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Abstract

We de�ne here risk-sensitive �ltering as minimising the expected

value of the exponential of an estimation error (quadratic) cost scaled

by a risk-sensitive parameter. Such �ltering is a generalization of

standard risk-neutral �ltering in that as the risk-sensitive parameter

approaches zero, risk-neutral (minimum error variance) �ltering is

achieved. Also taking small noise limits, a di�erential game associ-

ated with H1 �ltering results.

In this paper, the risk-sensitive nonlinear stochastic �ltering prob-

lem is studied in both continuous and discrete-time for quite general

�nite-dimensional signal models, including also discrete state hidden

Markov models (HMMs). The risk-sensitive estimates are expressed

in terms of the so-called information state of the model given by the

Zakai equation which is linear.

In the linear Gaussian signal model case, the risk-sensitive (min-

imum exponential variance) estimates are identical to the minimum

variance Kalman �lter state estimates, and are thus given by a �nite

dimensional estimator. Perhaps surprisingly, the minimum variance

estimates have an interpretation in the small noise limit terms of a

worst case deterministic noise estimation problem given from a dif-

ferential game. The estimates are also �nite dimensional for discrete-

state HMMs, but otherwise, in general, are in�nite dimensional.

The related control task, that is the risk-sensitive generaliza-

tion of minimum-variance control is studied for discrete-time mod-

els. This is motivated by the need for robustness in the widely used

(risk-neutral) minimum variance control, including adaptive control,

of systems which are minimum phase, that is having stable inverses.
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1 Introduction

In optimal �ltering, the usual index optimized is a state estimation error

variance. This can be referred to as H2 �ltering. This is appropriate

when the (stochastic) signal model is known precisely but when there is

uncertainty of the model dynamics and noise; there is a case for achieving

robust �ltering which is acceptable for a range of models. This is the

motivation for so-called H1 �ltering which has the interpretation in terms

of minimizing estimation error in a worst case noise scenario. Risk-sensitive

�ltering is a more general robust/optimal �ltering approach thanH2 orH1
�ltering. It minimizes the expected value of the exponential of an (typically

quadratic) estimation error cost, weighted by a risk-sensitive parameter.

Risk-sensitive control problems are relatively more abundant in litera-

ture [5] [6] [7]. Recently, a solution to the output feedback risk-sensitive

control problem for linear and nonlinear discrete-time stochastic systems

has been proposed in [10] and [1] using a change of probability measure

and information state techniques. The problem of risk-sensitive �ltering

has been studied in [11] for linear Gauss-Markov models. The techniques

applied in [11] are not readily generalizable for nonlinear �ltering. More

general nonlinear problems have been studied in [2] which tackles the risk-

sensitive estimation problem using reference probability methods of [8].

The cost-index consists of the sum of quadratic estimation errors to the

present, and so parallels closely risk-sensitive control/tracking problems

considered in [9] [10] [1].

In this paper, an alternative simpler risk-sensitive index to that of [2]

is studied. For this index the risk-sensitive �lter for very general nonlinear

stochastic models is seen to be a simple augmentation of the information

state �lter (the linear Zakai equations). For linear Gaussian models, the

risk-sensitive �lter is identical to the H2 Kalman �lter and is �nite dimen-

sional. Otherwise, in the limit as the risk-sensitive parameter approaches

zero, the risk-sensitive �lter becomes a risk-neutral �lter, typically the

minimum error variance H2 �lter. It has been seen that in the case of

a discrete-time linear stochastic signal model, the risk-sensitive controller

derived in [10] results in an H1 controller. Also, the risk-sensitive �lter

derived in [11] and [2] is an H1 �lter for the discrete-time linear stochastic

signal model. In the small noise limit, the risk-sensitive controllers are in-

terpreted in terms of a deterministic di�erential game in [10] for partially

observed discrete-time systems. In this paper, we show that similar inter-

pretations of the risk-sensitive �ltering problem can be achieved in the small

noise limit. Results are developed here for quite general nonlinear models
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in continuous time and for states in a continuous range. Corresponding

results are included for the discrete-time case and the discrete-state case

for completeness. Our model class requires the nonlinearities to be linearly

bounded and the index class to be quadratically bounded, rather than sim-

ply bounded as in the work of [10] for related control problems.

Closely related problems to �ltering are smoothing and prediction.

These problems are addressed brie
y. An application of the concepts em-

ployed for one-step-ahead prediction is the widely used notion of minimum

variance control (including adaptive control) for minimum phase plants.

Here we give results for a robust version of this, namely risk-sensitive gen-

eralization of minimum variance control. This problem, like risk-sensitive

�ltering, does not require dynamic programming as in the control tasks

tackled in [10], although some of the techniques are quite similar. There

are interesting applications to risk-sensitive adaptive control.

In Section 2, the theory is spelt out for risk-sensitive �ltering, and in

Section 3, results are presented for the risk-sensitive version of minimum

variance control.

2 Risk-Sensitive Estimation

Estimation Problem Formulation: Recall that minimum variance es-

timation of a state at time t, denoted xt 2 IRn based on measurements

yt 2 IRm up to time t, denoted Yt, is given from the de�nition

x̂tjt 2 arg min
�2IRn

E
�1
2
(xt � �)0Q(xt � �) j Yt

�
(2.1)

with Q � 0. (Of course x̂tjt = E
�
xt j Yt

�
with Q > 0.)

Here we work with a risk-sensitive version of this estimation task, and

de�ne a risk-sensitive estimate with risk-sensitive (scalar) parameter �,

suitably small to achieve existence of the expectation, as

x̂�
tjt
2 arg min

�2IRn
E
�
expf�

2
(xt � �)0Q(xt � �)g j Yt

�
: (2.2)

The signi�cance of � is discussed after the optimal �lter results are derived.

For simplicity of notation, and increased generality, let us work with

the risk-sensitive and risk-neutral estimates, respectively,

x̂�
tjt

2 arg min
�2IRn

E
�
expf��(xt; �)g j Yt

�
(risk � sensitive) (2.3)

x̂�
tjt

2 arg min
�2IRn

E
�
�(xt; �) j Yt

�
(risk � neutral) (2.4)

where � 2 C(IR2n), the class of continuous functions, and j�(x; �)j �
�(1 + jxj2 + j�j2) for some � > 0.
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To proceed, let us work in the �rst instance with a continuous-time

stochastic signal model, with t 2 [0;1)

dx"
t

= a(x"
t
)dt+ dw"

t

dy"
t

= c(x"
t
)dt+ dv"

t
(2.5)

where w"; v" are standard independent Wiener processes scaled by
p
", and

a; c are Lipschitz continuous with

ja(x)j; c(x) � �(1+ j x j) for some � > 0: (2.6)

Also, we require that the a priori density of x"
0
, denoted f(x), satisfy

log f(x) 2 D := fl(x) 2 (IRn) : l(x) � �
1 j x j2 +
2; 
1 > 0; 
2 � 0g:
(2.7)

Here the parameter " is introduced so that subsequently we can conve-

niently consider our stochastic results taking a small noise limit with "! 0

to achieve deterministic worst case estimation.

We also generate results for a discrete-time model with k 2 f0; 1; 2 � � �g.

x"
k+1

= a(x"
k
) + w"

k+1

y"
k

= c(x"
k
) + v"

k
(2.8)

where wk; vk are white noise processes with densities  (�); �(�), respectively.
Here we assume Gaussian densities N [0; "I ].

The special use of linear models are considered, namely

dx"
t

= Ax"
t
dt+ dw"

t

dy"
t

= Cx"
t
dt+ dv"

t
(2.9)

for continuous time, and for the discrete-time case then we have

x"
k+1

= Ax"
k
+ w"

k

yk = Cx"
k
+ v"

k
: (2.10)

The HMMs we consider are

Xk+1 = AXk +Wk

Yk = CXk + v"
k

(2.11)

where Xk 2 fe1; e2; � � � ; eNg with ei being the unit vector with unity in

the ith positions and zero elsewhere, and A is the matrix of transitions

probabilities such that E
�
Xk+1jXk

�
= AXk. Again vk is i.i.d with variance

��(�) � N [0; �I ], and estimates x̂�
kjk

are de�ned analogously. (Other HMM
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models with discrete range measurements and/or in continuous time as

studied in [8] can be considered, but details are omitted here.)

Risk-sensitive smoothing and prediction estimates are de�ned from a

mild generalization of (2.3) as follows:

x̂�
tj�
2 arg min

�2IR
n

E[exp (��(xt; �)) j Y� ]

For smoothing � > t, for prediction � < t, and for �ltering � = t.

Measure Change: The continuous-time stochastic system (2.5) is as-

sumed to be de�ned on a probability space (
;F ; P ) with Gt = �
�
x"
s
; y"

s
; 0 �

s � t
�
and Yt = �

�
y"
s
; 0 � s � t

�
.

Let �P denote the equivalent probability measure under which y"
t
is

a standard Wiener process independent of the state process [4]. Such a

measure exists and (since vt is Gaussian) is given from

�"

0;t
:=

dP

d �P

����
Gt

= exp
�
� 1

"

�1
2

Z
t

0

j c(x"
s
) j2 ds�

Z
t

0

c(x"
s
)dy"

s

��
: (2.12)

For a proof of this Girsanov Theorem see [4].

For the discrete-time models (2.8) and (2.11) de�ned on (
;F ; P ) with
Gk = �(x"

l
; y"

l
; 0 � l � k) and Yk = �(y"

l
; 0 � l � k), the corresponding

measure change to yield y"
k
i.i.d. is

�"

0;k
:=

dP

d �P

����
Gk

=

kY
l=0

�l(xl); �k(xk) =
�"(yk � c(xk))

�"(yk)
: (2.13)

For a proof see [8].

Information State: Let us denote the information state associated with

the model (2.5) and measure change (2.12) as q"
tjt
(x). It satis�es the fol-

lowing de�ning equation for all b : IRn ! IR Borel test functionsD
b; q"

tjt

E
=

Z
IRn

b(x)q"
tjt
(x)dx = �E [�0;tb(x

"

t
)jY t] (2.14)

where �E is the expectation under �P . Indeed, the information state satis�es

the Zakai equation [4]

dq"
tjt

= B�q"
tjt
dt+

1

"
c0(x)q"

tjt
dy"

t

q"
0j0
(x) = �(x) (2.15)

where � denotes the adjoint and the operator B is de�ned as

B(b(x)) = "

2
4 b(x) + a(x)

@b(x)

@x
:
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Here 4 is the Laplace operator (4 = @
2

@x
2

1

+ : : :+ @
2

@x2
n

). Also �(x) is the a

priori density of x. The Zakai equation is linear and in�nite-dimensional

in general.

For the discrete-time model (2.6), the information state de�ning equa-

tion is (2.14) with t replaced by k, and the Zakai equation is, (see [8])

q"
k+1jk+1

(x) =

Z
IR
n

�k+1(z)�"(x� a(z))q"
kjk

(z)dz

q"
0j0
(x) = �(x): (2.16)

For the HMM (2.11), the information state is de�ned analogously but with

x 2 IRn replaced by X 2 fe1; : : : ; eNg. Also we denote q"kjk as a vector with
i-th element q"

kjk
(ei). Of course, now,

D
b; q"

tjt

E
=
P

i
b(ei)q

"

tjt
(ei) in (2.14).

The Zakai equation for the HMM model (2.11) is, (see [8])

q"
k+1jk+1

= Bk+1Aq
"

kjk
(2.17)

where

Bk+1 = diag f�"(yk+1 � Ce1); : : : ; �"(yk+1 � Cen)g :
With smoothing or prediction in mind, the information state is readily

generalized to de�ne qtj� from

b; qtj�

�
= �E [�0;tb(x

"

t
)jY� ] : (2.18)

Smoothed information state estimates with � > t can be obtained from a

forward �lter for q"
tjt

and a backward �lter from � to t (see [8] for details).

Risk-sensitive Estimates in Terms of Information State: The opti-

mization task can be expressed in terms of the information state as follows.

First apply a version of Bayes' Theorem (see [8]) as

E [exp (��(x"
t
; �)) jYt] =

�E [�0;t exp (��(x
"

t
; �)) jYt]

�E [�0;tjYt]
: (2.19)

Now application to (2.3) gives, for � su�ciently small such that the expec-

tation exists,

x̂�
tjt

2 arg min
�2IRn

�E [�0;t exp (��(x
"

t
; �)) j Yt]

2 arg min
�2IRn

D
exp (��(x; �)) ; q"

tjt
(x)

E
: (2.20)

Likewise, risk-neutral estimates are de�ned from

x̂tjt 2 arg min
�2IR

n

D
�(x; �); q"

tjt
(x)

E
: (2.21)
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Risk-neutral Filtering: Using a power series expansion for the expo-

nential, it is straightforward to show that in the limit as � ! 0, then

risk-neutral �lter results are recovered from risk-sensitive �ltering, that is,

for the indices (2.20), (2.21)

x̂tjt = lim
�!0

x̂�
tjt
: (2.22)

Linear Filters: Consider the special case of the linear Gaussian signal

models (2.9) and (2.10), and quadratic indices as in (2.1) and (2.2) with

Q > 0. In this case, the information state is a scaled Gaussian with mean

x̂tjt and variance denoted �tjt. Now the minimization (2.20) to achieve

risk-sensitive �ltering can be carried out analytically by completing-the-

square arguments brie
y outlined in the Appendix. Thus we have the

key property that the risk-sensitive estimates x̂�
tjt

are identical to the risk-

neutral (minimum variance) estimates x̂tjt

x̂�
tjt

= x̂tjt: (2.23)

Trivially, also lim�!0 x̂
�

tjt
= x̂tjt. This result applies in discrete-time also

with t replaced by k.

Small Noise Limit: To consider small noise results as " ! 0, express �

in terms of " as

� =
�

"
: (2.24)

Let us work �rst with the continuous time model (2.5) and de�ne

S
�

"

t
(q)

4

= inf
�2IRn

D
exp

��
"
�(x; �)

�
; q"

t
(x)

E
: (2.25)

Also, as in [9], recall that

lim
"!0

"

�
log q"

t
(x) = p

�

t
(x) (2.26)

where, as long as y"
t
! R

t

0
ysds,

@p
�

t
(x)

@t
= sup

w2IRn

�
�@p

�

t
(x)

@x
(a(x) + w)� 1

2�
jwj2

�

� 1

�

�
1

2
jc(x)j2 � c0(x)yt

�

p
�

0
(x) = lim

"!0

"

�
log �(x): (2.27)

At this stage, recall a version of the Varadhan-Laplace limiting result from

[10]

lim
"!0

"

�
log

D
exp

�

"
l(x); exp

�

"
m(x)

E
= sup

x

fl(x) +m(x)g: (2.28)
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Mildly generalising the result of [10], this result holds for m(x) + l(x) 2 D
and convergence is uniform on compact subsets of D �D.

Now from (2.25)

S
�

"

t
(exp

��
"
p
�
) = inf

�

D
exp

��
"
�(x; �)

�
; exp

��
"
p
�

t
(x)

�E
:

So that, taking limits and applying the result (2.28)

lim
"!0

"

�
logfS

�

"

t
(exp

��
"
p
�
)g

= lim
"!0

inf
�

"

�
log

D
exp

��
"
�(x; �)

�
; exp

��
"
p
�

t
(x)

�E
= inf

�

lim
"!0

"

�
log

D
exp

��
"
�(x; �)

�
; exp

��
"
p
�

t
(x)

�E
= inf

�

sup
x

fp�
t
(x) + �(x; �)g: (2.29)

The �rst equality holds because of the monotonicity of the log function,

the second by the continuity of �(x; �) with respect to �, and thus of
"

�
log



exp

�
�

"
�(x; �)

�
; exp

�
�

"
p
�

t
(x)

��
with respect to � and ", and the third

if p
�

t
(x) + �(x; :) 2 D, which in turn holds for log �(x) 2 D and � > 0

suitably small. At the limit of this condition holding as � increases, there

is a correspondence to H1 �ltering, see [12].

Thus the small noise state estimate is, for � > 0 suitably small

lim
"!0

x̂
�

"

t
2 argmin

�

sup
x

fp�
t
(x) + �(x; �); g (2.30)

which has the interpretation of a deterministic di�erential game in which

state estimation is achieved in a worst case deterministic noise environment.

An alternative non-recursive interpretation of p
�

t
(x) is given from (see [9])

p
�

t
(x) = sup

�2C(0;t)

f�(�0 � 1

�

Z
t

0

(
1

2
j _�s � a(�s)j2 + 1

2
jc(�s)j2

�c0(�s)ys)ds : �t = xg: (2.31)

We see that p
�

t
(x) serves the role of an information state in the determin-

istic setting, telling us as much as we can know about the states from the

measurements in this setting. For the discrete-time model (2.8), the above

results also hold with t replaced by k and (2.27) replaced by, (see [10])

p
�

k+1
(x) = sup

�2IRn

�
� 1

2�
jx� a(�)j2 � 1

�
[
1

2
jc(�)j2 � c0(�)yk] + pk(�)

�

p
�

0
(x) = lim

"!0

"

�
log �(x): (2.32)

8
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It is immediate from this equation that p
�

0
(x) 2 D implies p

�

k
(x) 2 D for all

k, and p
�

k
(x) +�(x; �) 2 D for � suitably small. The non-recursive version

of (2.32) derived by successive application of (2.32) yields

p
�

k
(z) = sup

x2l2((0;k);IR
n
)

(
p
�

0
(z)� 1

�

k�1X
l=0

1

2
jxl+1 � a(xl)j2

� 1

�

k�1X
l=0

�
1

2
jc(xl)j2 � c0(xl)yl

�
: xk = z

)
(2.33)

We remark that in the linear Gaussian model case when the risk-sensitive

estimate is identical to the minimum variance estimate, then of course

this minimum variance estimate also has the interpretation of worst case

estimate in the above sense. We believe this observation has not been made

in earlier literature.

The results of this section can be summarised in the following theorem.

Theorem 2.1

Continuous time: Suppose there is given the model (2.5) with the as-

sumptions (2.6) and (2.7) holding and the risk-sensitive performance in-

dex given by (2.3). Then the optimum risk-sensitive estimate is given by

(2.20). In the limit, as � ! 0, the risk-sensitive estimate approaches the

risk-neutral estimate (2.21). Moreover, with � = �

"
, where " is the noise

variance, then in the limit as "! 0, the risk-sensitive estimate is given by

(2.30) and (2.31).

Further, for linear signal model (2.9), (2.23) holds.

Discrete-time: For the discrete-time signal model (2.8), all the results

for the continuous-time signal model hold with t replaced by k and (2.31)

replaced by (2.33).

For the HMM case, only the measurement noise approaches zero as "!
0. In this case the di�erential game is not completely deterministic. Only

the measurement noise is interpreted as deterministic, so that estimation of

the stochastic discrete state Xk is achieved in the worst case deterministic

measurement noise environment.

Of course, we would have studied the other signal models with only the

process noise or measurement noise variance approaching zero; and in this

case the limiting case is of a partially stochastic model in a deterministic

noise environment.

Risk-sensitive Indices with Memory: In earlier works [2] [3], the fol-

lowing risk-sensitive optimization is considered (in discrete-time)

x̂�
kjk

2 argmin
�2IRn

E

"
exp

(
k�1X
i=0

��(x"
i
; x̂�

iji
) + ��(x"

k
; �)

)
jYk

#
: (2.34)
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We observe here that this task can be tackled using the techniques of this

paper by working with an augmented plant model and associated informa-

tion state. Thus consider the augmented model (2.8)

x"
k+1

= a(x"
k
) + w"

k+1

J"
k+1

= J"
k
+�(x"

k
; x̂�

kjk
)

y"
k

= c(x"
k
) + v"

k
(2.35)

with states (x"
k
; J"

k
). Now (2.34) can be rewritten as

x̂�
kjk

2 argmin
�2IRn

D
expf�J + ��(x; �)g; q"

kjk
(x; J)

E
(2.36)

where q"
kjk

(x; J) is the information state associated with the augmented

plant (2.35). Analysis can proceed using techniques of this section. The

algorithms are formulated di�erently than in the earlier work. Here, the

small noise limit results apply in a straightforward manner, giving new

results.

We remark that in the linear Gaussian model case, the risk-sensitive

estimate is no longer identical to the minimum variance estimate, and

consequently this particular index is perhaps the more appealing one to

work with. Both indices approach the minimum variance index in the risk-

neutral case as � ! 0.

3 Risk-sensitive Generalization of Minimum Variance

Control

Consider the discrete-time signal model

x"
k+1

= a(x"
k
; u"

k
) + w"

k+1

y"
k

= c(x"
k
) + v"

k
(3.1)

with control variable u"
k
2 IRp is Yk measurable. Minimum variance control

for such models is usually formulated as

ukjk 2 argmin
u2IR

p

E

�
1

2
y"
k+1

0

y"
k+1

jYk
�

(3.2)

or more generally,

ukjk 2 argmin
u2IRp

E
�
�	(y"

k+1
; u)jYk

�
(3.3)

with j �	(y; u) j� �(1 + jyj2 + juj2) for some � > 0.

10
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The risk-sensitive generalization of minimum variance control is de�ned

from

u�
kjk

2 argmin
u2IR

p

E
�
exp

�
�	(y"

k+1
; u)

	 jYk� : (3.4)

Clearly, this problem is a special case of one-step-ahead prediction de�ned

in its most general form in the previous section. Working under the measure
�P ,

u�
kjk

2 argmin
u2IR

p

�E
�
�0;k exp

�
�	(y"

k+1
; u)

	 jYk� : (3.5)

Now substituting (3.1) and taking expectation under �E gives

u�
kjk

2 argmin
u2IRp

Z
IRn

Z
IRn

Z
IRm

exp
�
� �	 ((a(x; u) + w) + v; u)

	
�"(v) "(w)q

"

kjk
(x)dvdwdx:

Using inner product notation, we obtain

u�
kjk

2 argmin
u2IRp

D
exp

�
� �	 ((a(x; u) + w) + v; u)

	
; �"(v) "(w)q

"

kjk
(x)

E
:

(3.6)

Linear Gaussian Model Case: The optimal control (3.6) can be solved

analytically in the linear Gaussian model case since v"; w"; q" are normally

distributed. Thus, applying completing-the square arguments, as in deriva-

tion of (2.23), we have

u�
kjk

2 argmin
u2IRp

Z
IRn

expf�1

2
(x� x̂kjk)

0�kjk(x� x̂kjk)g�Z
IRn

Z
IRm

exp

�
�

2
[C(Ax +Bu+ w) + v]

0

[C(Ax+Bu+ w) + v]

�(2")�1(v0v + w0w)
	
dvdw

�
dx:

Now integrating �rst with respect to v, we haveZ
IR
m

exp

�
�v0

�
C(Ax +BU + w) +

1

2
(� � "�1)v0v

��
dv =

Kv exp

�
�1

2
[�C(Ax +Bu+ w)]

0

(� � "�1)�1I [�C(Ax +Bu+ w)]

�

where Kv is an integral of a Gaussian-like term and is dependent only on

(� � "�1) and not on w; x or u. Likewise, integrating on the remaining w

dependent term yields a term Kw exp
�
1

2
(Ax+Bu)0W (Ax+Bu)

	
where

11
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Kw is the integral of a Gaussian-like term dependent only on its variance�
�C 0C � "�1I � �2(� � "�1)�1C 0C

�
and not dependent on w, x or u. Here

W = V � V (V � "�1I)V

V = �C 0C
�
1� �(� � "�1)�1

�
:

Thus

u�
kjk

2 argmin
u2IR

p

Z
IR
n

exp

�
1

2
(Ax+Bu)0W (Ax +Bu)

�(x� x̂kjk)
0��1

kjk
(x� x̂kjk)

o
dx:

Now, following the derivation of (2.23), we achieve

u�
kjk

=
h
B0WB �B0WA(A0WA���1

kjk
)�1A0WB

i
�1

B0WA(A0WA���1
kjk

)�1��1
kjk
x̂kjk : (3.7)

Indeed, observe that as � ! 0, W ! �C 0C and

u�
kjk

! �[B0C 0CB]�1B0C 0CAx̂kjk which is the risk-neutral minimum vari-

ance control

ukjk = argmin
u2IRp

E[
1

2
y0
k+1

yk+1jYk]

= argmin
u2IRp

E[
1

2
(Ax̂kjk +Bu)0C 0C(Ax̂kjk + Bu)jYk] (3.8)

The results of this section can be summarised in the following theorem

Theorem 3.1 The risk-sensitive generalization of minimum variance con-

trol u�
kjk

de�ned by (3.4) for the discrete-time model (3.1) is given in terms

of the information state by (3.6).

For the linear Gaussian signal model, the risk-sensitive version of min-

imum variance control is given by (3.7). As � ! 0, the risk-sensitive

version of minimum variance control approaches the risk-neutral minimum

variance control (3.8).

Adaptive Risk-sensitive Version of Minimum Variance Con-

trollers: An important application of the above risk-sensitive general-

ization of minimum variance control results is to indirect adaptive control,

which is of course on-line. The control calculation is based on the most

recent estimates of plant parameters, which in turn can be viewed as plant

states and part of the state estimation process. As in minimum variance

control of linear plants, for a closed-loop stability there is a severe restric-

tion namely a minimum phase restriction on the plant. Equivalently, the

12
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inverse of the plant must be stable. Further details on this application,

and extensions to more general situations, will be omitted here. However,

we stress that the motivation for using a risk-sensitive index is clear in the

sense that in the small noise limit as " ! 0, given � = �

"
and � suitably

small, then the control is optimum for a worst case deterministic noise

environment. Details follow closely the analysis of the previous section.

4 Conclusion

Risk-sensitive �ltering, prediction and smoothing results have been de-

veloped as augmentations to information state �ltering, prediction and

smoothing. In the linear Gaussian model, quadratic index case, the estima-

tors are the minimum variance estimates. In the limit as the risk-sensitive

parameter approaches zero, known risk-neutral (minimum variance esti-

mation) results are recovered. In the small noise limit, for suitably small

risk-sensitivity parameter, the risk-sensitive �ltering and minimum vari-

ance �ltering in the linear Gaussian case can be the interpretation of a

deterministic estimation in a worst case deterministic noise environment

and an information state is derived for this case. Continuous-time and

discrete-time stochastic models are studied as is the case of hidden Markov

models.

Risk-sensitive estimation involving memory is achieved by application

of the risk-sensitive estimation results to a signal model augmented by a

state associated with the performance index.

Risk-sensitive versions of minimum variance controllers have been de-

veloped in terms of an optimization involving the information state for

discrete-time stochastic models. The results parallel those for one-step-

ahead prediction. In the limit as the risk-sensitive parameter approaches

zero, known risk-neutral (minimum variance control) results are recovered.

In the small noise limit the control is optimum for a solution with worst

case deterministic noise. Application to adaptive risk-sensitive control is

immediate.

Appendix

Proof of (2.23): The steps in completing-the-square arguments are brie
y

summarised as follows. From (2.20), with �(x; �) = 1

2
(x � �)0Q(x� �),

x̂�
tjt

=

argmin
�2IRn

Z
IRn

exp

�
�

2
(x� �)0Q(x� �)

13
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�1

2
(x� x̂tjt)

0��1
tjt
(x � x̂tjt)

�
dx

= argmin
�2IR

n

Kx exp

�
1

2
f�0�Q� � x̂0

tjt
��1
tjt
x̂tjt

�(�0�Q� x0
tjt
��1
tjt
)(�Q��tjt)

�1(Q� ��tjt)
�1x̂tjtg

�
where (omitting tjt subscripts)

Kx =

Z
IR
n

exp

�
1

2

�
x0 � (�0�Q� x̂0��1)(�Q���1)

�
(�Q��)�1�

x� (�Q���1)(�Q� ���1x̂)
�	
dx;

which is a scaled integral of a Gaussian-like term dependent only on (�Q�
�) and not on �. Thus,

x̂�
tjt

= argmin
�2IR

n

f�0
h
�Q� �Q(�Q���1

tjt
)�1�Q

i
� + 2x̂0

tjt
��1
tjt
(�Q���1

tjt
)�Q�g

and (2.23) follows.
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