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Abstract

The problem of stabilization of linear time-invariant systems un-

der general decentralized feedback schemes is considered in this pa-

per. A novel approach to the problem is advised, in which the in-

teractions between the strongly connected subsystems of a system

are treated as disturbances. A necessary and su�cient condition for

the existence of a decentralized controller which stabilizes a given

system is presented.
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1 Introduction

For nearly two decades, much attention has been paid to the problem of sta-
bilization of decentralized linear time-invariant systems. Wang and Davi-
son [21] introduced the notion of \�xed mode" and obtained a solution
to the decentralized control problem. They concluded that the absence of
�xed modes is a necessary and su�cient condition for the existence of a
decentralized linear time-invariant system which stabilizes a given system
(also see [1],[4],[6],[13]). This result has been the most important contri-
bution to the decentralized control theory so far. Anderson and Moore [2]
considered the case where a decentralized time-varying controller is em-
ployed. They concluded that the absence of unstable �xed modes of a
system is not a necessary condition for the existence of a stabilizing decen-
tralized time-varying controller, and in fact �xed modes may be eliminated
by time-varying controllers. Wang [20] observed independently the prop-
erty of time-varying controller in the elimination of �xed modes. It has
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also been shown that �xed modes can be eliminated by vibrational control
and by sampling techniques (see [12],[14],[17]).

However, there has been some confusion in the literature as to what
kind of �xed modes can actually be eliminated, see, e.g., [17],[18]. Willems
[22] clari�ed the question to certain extent and argued that \structurally
�xed modes" caused by the fact that the system is not strongly connected
are also �xed modes with respect to time-varying output feedback. It
should be noted that \structurally �xed modes" meant by Willems [22] are
not the same structurally �xed modes as studied in [15] and [16], where
structurally �xed modes were de�ned through the notions of structured
matrices and structurally equivalent systems. Very recently, Khargonekar
and Ozguler [11] further clari�ed the question by using \lifting" technique
for periodic systems. They showed that all �xed modes, except those asso-
ciated with the complementary subsystems ([3],[13]) having zero transfer
function matrices, can be eliminated by a periodically time-varying decen-
tralized controller.

Then, the following general question may be asked. What kind of �xed
modes can, or cannot, be eliminated by an even larger class of controllers
than periodically time-varying decentralized controllers, say general time-
varying, nonlinear, vibrational, or any other kind of suitable controllers?

To provide an answer to the question given above, we consider in this
paper general decentralized feedback schemes where no restrictions are im-
posed on the type and structure of the decentralized controllers, as long as
the constraint of the decentralized information structure is satis�ed. A nec-
essary and su�cient condition for the existence of a decentralized controller
which stabilizes a given system is presented in this paper. The condition is
stated in a neat term of �xed modes of a quotient system, which were �rst
identi�ed in [9] and [10] and are termed Quotient Fixed Modes in this paper.
It is shown that the quotient �xed modes are exactly those �xed modes as-
sociated with the complementary subsystems having zero transfer function
matrices, which were identi�ed by Khargonekar and Ozguler [11]. The re-
sult of this paper provides a precise statement of the arguments in [22] and
[11] and reveals the further fact that if a �xed modes cannot be eliminated
by a decentralized periodically time-varying controller, then there is no way
this �xed mode can be eliminated by a decentralized controller, no matter
what kind of controllers are used. This provides a complete answer to the
question of what kind of �xed modes can, or cannot, be eliminated.

The layout of the paper is as follows. Section 2 introduces concept of
time-varying vectors with a degree of exponential stability and gives formal
statement of the problem. The main result of this paper is presented in
Section 3 and a proof of the main result is given in Section 4. Section 5 is
the conclusion.
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2 Statement of the problem

Consider a decentralized control system described by

_x(t) = Ax(t) +

NX
i=1

Biui(t) (2:1a)

yi(t) = Cix(t); i = 1; 2; � � � ; N (2:1b)

where N is the number of the control stations, x(t) 2 Rn is the state vector
of the system, ui(t) 2 Rmi and yi(t) 2 Rri are, respectively, the input and
the output vectors of the ith control station, and A, Bi and Ci are real
constant matrices of appropriate dimensions. Assume that the information
available to the ith control station at time t is represented by

Ii(t) = fyi(�); ui(�) : � 2 [0; t]; � 2 [0; t)g: (2:2)

It is also assumed that the constraint of the decentralized information struc-
ture is such that the control input ui(t) at the ith local control station can
only be calculated from Ii(t), i.e.,

ui(t) = Fi(Ii(t); t); i = 1; 2; � � � ; N (2:3)

where Fi(Ii(t); t) denotes a function of Ii(t) and time t.
Obviously, the class of the controllers (2.3) includes the decentralized

linear time-invariant, time-varying, or even nonlinear controllers. In fact,
it is the largest class of decentralized controllers for the system (2.1).

To state the problem studied in this paper, the following de�nition is
required.

De�nition 1 A time-varying vector v(t) is said to be stable with a degree

of exponential stability (DES) �, if there exists a bounded scalar function

f(�) so that

kv(t)k � f(t0)e
��(t�t0); 8t0 � 0; t � t0 (2:4)

where � is a positive real number and kv(t)k denotes the Euclidean norm

of v(t). In addition, if

f(t0) = akv(t)k; 8t0 � 0 (2:5)

where a is a constant, then, the time-varying vector v(t) is said to be uni-

formly stable with a DES �.

Under De�nition 1, stable time-varying vectors have the following useful
properties. Let G1(t) andG2(t) denote two bounded function matrices with
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appropriate dimensions. If time-varying vectors v1(t) and v2(t) are stable
with DES �1 and �2, respectively, then,

(i) the vector
G1(t)v1(t)

is stable with a DES �1; and
(ii) the vector

G1(t)v1(t) +G2(t)v2(t)

is stable with a DES �=minf�1, �2g; and
(iii) the vector �

G1(t)v1(t)
G2(t)v2(t)

�

is stable with a DES �=minf�1, �2g.
In the sequel, a system is said to be stable with a DES � if the state

vector of this system, with zero external input, is stable with a DES � for
any possible initial state. When the DES is not concerned, the system is
said to be stable for any positive real numbers �.

The problem of stabilization of decentralized linear time-invariant sys-
tems can now be stated as follows: Find a decentralized controller (2.3)
for the system (2.1) so that the resulting closed-loop system is stable, or
stable with a prescribed DES.

3 Main Result

In order to state the main result of this paper, we need to introduce the
concept of the digraphs and strongly connectedness of decentralized control
systems [3],[9]. Consider the N -channel decentralized control system (2.1),
the digraph of this system is de�ned as a set of N nodes and some directed
arcs connecting these nodes. The nodes represent the control stations of
the system and directed arcs represent the connections between them. If
Cj(sI �A)�1Bi 6= 0, then there exist a directed arc from node i to node j
(i; j = 1; 2; � � � ; N). If for each distinct pair of i and j, the digraph contains
directed paths from node i to node j and from node j to node i, then the
digraph is said to be strongly connected, and so is called the system (2.1).

If a digrah is not strongly connected, it can always be decomposed
uniquely into a number of strongly connected components, which is the
largest strongly connected sub-digraphs, in the sense that whenever an
extra node is added to such a strongly connected sub-digraph, it will be no
longer strongly connected.

Corresponding to the decomposition of the digraph into a number of
strongly connected components, the system equations (2.1) can be written

4
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Figure 1: Digraph of a Decentralized Control System

as

_x(t) = Ax(t) +

N�X
i=1

B�

i u
�

i (t) (3:1a)

y�i (t) = C�

i x(t); i = 1; 2; � � � ; N� (3:1b)

where N� denotes the number of the strongly connected components of the
system (2.1), u�i (t) 2 Rm�

i and y�i (t) 2 Rr�
i denote the input and the output

vectors consisting of all of the inputs and the outputs in the ith strongly
connected component, respectively, and B�

i and C�

i are the corresponding
input and output matrices.

Suppose that the N control stations of the system (2.1) are aggregated
into the N� control stations as described by (3.1). Then the decentralized
control system (3.1) with N� control stations is called a quotient system of
the system (2.1) [9].

The following example illustrates the concept of quotient systems. Let
i! j stands for the condition Cj(sI �A)�1Bi 6= 0. Suppose that a decen-
tralized control system has 5 local control stations and only the following
conditions hold: 1! 2, 1! 3, 2! 3, 3! 1, 3! 4, 4! 5, 5! 4. Then,
the digraph of the system is as shown in Figure 1. It is easy to see that
this digraph has 2 strongly connected components. Therefore, its quotient
system has 2 aggregated local control stations. For comparison, signal 
ow
graphs of the original decentralized control system and its quotient system
are illustrated in Figure 2 and Figure 3, respectively.

Let �� denote the set of the �xed modes [21] of the quotient system
(3.1), i.e.

�� =
\

K�

i
2R

m
�

i

�r
�

i

�

 
A+

N�X
i=1

B�

iK
�

i C
�

i

!
(3:2)

where �(�) denotes the set of the eigenvalues of the argument matrix and the
intersection takes over all of the matrices K�

i 2 Rm�

i
�r�

i , i = 1; 2; � � � ; N�.

De�nition 2 The �xed modes of the quotient system (3.1) are called quo-
tient �xed modes of the system (2.1).
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Figure 2: A Decentralized Control System
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DECENTRALIZED CONTROL SYSTEMS

It is clear that the set of the quotient �xed modes of the system (2.1)
is a subset of the �xed modes of this system, i.e. �� � �, where � denotes
the set of the �xed modes of the system (2.1) and is given by [21]

� =
\

Ki2R
m
i
�r

i

�

 
A+

NX
i=1

BiKiCi

!
: (3:3)

The main result of this paper is now stated in the following theorem.

Theorem 1 Given the system (2.1), there exists a decentralized controller

(2.3) for this system so that

(i) the closed-loop system is stable with any prescribed DES if and only

if the system (2.1) has no quotient �xed modes, i.e. �� = ;; and

(ii) the closed-loop system is stable if and only if the system (2.1) has

no unstable quotient �xed modes, i.e. �� � C�, where C� denotes the left

half open region of the complex plane.

There exists an obvious analogy between Theorem 1 above and the
celebrated result by Wang and Davison [21, Theorem 1], which may be
stated as follows: Given the system (2.1), there exists a decentralized linear
time-invariant (dynamic) controller for this system so that the closed-loop
system is stable if and only if the system (2.1) has no unstable �xed modes,
i.e. � � C�.

Comparing with Wang and Davison's result [21, Theorem 1] with Theo-
rem 1 of this paper, it is clear that when the considered family of decentral-
ized controllers for the system (2.1) is enlarged from linear time-invariant
ones to the most general ones (2.3), the set of �xed modes � in Wang and
Davison's result [21, Theorem 1] should be replaced by the set of quotient
�xed modes ��, an subset of �.

Using \lifting" technique, Khargonekar and Ozguler [11, Theorem 2]
showed recently that a linear time-invariant system is stabilizable by a

decentralized periodically time-varying controller if and only if there ex-
ists no unstable \incompleting zeros" in the complementary subsystems
which have zero transfer function matrices. Their result gives a precise
statement of the argument claimed by Willems [22]. As shown late in
this paper, the incompleting zero of the complementary subsystems having
zero transfer matrices are exactly the quotient �xed modes de�ned in this
paper. Therefore, Theorem 1 given above extends the results of Willems
[22] and Kargonekar and Ozguler [11], and reveals the further fact that if
a decentralized linear time-invariant system cannot be stabilized by a de-
centralized periodically time-varying controller, then, no matter what kind
of structures of the controllers are employed, there exists no decentralized
controllers which can stabilize the system. In the neat term of quotient
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�xed modes, Theorem 1 of this paper gives a complete answer to the ques-
tion on what kind of �xed modes can, and cannot , be eliminated under
the constraint of decentralized control.

4 Proof of the Main Result

In this section, a proof of Theorem 1 is presented. We �rst introduce a
lemma.

Lemma 1 Consider a decentralized control system, which is subject to un-

measurable disturbances and otherwise identical to the system (2.1), de-

scribed by

_x(t) = Ax(t) +

NX
i=1

Biui(t) + d(t) (4:1a)

yi(t) = Cix(t) + gi(t); i = 1; 2; � � � ; N (4:1b)

where d(t) and gi(t) (i = 1; 2; � � � ; N) are disturbances and are stable with

a DES �. If the system (2.1) is strongly connected, then, there exists a

decentralized controller (2.3) for the system (4.1) so that

(i) the state vector of the closed-loop system is stable with a prescribed

DES � � � if the system (2.1) is centralized controllable and observable;

and

(ii) the state vector of the closed-loop system is stable if the system (2.1)

has no unstable centralized uncontrollable and/or unobservable modes.

Proof of Lemma 1: See the Appendix.

Next, we introduce some preliminary development of the proof of The-
orem 1. From the de�nitions of digraph and quotient systems, it follows
that the transfer function matrix of the system (2.1) is of block triangular
structure when the control stations of the system are ordered appropriately.
Assume that the control stations of the system (2.1) have been ordered ap-
propriately and the state vector has also been chosen appropriately. Then
the matrices in the system equations (2.1) and (3.1) can assume the fol-
lowing triangular structure [3]:

A =

2
6664

~A1 � � � � �

0 ~A2 � � � �
...

...
...

...

0 0 � � � ~AN�

3
7775 ;
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B = [B�

1B
�

2 � � �B
�

N� ] =

2
6664

~B1 � � � � �

0 ~B2 � � � �
...

...
...

...

0 0 � � � ~BN�

3
7775 ;

C =

2
6664

C�

1

C�

2

...
C�

N�

3
7775 =

2
6664

~C1 � � � � �

0 ~C2 � � � �
...

...
...

...

0 0 � � � ~CN�

3
7775 (4:2)

where C = [C 0

1C
0

2 � � �C
0

N ]
0
, B = [B1B2 � � �BN ] and ~Ai, ~Bi and ~Ci (i =

1; 2; � � � ; N�) are nonzero matrices of appropriate dimensions.
Based on the structure of the matrices (4.2), the system equations (2.1)

and (3.1) can equivalently be written as

_xi(t) = ~Aixi(t) + ~Biu
�

i (t) + wi(t) (4:3a)

y�i (t) =
~Cixi(t) + vi(t); i = 1; 2; � � � ; N� (4:3b)

where xi(t), wi(t) and vi(t) are vectors determined correspondingly by (4.2)
and the system equations (2.1) and (3.1).

From equations (4.3), it is clear that the case where the system (2.1) is
controlled by a decentralized controller is equivalent to the case where each
subsystem in (4.3) is controlled by an individual decentralized controller.
Also, it can be seen from (4.2) that, for a certain ith subsystem, wi(t) and
vi(t) will not contain information about xi(t), regardless of the structure
and type of the decentralized controller. In other words, wi(t) and vi(t)
can be considered as exogenic disturbances to their respective subsystems.
Therefore, to analyze the decentralized stabilizability of the global system,
it su�ces to analyze individually the decentralized stabilizability of each
subsystem in (4.3), in the presence of the disturbances. Furthermore, the
system (2.1) is stable or stable with a DES � if and only if the state of each
subsystem (4.3) is stable or stable with DES �i � �, respectively.

It is easy to show that the subsystems described by the triples ( ~Ci, ~Ai,
~Bi), i = 1; 2; � � � ; N�, are strongly connected, with respect to the control
stations in their respective strongly connected components. These subsys-
tems are therefore called strongly connected subsystems of the system (2.1)
[5].

Let �ci denote the set of centralized uncontrollable and/or unobserv-
able modes of the strongly connected subsystem ( ~Ci; ~Ai; ~Bi). Then, the
following holds [21, Lemma 1].

�ci =
\

K�

i
2Rmi

�r
i

�
�
~Ai + ~BiK

�

i
~Ci

�
; i = 1; 2; � � � ; N�: (4:4)
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Using (3.2) and (4.4), it is not di�cult to show that

�� =

N�[
i=1

�ci : (4:5)

Equation (4.5) states that the set of quotient �xed modes of the system
(2.1) is just the union of the centralized uncontrollable and/or unobservable
modes of all of the strongly connected subsystems of this system. Now, we
may apply the well-known Kalman decomposition [8] to the strongly con-
nected subsystems ( ~Ci; ~Ai; ~Bi) and present straightforward proof of Theo-
rem 1.

Proof of the necessity part of Theorem 1:

If the system (2.1) has a quotient �xed mode, �, then by (4.5), there
is at least one strongly connected subsystem of the system (2.1), say, the
subsystem ( ~Cp; ~Ap; ~Bp), which has a centralized uncontrollable and/or un-
observable mode �. Consider now the pth subsystem (4.3) corresponding
to the strongly connected subsystem ( ~Cp; ~Ap; ~Bp). When a decentralized
controller (even a centralized controller) for this subsystem is applied, the
state response of the resulting closed-loop system will contain terms propor-
tional to e�t when the initial state corresponding to the mode � is nonzero.
According to Kalman [8], this statement is true regardless of the structure
and type of the applied controller, i.e., regardless of whether the controller
is linear or nonlinear, dynamic or static, time-varying or time-invariant, or
any other kind of controller. This means that the state of the pth subsys-
tem (4.3) can not be stabilized with an arbitrarily prescribed DES. By the
same reason, if such a � exists and is unstable (� =2 C�), then, that sub-
system can not be stabilized by any controller. This completes the proof
of the necessity part of both statements (i) and (ii) in Theorem 1.

Proof of the su�ciency part of Theorem 1:

For any prescribed positive real number �, let �i, i = 1; 2; � � � ; N�, be
numbers such that � � �1 � �2 � � � � � �N� . In the following, it is shown
that if �� = ;, then there exists individual decentralized controllers for
each subsystem (4.3) so that the states of the resulting closed-loop systems
are stable with DES �1; �2; � � � ; �N� , respectively.

If �� = ;, then, by (4.5), each strongly connected subsystem of the
system (2.1) is centralized controllable and observable. Consider �rst the
N�-th subsystem in (4.3) where wN�(t) = vN�(t) = 0. According to Lemma
1, there exists a decentralized controller for this subsystem so that the state
xN�(t) of the resulting closed-loop system is stable with a DES �N� . Then,
by noticing the matrix structure in (4.2) and using the properties of stable
time-invariant vectors, it follows that the disturbances wN��1(t) and the
vN��1(t) to (N� � 1)-th subsystem in (4.3) are stable with a DES �N� .
Using Lemma 1 again, it follows that there exists a decentralized controller
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for the (N� � 1)-th subsystem in (4.3) so that the state of the resulting
closed-loop system is stable with a DES �N��1.

Repeating the above arguments for the rest of the subsystems in (4.3),
i.e. the subsystems in (4.3) with i = N��2; N��3; � � � ; 2; 1; it is concluded
that there exists N� decentralized controllers for each subsystem in (4.3),
so that the states of the resulting closed-loop systems are stable with DES
�N� ; �N��1; �N��2; � � � ; �2; �1; respectively. This implies that there exists a
decentralized controller (2.3) for system (2.1) so that the resulting closed-
loop system is stable with the prescribed DES �. This completes the proof
of the su�ciency part of statement (i) in Theorem 1.

If the system (2.1) has no unstable quotient �xed modes, then, by (4.5),
each strongly connected subsystem of the system (2.1) has no unstable
centralized uncontrollable and/or unobservable modes. Then, by using
Kalman's decomposition methods [8] and arguments similar to the above,
it is not di�cult to show that there exists a decentralized controller for
the system (2.1) so that the resulting closed-loop system is stable. This
completes the proof of the su�ciency part of statement (ii) in Theorem 1,
and consequently the proof of Theorem 1.

Khargonekar and Ozgular [11] showed that a linear time-invariant sys-
tem can be stabilized by a decentralized periodically time-varying controller
if and only if there exist no unstable \incompleting zero" in the comple-
mentary subsystems having zero transfer function matrices. It is shown
in the following that these \incompleting zero" are exactly the unstable
quotient �xed modes de�ned in this paper.

Consider the decentralized control system (2.1) with the matrices A,
B and C in the form given by (4.2). Then, according to the de�nition of
strongly connected digraphs, all the complementary subsystems with zero
transfer function matrices have the form (Ĉj ; A; B̂j), j 2 f1; 2; � � � ; N�g,
with

B̂j =
�
B�

1 B
�

2 � � � ; B
�

j

�
and Ĉj =

2
6664

C�

j+1

C�

j+2

...;
C�

N�

3
7775 (4:6)

where B�

i (i = 1; 2; � � � ; j) and C�

i (i = j + 1; j + 2; � � � ; N�) are matrices
given in (4.2).

Consider now the system matrix

Sj =

�
�I �A B̂j

�Ĉj 0

�
: (4:7)

By the de�nition given in [11], a number � is an incompleting zero of the
complementary subsystems (Ĉj ; A; B̂j) i� the rank of the matrix Sj is less
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than n, the dimension of the matrix A. Due to the triangular structure of
the matrices A, B and C as shown in (4.2), we have

RankSj = Rank

2
6664

M1 � � � � �

0 M2 � � � �
...

...
...

...
0 0 � � � MN�

3
7775 (4:8)

where
Mi =

�
�I � ~Ai

~Bi

�
; i = 1; 2; � � � ; j

Mi =

�
�I � ~Ai

� ~Ci

�
; i = j + 1; j + 2; � � � ; N�:

Using a result by Gong and Aldeen [5, Lemma A1], it can be shown easily
that the rank of the matrix Sj is less than n if and only if there exists
a matrix Mi (i 2 f1; 2; � � � ; N�g) which doesn't have full rank. Then,
by using the well-known rank tests for controllability and observability of
the system ( ~Ci; ~Ai; ~Bi) and the result of (4.5), it is concluded that the
set of the incompleting zeros of the complementary subsystems with zero
transfer function matrices are exactly the set of the quotient �xed modes
of the system (2.1).

5 Conclusion

The problem of stabilization of linear time-invariant systems under gen-
eral decentralized feedback schemes is investigated in this paper. By using
the notion of quotient �xed modes, the paper presented a necessary and
su�cient condition for the existence of a decentralized controller to stabi-
lize a given linear time-invariant system (Theorem 1). This result gives a
complete answer to the question on what kind of �xed modes can actually
be eliminated under the constraint of decentralized control. The argu-
ment by Willems [22] is now extended to the following: \Structure �xed
modes" caused by the fact that the system is not strongly connected are
also �xed modes with respect to decentralized time-varying output feed-
back controllers; and in fact they are �xed modes with respect to all kind
of decentralized controllers, including nonlinear ones.

Appendix

Proof of Lemma 1.

In this appendix, a proof of Lemma 1 is provided. Assume that the
system (2.1) is centralized controllable and observable, and strongly con-
nected. According to Anderson and Moore [2], there exists a decentralized

12
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time-varying feedback controller, described by

ui(t) = K̂i(t)yi(t) + ûi(t); i = 1; 2; � � � ; N (A:1)

where K̂ are bounded matrices, for system (2.1) so that the resulting time-
varying closed-loop system, described by

_x(t) = Âx(t) +

NX
i=1

Biûi(t) (A:2a)

yi(t) = Cix(t); i = 1; 2; � � � ; N (A:2b)

where Â = A +
PN

i=1BiK̂i(t)Ci, is uniformly completely controllable and
observable by an arbitrarily predetermined control station of the system,
say by control station 1.

Then, according to Ikeda et al. [7], there exists a controller at control
station 1 for the system (A.2) so that the closed-loop system is uniformly
stable with any prescribed DES. Such a controller may be described by

û1(t) = F (t)z(t) (A:3a)

ûi(t) = 0; i = 2; 3; � � � ; N (A:3b)

where F (t) is a bounded feedback gain matrix and z(t) is the estimate of
the state vector x(t) obtained by the observer

_z(t) = (Â(t)�H(t)C1)z(t) +B1û1(t) +H(t)y1(t)

whereH(t) is a bounded observer gain matrix. Then the closed-loop system
is given by

_xc(t) = Ac(t)xc(t) (A:4)

where

xc(t) =

�
x(t)
z(t)

�
; Ac(t) =

�
Â(t) B1F (t)

H(t)C1 Â(t)�H(t)C1 +B1F (t)

�
:

Now, apply the decentralized controller as described by (A.1) and (A.3)
to the system (4.1). This leads to the following closed-loop system.

_xc(t) = Ac(t)xc(t) + wc(t) (A:5)

where

wc(t) =

�
d(t) +

PN

i=1BiK̂i(t)gi(t)
H(t)g1(t)

�
:

As d(t) and gi(t) (i = 1; 2; � � � ; N) are all stable with a DES �, then, by
noticing the property of stable time-varying vectors, it follows that wc(t)
is stable with a DES �.

13
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For a given number � � �, let � be a number such that � 6= � and
� = minf�; �g. Design the controller (A.3) so that the system (A.4) is
uniformly stable with a DES �. Let �(�; �) denote the transition matrix
associated with the system (A.4). Since the system (A.4) is uniformly
stable with a DES �, it is easy to show that

k�(t; t0)k � ae��(t�t0); 8t0; t � t0 (A:6)

where a is a constant. The state response of the system (A.5) is given by

xc(t) = �(t; t0)xc(t0) +

Z t

t0

�(t; �)wc(�)d�; 8t0; t � t0: (A:7)

As wc(t) is stable with a DES �, i.e.

kwc(t)k � f1(t0)e
��(t�t0); 8t0; t � t0 (A:8)

where f1(�) is a bounded function, it follows that

kxc(t)k � akxc(t0)ke
��(t�t0) + f1(t0)

Z t

t0

e��(t��)e��(��t0)d�

= akxc(t0)ke
��(t�t0) +

af1(t0)

� � �

n
e��(t�t0) � e��(t�t0)

o
� f2(t0)e

��(t�t0) (A:9)

where f2(�) is a bounded function given by

f2(t0) = akxc(t0)k+
af1(t0)

j�� �j
:

Equation (A.9) implies that the system (A.5), and therefore the system
(4.1), is stable with the given DES �. This completes the proof of part (i)
of Lemma 1.

For the case where the system (2.1) is not centralized controllable and
observable, assume that the system has no unstable centralized uncon-
trollable and/or unobservable modes and strongly connected. Then, by
using Kalman's canonical system decomposition form [8] and the similar
arguments to the above, it is not di�cult to show that there exists a de-
centralized controller which stabilizes the system (4.1). This completes the
proof of Lemma 1.
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