n!1

kAy(x; t; u)�AnPny(x; t; u)k = 0 (h3a)

lim
n!1

kBu(t)�Bn�nu(t)k = 0: (h3b)

It is easy to check that (h3b) is a consequence of (h2c; d) if Bn := PnB;
therefore, we will usually refer to this de�nition of Bn in the sequel.

Before recalling the main result about consistent semi{discrete approx-
imations, we give some de�nitions.

Approximation scheme (1:1n) is said to be stable if there exists a locally
bounded function K(t) independent of n such that:

keAnPntkL(H) � K(t):

Approximation scheme (1:1n) is said to be convergent if, for any u 2
L
1([0;+1[;V ), x 2 H and t > 0:

lim
n!1

ky(x; t; u)� yn(Pnx; t;�nu)k = 0: (2:2)

We will need in the sequel to assume a sort of \uniform convergence"
of (1:1n). We will possibly require that

lim
n!1

sup
un2Un

ky(x; t; un)� yn(Pnx; t; un)k = 0: (2:3)
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APPROXIMATION OF CONTROL PROBLEMS IN HILBERT SPACES

The following classical theorem gives a characterization of convergent
schemes (see [12], section 4, and the references therein):

Equivalence Theorem Assume (h1){(h3). Then approximation (1:1n)
is convergent if and only if it is stable.

We are also concerned in su�cient conditions for (2.3) to be satis�ed.
A partial answer is given by the following proposition.

Proposition 2.1 Assume (h1){(h3). If (1:1n) is convergent and if one of

the following conditions is satis�ed:

i) There exists a subspace S � H such that, if u 2 U , then Bu 2 BS(R) :=
fx 2 S : kxkS � Rg, and

�n(t) = sup
x2BS(R)



eAtx� e
AntPnx



! 0; (2:4)

ii) V has �nite dimension;

then (2:3) is satis�ed.

Proof: We can express y(x; t; un), yn(Pnx; t; un) as:

y(x; t; un) = e
At
x+

Z t

0

e
A(t�s)

Bun(s)ds;

yn(Pnx; t; un) = e
AntPnx+

Z t

0

e
An(t�s)PnBun(s)ds:

Now, taking the di�erence, with simple calculations we obtain:

ky(t)� yn(t)k �

� keAtx� e
AntPnxk+

Z t

0

h


eA(t�s)Bun(s)� e
An(t�s)PnBun(s)




i ds �
� keAtx� e

AntPnxk+

Z t

0

�n(t� s)ds:

Taking into account the convergence of (1:1n) and the trivial bound �n(t) �
K
0
e
�0t +K(t), applying the dominated convergence theorem we get (2.3).
If V = R

M , then the terms Bu(t), Bnu(t) read:

Bu(t) =
X
i

biui(t)

Bnu(t) =
X
i

(Pnbi)ui(t)
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where ui is the i{th component of the vector u, and the bi 2 H are given.
Then, setting Mu = supu kukV , we have:

ky(t)� yn(t)k �

� keAtx� e
AntPnxk+

+

Z t

0

"




eA(t�s)
X
i

biui(s)� e
An(t�s)

X
i

(Pnbi)ui(s)







#
ds �

� keAtx� e
AntPnxk+Mu

Z t

0

X
i




eA(t�s)bi � e
An(t�s)(Pnbi)




 ds:
Since all the norms being integrated are bounded and converge to zero, we
obtain again (2.3).

Remark Usual choices for the spaces Hn, Vn include spaces of �nite
elements, orthogonal polynomials, sinusoidal functions, with the operators
An and Bn constructed by variational or collocation techniques. We will
give in section 6 some concrete examples of semi{discrete approximations,
along with explicit error estimates.

3 The In�nite Horizon Problem

We state our �rst optimal control problem: Given the evolution equation
(1:1), �nd a control u(t) 2 U minimizing the discounted in�nite horizon
cost:

Ji(x; u) :=

Z 1

0

e
��t

g(y(x; t; u); u(t))dt (3:1)

assuming (h1), and:
� > 0 (h4a)

g : H � U ! R

jg(y; u)j �Mg for any y 2 H; u 2 U (h4b)

jg(y1; u1)� g(y2; u2)j � Lg(ky1 � y2k+ ku1 � u2kV )

for any y1; y2 2 H; u1; u2 2 U: (h4c)

The approximate version of this problem is, given the evolution equation
(1:1n), to �nd a control un(t) 2 Un minimizing the cost:

Ji;n(xn; un) :=

Z 1

0

e
��t

g(yn(xn; t; un); un(t))dt (3:2)
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APPROXIMATION OF CONTROL PROBLEMS IN HILBERT SPACES

where xn := Pnx.
To carry out a detailed analysis of the in�nite horizon case, we start by

de�ning in the usual way the value functions for both the original and the
approximate problem:

v(x) := inf
u2U

Ji(x; u)

vn(xn) := inf
un2Un

Ji;n(xn; un):

If optimal controls exist, they will be denoted by

u
� 2 argmin Ji(x; u)

u
�
n 2 argmin Ji;n(Pnx; un)

dropping the dependence on the initial state x.
Let now f ig1�i�kn be a base of the space Hn, f�ig1�i�hn be a base of

the space Vn. With respect to these bases, we may write xn; un as:

xn =
X
i

x
i
 i ; un =

X
j

u
j
�j

and introduce the notations (where (�)t denotes the transpose of a vector):

X = (x1 : : : xn)t ; 	 = ( 1 : : :  n)
t

U = (u1 : : : um)t

(the use of U to denote the vector above should not cause confusions in
this context). With a slightly improper notation, we will identify Hn with
R
kn , Vn with Rhn and write:

vn(xn) = vn(
X
i

x
i
 i) = vn(X)

g(xn; un) = g(
X
i

x
i
 i;

X
j

u
j
�j) = g(X;U):

Finally, the operators An and Bn will be represented by a kn � kn and a
kn � hn matrix, still denoted An and Bn (both depending, in general, on
the kind of discretization chosen for (1:1n)); moreover, we will use the same
notation for both Un � Vn and the corresponding set of Rhn .

We �rst prove the following result of existence and uniqueness:

Proposition 3.1 The approximate value function vn(xn) de�ned above is

the unique solution of the Hamilton{Jacobi equation:

�vn(X) + sup
U2Un

[�(AnX +BnU)
trvn(X)� g(X;U)] = 0 (3:3)
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where X 2 Rkn , U 2 Rhn .

Proof: We note that An may be de�ned on the whole of H by:

Anx := AnPnx

and that this is a bounded operator for any n. Therefore, for all x 2 H ,
the value function of the approximate problem coincides (see [5], [7]) with
the unique viscosity solution in H of the HJ equation:

�vn(x) + sup
un2Un

[� < Anx+Bnun;rvn(x) > �g(x; un)] = 0: (3:4)

Now, if we restrict ourselves to the subspace Hn and refer to the notations
introduced above, we may rewrite (3.4) as:

�vn(X) + sup
U2Un

[� < (AnX +BnU)
t	;rvn(X) > �g(X;U)] = 0

and to give a more explicit form:

< (AnX +BnU)
t	;rvn >= (AnX +BnU)

t

0
B@
<  1;rvn >

...
<  n;rvn >

1
CA =

= (AnX +BnU)
t

0
B@
<  1;  1 > : : : <  1;  n >

...
...

<  n;  1 > : : : <  n;  n >

1
CAD =

= (AnX +BnU)
t
MD (3:5)

where we have set:

M = (mij) = (<  i;  j >)

rvn(X) =
X
i

d
i
 i ; D = (d1 : : : dn)t:

Using (3.5), the �nal form of (3.4) is therefore:

�vn(X) + sup
U2Un

[�(AnX +BnU)
t
MD � g(X;U)] = 0; (3:6)

which coincides with (3.3) sinceMD is the expression of rvn in the canon-
ical base of the dual space H�

n.
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APPROXIMATION OF CONTROL PROBLEMS IN HILBERT SPACES

Remark If we introduce the additional notations:

yn =
X
i

y
i
 i ; Y = (y1 : : : yn)t;

we can reformulate (1:1n) as the following ODE in Rkn :

(
Y
0(t) = AnY (t) +BnU(t)

Y (0) = X
(3:7)

and the value function may be written (with obvious notation) as:

vn(X) = inf
U2Un

Ji;n(X;U) = inf
U2Un

Z 1

0

e
��t

g(Y (X; t; U); U(t))dt: (3:8)

Then, another way of proving Proposition 3.1 is to observe that under
the previous assumptions the value function given by (3.8) is the unique
viscosity solution (see [16], section 8.4) of equation (3.3).

Remark In principle, the function g(xn; un) as de�ned above needs not
to be approximated. However, all the results below may be easily extended
to the case of a sequence of approximating functions gn ! g.

The following theorem gives conditions for the convergence of vn(Pnx)
to v(x).

Theorem 3.2 Assume (h1){(h4) and (2:3). Then, for any x 2 H,

jvn(Pnx)� v(x)j ! 0 as n!1.

Proof: By the de�nition of v(x) and vn(xn), for any x 2 H and " > 0, it
is possible to �nd two "{optimal controls u" 2 U , u"n 2 Un such that:

v(x) � Ji(x; u
") � v(x) + " (3:9)

vn(Pnx) � Ji;n(Pnx; u
"
n) � vn(Pnx) + ": (3:10)

Since u"n is an admissible control for (1.1), one has:

v(x) �

Z 1

0

e
��t

g(y(x; t; u"n); u
"
n(t))dt:

Adding the terms �Ji;n(Pnx; u
"
n), we obtain:

v(x) �

Z 1

0

e
��t[g(y(x; t; u"n); u

"
n(t)) � g(yn(Pnx; t; u

"
n); u

"
n(t))]dt+

9
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+Ji;n(Pnx; u
"
n) �

�

Z 1

0

e
��tmin[Lgky(x; t; u

"
n)� yn(Pnx; t; u

"
n)k; 2Mg]dt+ vn(Pnx) + " �

�

Z 1

0

e
��tmin[Lg sup

un2Un

ky(x; t; un)�yn(Pnx; t; un)k; 2Mg]dt+vn(Pnx)+"

(3:11)
where we have used (h2e), (h4b), (2.3) and (3.10). On the other hand,
since �nu

" is admissible for (1:1n), one has:

vn(Pnx) �

Z 1

0

e
��t

g(yn(Pnx; t;�nu
");�nu

"(t))dt:

Adding the terms �Ji(x; u
") and operating the same way as before:

vn(Pnx) �

Z 1

0

e
��tmin[Lg(kyn(Pnx; t;�nu

")� y(x; t; u")k+

+k�nu
"(t)� u

"(t)k); 2Mg]dt+ v(x) + ": (3:12)

From (3.11), (3.12) we get:

jvn(Pnx) � v(x)j �

Z 1

0

e
��tmin[Lg( sup

un2Un

ky(x; t; un)� yn(Pnx; t; un)k+

+kyn(Pnx; t;�nu
")� y(x; t; u")k+ k�nu

"(t)� u"(t)k); 2Mg]dt+ ": (3:13)

Since the term being integrated is bounded by 2e��tMg and convergent
to zero for n!1, we can use the dominated convergence theorem to show
that for n large enough:

jvn(Pnx) � v(x)j � 2"

which completes the proof.

We turn now to the problem of giving explicit estimates for jvn � vj. To
this end, we prove the following

Lemma 3.3 Let C1, �1, C2, �2 be real constants such that �2 > 0, C2 >

C1 > 0. Then:

Z 1

0

min[C1e
�1t; C2e

��2t]dt �

8>>><
>>>:
�C1
�1

if �1 < 0

C1
�2

�
1 + ln C2

C1

�
if �1 = 0

C1(�1+�2)
�1�2

�
C2
C1

� �1
�1+�2

if �1 > 0.
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Proof: The �rst inequality is trivial since:

min[C1e
�1t; C2e

��2t] � C1e
�1t:

To prove the other two inequalities, let us observe that for �1 � 0:

Z 1

0

min[C1e
�1t; C2e

��2t]dt = C1

Z t0

0

e
�1tdt+ C2

Z 1

t0

e
��2tdt (3:14)

where:

t0 =
1

�1 + �2
ln
C2

C1
(3:15)

is the time such that C1e
�1t0 = C2e

��2t0 (we note that the assumption
C2 > C1 ensures that t0 > 0). Therefore, when �1 = 0, (3.14) reads:

Z 1

0

min[C1; C2e
��2t]dt = C1t0 +

C2

�2
e
��2t0 ;

which proves the second inequality once (3.15) is used for t0. When �1 > 0
we have:Z 1

0

min[C1e
�1t; C2e

��2t]dt =
C1

�1

�
e
�1t0 � 1

�
+
C2

�2
e
��2t0 �

�
C1

�1
e
�1t0 +

C2

�2
e
��2t0 =

C1(�1 + �2)

�1�2
e
�1t0

which proves the third inequality using (3.15).

The following theorem gives the main result about the rate of convergence
of vn to v. Here, E will denote a proper bounded subset of H (we will
discuss the choice of this set in the examples of section 6).

Theorem 3.4 Assume (h1){(h4). Assume moreover that there exist opti-

mal controls u�, u�n. If for any x 2 E there exists a sequence �n 2 R+, and

a constant �00 such that:

ky(x; t; u�)� yn(Pnx; t;�nu
�)k+ ku�(t)��nu

�(t)kV � �ne
�00t (3:16a)

ky(x; t; u�n)� yn(Pnx; t; u
�
n)k � �ne

�00t (3:16b)

with �n ! 0 as n!1, then the following estimate holds:

jv(x) � vn(Pnx)j � !(�n) (3:17)
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where !(�n) is de�ned by:

!(�n) =

8><
>:
C1�n if �

00
< �

C2�n ln
1
�n

if �
00 = �

C3�

�

�00

n if �
00
> �

with positive constants Ci (i = 1; 2; 3) independent of n, and for any x 2 E.

Proof: By the same technique of theorem 3.2, setting " = 0 we have:

v(x)� vn(Pnx) �

Z 1

0

e
��tmin[Lgky(x; t; u

�
n)� yn(Pnx; t; u

�
n)k; 2Mg]dt;

(3:18)

vn(Pnx)� v(x) �

�

Z 1

0

e
��tmin[Lg(kyn(Pnx; t;�nu

�)� y(x; t;�nu
�)k+

+ku�(t)��nu
�(t)kV ); 2Mg]dt: (3:19)

Using (3.16), we get:

jvn(Pnx)� v(x)j �

Z 1

0

min[Lg�ne
(�00��)t

; 2Mge
��t]dt

and hence we obtain (3.17) applying lemma 3.3.

Remark As we will see in the examples of section 6, estimates in the form
(3.16) require further regularity conditions on the optimal controls, as well
as on the initial state.

4 The Finite Horizon Problem

Before turning to our second optimal control problem, let �; T be real
numbers such that 0 < � < T , and let initial conditions in (1.1), (1:1n) be
replaced by conditions in t = � :

(
y
0(t) = Ay(t) +Bu(t)

y(�) = x
(4:1)

(
y
0
n(t) = Anyn(t) +Bnun(t)

yn(�) = xn

: (4:1n)
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With these de�nitions, we can formulate in the usual way the �nite hori-
zon problem: given the evolution equation (4.1), �nd a control u(t) 2 U

minimizing the �nite horizon cost:

Jf (�; x; u) :=

Z T

�

g(y(x; t; u); u(t))dt+�(y(x; T; u)) (4:2)

assuming (h1), and:
g : H � U ! R

jg(y1; u1)� g(y2; u2)j � Lg(ky1 � y2k+ ku1 � u2kV )

for any y1; y2 2 H; u1; u2 2 U (h5a)

� : H ! R

j�(y1)��(y2)j � L�ky1 � y2k for any y1; y2 2 H: (h5b)

In the approximate version, we consider the evolution equation (4:1n) under
the assumptions (h2), (h3), and we look for a control un(t) 2 Un minimizing
the �nite horizon cost:

Jf;n(�; xn; un) :=

Z T

�

g(yn(xn; t; un); un(t))dt +�(yn(xn; T; un)) (4:3)

where xn := Pnx.
As for the previous case, we de�ne the value functions of the control

problems:
v(�; x) := inf

u2U
Jf (�; x; u)

vn(�; xn) := inf
un2Un

Jf;n(�; xn; un)

and we denote the optimal controls, if they exist, by

u
� 2 argmin Jf (�; x; u)

u
�
n 2 argmin Jf;n(�; Pnx; un)

dropping the dependence on � and x (the context will avoid in the sequel
any ambiguity with the optimal controls for the in�nite horizon case).

We �rst show the existence and uniqueness result (where Un has the
same meaning as in Proposition 3.1):

Proposition 4.1 The approximate value function vn(�; xn) de�ned above

is the unique solution of the Hamilton{Jacobi equation:8><
>:
�

@

@�
vn(�;X) + sup

U2Un

[�(AnX +BnU)
trvn(�;X)� g(X;U)] = 0

vn(T;X) = �(X)

(4:4)

13
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where X 2 Rkn , U 2 Rhn and 0 � � � T .

Proof: The result may be achieved by repeating the proof of Proposition
3.1 with minor changes, either starting from the HJ equation in H :8><
>:
�

@

@�
vn(�; x) + sup

un2Un

[� < Anx+Bnun;rvn(�; x) > �g(x; un)] = 0

vn(T; xn) = �(xn)

or from the evolution equation (3.7) in Rkn .

We will prove now the analogous of theorems 3.2 and 3.4 for the �nite
horizon problem:

Theorem 4.2 Assume (h1){(h3), (h5) and (2:3). Then, for any � 2 [0; T ]
and x 2 H, jvn(�; Pnx) � v(�; x)j ! 0 for n! 1. If moreover there exist

optimal controls u�, u�n and (3:16) is satis�ed for any x 2 E, then the

estimate

jv(�; x) � vn(�; Pnx)j � C�n (4:5)

holds for any x 2 E, � 2 [0; T ].

Proof: We will only prove the estimate (4.5), whereas the general case
may be obtained with obvious changes following the lines of theorem 3.2.

Operating as in theorem 3.4, for any given � 2 [0; T ], we consider two
optimal controls u� 2 U ; u�n 2 Un; we obtain:

v(�; x) = Jf (�; x; u
�) � Jf (�; x; u

�
n) (4:6)

vn(�; Pnx) = Jf;n(�; Pnx; u
�
n) � Jf;n(�; Pnx;�nu

�): (4:7)

From (4.6) one has:

v(�; x) �

Z T

�

g(y(x; t; u�n); u
�
n(t))dt +�(y(x; T; u�n)):

Adding the terms �Jf;n(�; Pnx; u
�
n), we obtain:

v(�; x)� vn(�; Pnx) � LgT sup
t2[0;T ]

ky(x; t; u�n)� yn(Pnx; t; u
�
n)k+

+L�ky(x; T; u
�
n)� yn(Pnx; T; u

�
n)k;

which yields, using (3.16):

v(�; x) � vn(�; Pnx) � (LgT + L�)e
�00T

�n: (4:8)

14
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From (4.7) we have:

vn(�; Pnx) �

Z T

�

g(yn(Pnx; t;�nu
�);�nu

�(t))dt +�(yn(Pnx; T;�nu
�)):

Adding the terms �Jf (�; x; u
�) we obtain:

vn(�; Pnx)� v(�; x) �

� LgT sup
t2[0;T ]

[kyn(Pnx; t;�nu
�)� y(x; t; u�)k+ ku�(t)��nu

�(t)kV ]+

+L�(kyn(Pnx; T;�nu
�)� y(x; T; u�)k)

and hence:
vn(�; Pnx)� v(�; x) � (LgT + L�)e

�00T
�n: (4:9)

Then, de�ning the constant C by:

C = (LgT + L�)e
�00T

(4.5) follows from (4.8), (4.9).

5 The Approximate Optimal Control

In this section we will always assume that there exist optimal solutions to
our control problems. We have already examined the convergence of the
value function of the approximate problem to the exact value function. We
are now concerned in comparing the optimal costs v(x), v(�; x) with the cost
related to the evolution of the exact system, when the approximate optimal
control u�n is used. The result is given by the two following theorems,
treating both the in�nite and the �nite horizon case:

Theorem 5.1 Under the assumptions of theorem 3:2, let u�n(t) be de�ned

as in section 3. Then jv(x) � Ji(x; u
�
n)j ! 0 as n ! 1. Moreover, if the

assumptions of theorem 3:4 are satis�ed, the following estimate:

jv(x) � Ji(x; u
�
n)j � 2!(�n)

holds for any x 2 E.

Proof: We �rst note that:

jv(x) � Ji(x; u
�
n)j � jv(x) � vn(Pnx)j+ jvn(Pnx) � Ji(x; u

�
n)j: (5:1)
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By the de�nition of vn and u�n we have:

vn(Pnx) =

Z 1

0

e
��t

g(yn(Pnx; t; u
�
n); u

�
n(t))dt:

Therefore:
jvn(Pnx)� Ji(x; u

�
n)j �

�

Z 1

0

e
��tjg(yn(Pnx; t; u

�
n); u

�
n(t))� g(y(x; t; u�n); u

�
n(t))jdt

�

Z 1

0

e
��tmin[Lgkyn(Pnx; t; u

�
n)� y(x; t; u�n)k; 2Mg]dt; (5:2)

which, using (2.3), theorem 3.2 and the dominated convergence theorem,
proves the �rst part of the statement.

If we assume (3.16), then we obtain from (5.2):

jvn(Pnx)� Ji(x; u
�
n)j �

Z 1

0

min[e(�
00��)t

�n; 2Mge
��t]dt � !(�n):

The use of the previous estimate and of (3.17) in (5.1) completes the proof.

Theorem 5.2 Under the assumptions of theorem 5:1, let u�n(t) be de�ned

as in section 4. Then jv(�; x) � Jf (�; x; u
�
n)j ! 0 as n! 1. Moreover, if

(3:16) is satis�ed, the following estimate:

jv(�; x)� Jf (�; x; u
�
n)j � 2C�n

holds for any x 2 E, � 2 [0; T ].

Proof: Follows the same argument as before with minor di�erences, and
therefore will be omitted.

Remark The above convergence results hold regardless of the way used
to obtain the approximate optimal controls u�n. In particular, the opti-
mal solution could be obtained either in feedback form by the Dynamic
Programming Principle or in open loop form by Pontryagin's Maximum
Principle. In the latter case, the computation of the value function is in
fact unnecessary. However, in both cases the numerical computation of the
optimal solution introduces a further error term. If we denote by û�n(t) the
numerical approximation (e.g. piecewise constant) of the optimal control
for the in�nite horizon problem, we may write:

jv(x)� Ji(x; û
�
n)j � jv(x) � Ji(x; u

�
n)j+ jJi(x; u

�
n)� Ji(x; û

�
n)j

16



APPROXIMATION OF CONTROL PROBLEMS IN HILBERT SPACES

whose right{hand side consists of a �rst term related to the �nite{dimen-
sional approximation, and a second term related to the suboptimal numer-
ical solution. The same remark applies to the �nite horizon case.

6 General Remarks and Examples

Since vn(xn), vn(�; Pnx) are the exact solutions of (3.3) and (4.2), the nu-
merical analysis of the problem requires to approximate the same equation
in R

kn . A global estimate for the discretization error could be obtained
combining the estimates from theorems 3.4 and 4.2, and the error bounds
for the approximation of Hamilton{Jacobi equations in R

N (see [5], [6],
[8], [10], [13], [23]). We point out that the choice of a scheme based on
the Discrete Dynamic Programming Principle corresponds to a complete
discretization of (1.1) (i.e. obtained replacing (1:1n) by its one{step ap-
proximation).

However, the procedure we have outlined here (�rst semi{discretization
of the evolution equation, then numerical solution of the HJ equation in
R
kn) is mostly theoretical, due to its very high computational complexity.

To see this, suppose (1.1) is a one{dimensional PDE, and it is discretized
with kn = 10 degrees of freedom. The discretized state space will then be
R
10, and solving the HJ equation in this space would require a mesh with

a number of points of the order of 1010 or more, even for this very coarse
approximation of (1.1). One could also note that basically the number of
points in this mesh grows exponentially with n, and therefore exponentially
with some negative power of the required error jv(x) � vn(Pnx)j.

Nevertheless, theorems 5.1 and 5.2 show that the numerical approxima-
tion of the �nite{dimensional control problem may be carried out by means
of schemes based on Pontryagin's Maximum Principle, and this approach
may be satisfactory as well.

It is worth noting that this convergence theory may also be extended to
control problems with convex costs, without use of compactness arguments
as in [2] (chapter 3). We sketch the few technical adaptations required,
taking as an example the in�nite horizon cost (3.1) with g de�ned by:

g(y; u) = 
(y) + kuk2V ;

where 
(�) is bounded and Lipschitz continuous, and no constraint is im-
posed on the control. In this case the natural space of admissible controls
is

U = L
2
�([0;+1[;V ) =

�
u : [0;+1[! V s.t.

Z 1

0

e
��tku(t)k2V dt <1

�
;

that is, the space of controls which are square integrable with respect to the
weight e��t. It is well known that for this class of problems there always

17
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exists an optimal control. This is also true for the approximate problems
since the convexity is preserved by internal approximations.

If we replace (h1c) and the stability condition with the stronger as-
sumption

keAtkL(H); ke
AntkL(H) � K;

then we obtain that v(x) and vn(x) are Lipschitz continuous with a Lip-

schitz constant given by Lv =
L
K

�
. This implies that for any t and any

initial state x, the optimal controls satisfy the bound

ku�(t)kV ; ku
�
n(t)kV �Mu

for some positive constant Mu independent of n. Lastly, since g(y; �) is
locally Lipschitz continuous, it is possible to apply again theorem 3.2 to
prove the convergence of approximate value functions. A similar argument
applies to the �nite horizon problem as well.

A question arising about the use of a sequence of �nite{dimensional
operators, concerns the extension of this technique to the approximation
of general form Hamilton{Jacobi equations in Hilbert spaces. A partial
theory for Galerkin approximations is contained in [2] and [5], but we are
not aware of results for other kinds of approximation, and for more general
cases of HJ equations.

In some sense, the present results may be seen as approximation results
for the Hamilton{Jacobi equations related to the in�nite{dimensional con-
trol problems considered. However, they rely entirely on the representation
of the solution as a value function, and it is not clear how to extend them
to the general case. Moreover, the following example due to Crandall and
Lions shows that �nite{dimensional approximations may be improperly
posed.

Example 1 A Case of Lacking Convergence

We wish now to discuss a counterexample given in [5] (part III), showing
that �nite{dimensional approximations may fail to converge to the right
solution. Let H be the Hilbert space of square summable doubly in�nite
sequences. Here, x = fxigi6=0 and the inner product and norm are given
by:

< x; y >=
X
i6=0

xiyi ; kxk =< x; x >
1=2

:

We consider the HJ equation:8>><
>>:

@

@�
v(�; x) + sup

u2U

< u;rv(�; x) >= 0

v(0; x) = �(x) =
X
i�1

(x2i � x
2
�i)

(6:1)
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where U = fu 2 H : kuk � 1 and ui = u�i for i 6= 0g. For our purposes,
we will note that equation (6.1) is related to the �nite horizon control of
the evolution equation: (

y
0(t) = �u(t)

y(T � �) = x

with the cost given by J(�; x) = �(y(T )). With our notations, A � 0,
B = �I , g � 0 and the control space V coincides with H .

If we assume now that the spaces Hn are given by:

Hn = fxn 2 H : xni = 0 for i � n+ 1 and i � �n� 2g (6:2)

and Pn = �n is the orthogonal projection into Hn (kn = dim Hn = 2n+1
in this case), if vn is de�ned as the solution of equation (6.1) restricted to
the space Hn, namely:

8>><
>>:

@

@�
vn(�; xn) + sup

un2PnU

< un;rvn(�; xn) >= 0

vn(0; xn) = �(xn) =
X

1�i�n

(x2ni � x
2
n
�i
)

then, Crandall and Lions prove (see [5], part III, example II.1) that the
sequence vn converges to a function which is not the solution of (6.1).
However, we will soon show that the de�nition Un := PnU does not match
the assumptions of the main convergence theorem. Indeed, in our case:

PnU = fu 2 Hn : kuk � 1 and ui = u�i for 0 < i � n+ 1g

U \Hn = fu 2 Hn : kuk � 1 and ui = u�i for i 6= 0g

so that PnU 6= U \Hn and the controls for the approximate problems may
not be admissible for the exact one. In fact, the optimal controls u�n lie in
the di�erence (PnU)n(U \ Hn) and this implies that vn(x) < v(x). Note
that all the assumptions of the convergence theorem including (2.3) are
satis�ed as soon as we de�ne Un := U \Hn.

Example 2 Control of the Heat Equation, Finite Elements Approximation

Let us consider the heat equation on a bounded domain, with homoge-
neous Dirichlet boundary condition and with a distributed source term:

(
y
0(t) = �y(t) + u(t)

y(0) = x
: (6:3)
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We set H = L
2(
), V = H

1(
), A = � with D(A) = H
2(
) \ H1

0 (
),
B = I and 
 is assumed to be an open polygonal bounded set of RN . We
recall that � generates an analytic semigroup which satis�es the bound:

keAtkL(H) � e
��1t (6:4)

where �1 is the �rst eigenvalue of � in the domain 
. In the sequel k �
k0; k � k1; k � k2 will denote the norms respectively in L2(
), in H1(
) and
in H2(
).

We assume an approximation of u and y in (2.4) by means of �nite
elements of P1 (that is, piecewise linear functions); we may set kn = hn = n

(number of degrees of freedom of the discretization) and Vn = Hn. The
projection Pn may be chosen either as the piecewise linear interpolation (see
[22], section 4.4) or as the orthogonal projection. �n should be de�ned as
the orthogonal projection to satisfy (h2f).

The discretization error will then be expressed as a function of the
discretization step h that in turn can be easily shown to be h = O(n�1=N ).
It is well known from the general theory of �nite elements that, under
proper assumptions on the regularity of the mesh, for any function v 2

H
k(
), (k = 1; 2) there exists a positive constant C independent of h such

that:
kPnv � vk0 � Ch

kkvkk: (6:5)

To construct the approximate operators An one starts from the weak for-
mulation:

@

@t

X
j

<  i;  j > y
j =

X
j

< r i;r j > y
j +

X
j

<  i;  j > u
j

for i = 1; : : : ; n (where f ig1�i�n is the base of Hn), and setting:

Mn = (mij) = (<  i;  j >)

Rn = (rij) = (< r i;r j >)

the matrix An is de�ned by An = M
�1
n Rn, whereas Bn is the identity

matrix In.
Then, the numerical analysis of this problem shows that:

a) The scheme is convergent. Moreover, for any x 2 H1(
):

eAtx� e
AntPnx




0
� Ckxk1h

so that the assumption ku(t)k1 � Mu ensures by proposition 2.1 that
(2.3) is satis�ed. Therefore the approximate value functions converge
to the exact ones.
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b) With more regularity assumptions, explicit error estimates can be given.
From the theory of �nite elements (see [22], section 7.6), if we assume
that:

u
�
; u
�
n 2 C

1([0;+1[;D(A));

x 2 E � D(A2);

then we can �nd a constant C independent of n (or, equivalently, inde-
pendent of h) such that, for any t 2 [0;+1[:

kyn(Pnx; t; u
�
n)� y(x; t; u�n)k0 � Ch

2 = �n

kyn(Pnx; t; u
�)� y(x; t; u�)k0 + ku

� ��nu
�k0 � Ch

2 = �n

with �00 = 0, so that by theorems 3.4 and 4.2 we obtain the estimates:

jv(x)� vn(Pnx)j � Ch
2 � Cn

�2=N ;

jv(�; x)� vn(�; Pnx)j � Ch
2 � Cn

�2=N
:

Estimates of the same order apply to the costs of the approximate
optimal controls; a faster rate of convergence could be achieved with
higher order schemes, under more strict assumptions on the regularity
of the problem.

Example 3 Control of the Wave Equation, Finite Elements Approxima-

tion

Let us now consider the wave equation on a bounded domain 
, with
homogeneous Dirichlet boundary conditions and with a scalar control term:

8><
>:
y
00
1 (t) = �y1(t) + b2u2(t)

y1(0) = x1

y
0
1(0) = x2

(6:6)

where 
 is assumed to be an open polygonal bounded set of RN , b2 2 L
2(
)

is a given function and u2 : [0; T [! U � R. With the notations:

y(t) :=

�
y1(t)
y2(t)

�
; x :=

�
x1

x2

�
; u(t) :=

�
0

u2(t)

�

(6.6) may be rewritten in the form (1.1), with the operators A, B given by:

A =

�
0 I

� 0

�
; B =

�
0 0
0 b2

�
:
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Equation (6.6) may be studied in the space H = H
1
0 (
)�L

2(
), endowed
with the scalar product:

< x; y >=

Z



rx1ry1dx+

Z



x1y1dx+

Z



x2y2dx

with D(A) = [H2(
) \ H
1
0 (
)] � H

1
0 (
), whereas the control space V

coincides with R.
We recall that A generates a C0 semigroup eAt, which veri�es, under

the assumption of boundedness for 
:

keAtkL(H) = 1: (6:7)

We consider again approximations of y 2 H; b2 2 L
2 in (6.6) by means of

�nite elements of P1. We have obviously hn = 1, �n = I and ju��nuj � 0.
The approximation procedure is the same of the previous example, and the
numerical analysis shows that:

a) Under the basic assumptions the scheme is convergent; moreover, since
V = R has �nite dimension, (2.3) always holds by proposition (2.1);

b) Under stronger assumptions, namely:

u
�
; u
�
n 2 C

2([0; T [;R)

x 2 D(A3)

there exist (see [22], section 8.7) two constants C1, C2 independent of
n such that, for any t 2 [0;+1[:

kyn(Pnx; t; u
�
n)� y(x; t; u�n)k � h(C1 + C2t);

kyn(Pnx; t; u
�)� y(x; t; u�)k � h(C1 + C2t):

Hence, theorems 3.4 and 4.2 apply with �n = Ch and with any �00 > 0,
giving the estimates:

jv(x) � vn(Pnx)j � Ch � Cn
�1=N ;

jv(�; x) � vn(�; Pnx)j � Ch � Cn
�1=N

:

Example 4 Control of a First Order Wave Equation, Spectral Approxi-

mation
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Lastly, we consider a �rst order hyperbolic equation with a scalar
control term, which (for the sake of simplicity) will be stated as a one{
dimensional problem as follows:

8>><
>>:
y
0(t) = �

@

@z
y(t) + bu(t) in 
 =]� 1; 1[

y(0) = x

y(z = �1; t) = 0

(6:8)

where b 2 L2(]� 1; 1[) is a given function, z denotes the spatial coordinate
and u : [0; T [! U � R. This problem is well posed in H = L

2(] � 1; 1[),
with D(A) = fx 2 H

1(] � 1; 1[) : x(z = �1) = 0g; the related semigroup
satis�es the bound:

keAtkL(H) = 1:

The approximation of this evolution equation may be carried out (see [12],
section 8) by means of Legendre polynomials, which provide a complete set
of orthogonal functions in L2(]�1; 1[). We choose  n as the Legendre poly-
nomial of degree n, and Hn = span( 1; : : : ;  n); the projection operator is
de�ned as:

Pnx =
X
i

<  i; x >  i:

The weak formulation of this problem reads:

@

@t

X
j

<  i;  j > y
j =

X
j

<  i;
@

@z
 j > y

j+ <  i; b > u (i = 1; : : : ; n)

and setting:

Mn = (mij) = diag(<  i;  i >)

Rn = (rij) = (<  i;
@

@z
 j >)

the matrix An is de�ned by An =M
�1
n Rn.

The numerical analysis of this approximation scheme shows that the
scheme is convergent. Again, the assumption V = R ensures the pointwise
convergence of the approximate value functions.
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