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A Sliding Horizon

Feedback Control Problem

with Feedforward and Disturbance�

William N. Patten Luther W. White

Introduction

We consider a technique producing a near optimal tracking controller that

can be implemented on line. A quadratic performance measure is adopted

with a �nite horizon. The variational form of the state-costate optimality

conditions is approximated using the time �nite element method, obtain-

ing thereby an open loop solution. The approximate solution then is used

as a control input to the system over the length of time spanned by the

subinterval associated with the �rst time �nite element. The state of the

controlled system at the end of this subinterval is in turn treated as a

new initial condition and the suboptimal control is recomputed for the a

�nite horizon problem over an interval of the same length but translated

by the length of the above subinterval. Using updated trajectory and dis-

turbance information a new open loop solution is computed and employed

as described above. This process repeated again and again is referred to

as a sliding horizon solution. The method utilizes a �xed gain discrete

feedback/feedforward control design in which the feedforward component

produces control inputs re
ecting the known future of the desired trajec-

tory.

The approximation of the quadratic regulator problem via the time �-

nite element method has been discussed in the literature [1,3,5]. In these

cases it appears that the Q-matrix is taken to by symmetric and positive

de�nite. We consider Q only to be semide�nite. An appropriate approxi-

mation theory is obtained by perturbing to the positive de�nite case. We

present a rate for the resulting approximations based on the perturbation
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variable. In this way we may justify the consideration of the positive de�-

nite case. Engineering applications of the time �nite element method have

been suggested in [6,12-15].

The literature includes many articles describing tracking control de-

signs. The standard LQR tracking problem is 
awed by a required knowl-

edge of the reference trajectory for all future time. Recent research has

been aimed at developing methods that provide tracking when the desired

trajectory is known only over a �nite future interval of time. For exam-

ple, Lee, et al. [10] describe the use of an instantaneous optimal controller

producing a terrain tracking design for an aircraft, without requiring the

solution of a two point boundary value problem. Kwon, et al. [8,9] have

examined the use of an optimal receding horizon control design for tracking

and disturbance rejection. However, the design requires the solution of a

Ricatti type equation online. The adaptation of the sliding horizon was

�rst discussed in [13,14]. In [15] the technique of sliding horizon control

was extended to systems with previewable disturbances.

In the remainder of this section we pose the basic optimal control prob-

lem considered in this study and specify the regularity assumptions we

require. In Section 1 we discuss the time �nite element approximation for

Q positive de�nite. In Section 2 we develop an approximation theory for

Q only semide�nite based on perturbations to the positive de�nite case.

We obtain results that establish convergence and a rate of convergence as

the perturbation is allowed to approach zero. In Section 3 estimates are

studied for the sliding horizon problem. Finally, in Section 4 we discuss the

numerical implementation of the method and present an application to the

variational approximation of the terrain tracking problem for an aircraft.

We denote by En the vector space IRn with Euclidean norm juj =
(
Pn
i=1 u

2
i )

1=2. The space of linear operators on En we denote by L(En)
and the space of linear operators from Em into En by L(Em; En). Consider
control of the system on a sample interval (t0; T0)

x0(t) = A(t)x(t) + b(t)u(t) + d(t) in (t0; T0)

x(t0) = x0 :
(0:1)

Although (0.1) is solved on intervals of length T = T0 � t0, we make the

following assumptions:

t 7! A(t) belongs to H1(0;1;L(En)) \ L1(0;1;L(En))

t 7! b(t) belongs to H1(0;1;L(Em; En)) \ L1(0;1;L(Em; En)) (R:1)

t 7! d(t) belongs to H1(0;1;En) \ L1(0;1;En) :

The real-valued function t 7! u(t) serves as a control with

u 2 L2(t0; T0;E
m) :
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The solution t 7! x(t) = x(t;u) 2 En associated with the control u has

meaning as the unique solution of the integral equation

x(t) = x0 +

Z t

t0

[A(s)x(s) = b(s)u(s) = d(s)] ds : (0:2)

Hence, x belongs to H1(t0; T0;E
n). The control criterion considered in this

study is

J(u) =

Z T0

t0

f(x(t;u)� z(t))�Q(t)x(t;u)� z(t))

+ u(t)�R(t)u(t)g dt;

(0:3)

where the superscript \*" denotes the transpose of a vector or matrix. In

general, for each t, Q(t) is assumed to be a positive semide�nite symmetric

n � n matrix unless otherwise speci�ed, and R(t) is a positive de�nite

symmetric m � m matrix. Hence, there exists a positive real number �

such that for any t 2 [0;1] and any v 2 Em

v�R(t)v � �jvj2 : (0:4)

We assume that

t 7! Q(t) is in H1(0;1;L(En)) \ L1(0;1;L(En))

t 7! R(t) is in H1(0;1;L(Em)) \ L1(0;1;L(Em)) (R:2)

t 7! z(t) is in H1(0;1;En):

De�ne the following quantities:

�A = kAkL1(0;1;L(En)) ;

�Q = kQkL1(0;1;L(En)) ;

�b = kbkL2(0;1;L(Em;En)) ;

and

�d = kdkL2(0;1;En) :

Given 0 � t0 < T0 < +1 and the interval (t0; T0), we use the notation

H = L2(t0; T0;E
n) ; U = L2(t0; T0;E

m) ; and V = H2(t0; T0;E
n)

to denote the Hilbert spaces without explicit reference to the particular

interval unless it is necessary to avoid ambiguities.

Finally, the linear quadratic regulator problem is posed as the mini-

mization problem given by

Find u0 2 L
2(t0; T0;E

m) such that

J(u0) = in�mumfJ(y) :u 2 L2(t0; T0;E
m)g :

(0:5)
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Furthermore, it is well-known that this problem has a unique solution under

the assumptions expressed above [11].

1 Preliminaries

In this section we consider without loss of generality the time �nite element

approximation of optimal controls on the interval (0; T ). We assume that

the matrix-valued function t 7! Q(t) is symmetric and positive de�nite on

[0; T ]. The �nite element solution in this case is investigated by Borsarge

and Johnson [1]. The approach here is similar to that in [1] in that we

also focus on a weak formulation of the optimality conditions, (1.16). In

[1] this formulation is used to obtain error estimates for time �nite element

approximations of the optimal control. We include this discussion since it

provides the framework of elliptic boundary value problems that motivates

our analysis in the next section where Q is assumed only to be semide�nite.

This viewpoint enables us to provide useful estimates to improve the error

estimates in [1] and to analyze the sliding horizon approach. Accordingly,

we assume there exists a positive number �1 such that for each t 2 [0; T ]

and any u 2 En

u�Q(t)u � �1juj
2 : (1:1)

Our starting point is the well-known optimality conditions for the op-

timal control problem (0.5).

x0 = A(t)x+b(t)u+ d(t) in (0; T )

x(0) = x0
(1:2)

�p0 = A(t)�p+Q(t)(x � z) in (0; T )

p(T ) = 0
(1:3)

u = �R�1(t)b(t)�p in (0; T ): (1:4)

Hence, the state-costate system is given by

x0 = Ax�Bp+ d in (0; T ) (1:5)

�p0 = A�p+Q(x� z) in (0; T ) (1:6)

with initial conditions and �nal conditions

x(0) = x0 p(T ) = 0 (1:7)

where

B = bR�1b� ;
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and where we have suppressed the dependence on t. Since these equations

are obtained from (1.2){(1.4), there exists a solution to (1.5){(1.7). We

note that B de�ned in (1.7) is symmetric and positive semide�nite. We

give for reference in the following sections estimates for x and p based on

Gronwall inequality arguments.

Lemma 1.1 The solutions x and p of the initial value problems (1.2) and

(1.3) satisfy the inequalities

jx(t)j � (jx0j+ �bkukU + �d) exp(�At) (1:8)

and

jp(t)j � (�QkxkH + kzkH) exp(�A(T � t)) ; (1:9)

respectively for any t 2 [0; T ].

Since Q is positive de�nite, we may solve (1.6) for x

x = �Q�1(p0 +A�p) + z

and substitute into (1.5) to obtain the second-order equation

�(Q�1(p0 +A�p))0 +AQ�1(p0 +A�p) +Bp = ~d (1:10)

where ~d = �z0 + Az + d. We supplement equation (1.10) with boundary

conditions
p0(0) +A�p(0) = Q(z(0)� x0)

p(T ) = 0 :
(1:11)

De�ne the spaces

V0 = V0R = f 2 V : (T ) = 0g

and

V0Lf 2 V : (0) = 0g

with the norm

k k2V0 =

Z T

0

j 0(t)j2 dt :

and the norm for V0L de�ned similarly. We note, for example, for any

 2 V0L and for any t 2 [0; T ]

j (t)j �
1

2
T 1=2k kV0L (1:12)

and

k kH �
2

�
Tk kV0L (1:13)
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with similar inequalities for V0. Further, the symmetric bilinear form on

V0 given by

[ ; '] =

Z T

0

f( 0(t)+A(t)� (t))�Q�1(t)('0(t) +A(t)�'(t))

+  �(t)B(t)'(t)g dt

(1:14)

is continuous. Certainly, it is clear that there is a positive number �1 such

that

[';  ] � �1k'kV0k kV0 : (1:15)

We may now give the weak formulation of (1.10){(1.11) as the varia-

tional problem:

Find p 2 V0 such that

[p;  ] =

Z T

0

~d� dt + (z(0)� x0)
� (0) (1:16)

for any  2 V0.
We note that

[p; p] =

Z T

0

f(x(t)� z(t))�Q(t)(x(t) � z(t)) + p(t)�B(t)p(t)g dt

� �1kx� zk2H

and

[p; p] � �1kx� zk2H : (1:17)

On the other hand, from Lemma 1.1 we may obtain the estimate that

jp(t)j � �Qkx� zkH exp(�AT ) ;

and it follows that

kpkH � �QT
1=2 exp(�AT )kx� zkH : (1:18)

Finally, it follows that

Z T

0

jp0(t)j2 dt =

Z T

0

(A�p+Q(x� z))�(A�p+Q(x� z)) dt

�

Z T

0

fp�AA�p+ (x� z)�Q2(x� z)

+ p�AQ(x� z) + (x� z)�QA(pg dt:
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Applying Cauchy's inequality, there is positive constant � such that

Z T

0

jp0(t)j2 dt � �

Z T

0

(jp(t)j2 + jx� zj2) dt:

Applying (1.18), we have then

Z T

0

jp0(t)j2 dt � �(�2QT exp(2�AT )1)kx� zk2H ;

and from (1.17) it follows that

Z T

0

jp0(t)j2 dt � �0[p; p] (1:19)

with �0 = �(�2QT exp(2�AT ) + 1)=�1.

The following estimates hold for the solution of (1.16).

Proposition 1.1 Let p be the solution of (1.16). Then

kpkV � �0C( ~d; T; x
0; z) (1:20)

where

C( ~d; T; x0; z) =
2

�
Tk ~dkH +

1

2
T 1=2jx0 � z(0)j :

From (1.10), (1.20), and the di�erentiability assumptions on Q, A and B,

we have the following result from (1.6).

Proposition 1.2 Let p be the solution of (1.16) and let (R.1) and (R.2)

hold. Then

kp00kH � C0( ~d; T; x
0; z) (1:21)

where C0( ~d; T; x
0; z) may also depend on the A, Q�1, B, and their deriva-

tives.

Finally, it is useful to estimate the dependence of p upon the initial

condition. This may be accomplished by an argument similar to that above.

Hence, for i = 1; 2 we have

�(Q�1(p0i +A�pi))
0 +AQ�1(p0i +A�pi) +Bpi = ~d

pi(T ) = 0

p0i(0) +A�pi(0) = Q(z(0)� x0i ) :

(1:22)

Proposition 1.3 Let p1 and p2 be solutions of (1.22) for x01 and x02,

respectively. Then

kp1 � p2kV0 �
1

2
�0T

1=2jx01 � x02j : (1:23)
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Proof: Setting � = p1�p2 and � = x01�x
0
2, we obtain the boundary value

problem
�(Q�1(�0 +A��))0+Aq�1(�0 +A��) +B� = 0

�(T ) = 0

�0(0)+A��(0) = Q� :

Using the same argument as that used to obtain (1.20) we obtain the result.

Corollary 1.4 The solution to (1.5){(1.7) is unique.

For the purpose of approximation, we introduce a �nite dimensional

subspace V0
N of V0, and we look for a solution pN such that

[pN ;  ] =

Z T0

t0

~d� dt + ((x0 � z(0))� (0)

for all  2 V0
N . By Cea's lemma [4] we obtain

kp� pNkV0 � (�21=�0)
1=2 inffk � pkV0 : 2 V0

Ng: (1:24)

We make the following assumption on the approximation space V0
N .

The subspace V0
N has the property that there is an operator IN :

V0 7! V0
N such that if ' 2 V0 and k'00kH < +1 cf. [16], then

kIN'� 'kV0 � C(N)k'00kH (A:1)

where C(N) ! 0 as N ! +1. We may now obtain the following

estimate.

Proposition 1.4 Let p be the solution of (1.16) and suppose that (R.1),

(R.2) and (A.1) hold. Then

kp� pNkV0 � (�21=�0)
1=2 C(N)C0(d; T; x

0; z) : (1:25)

Proof: The result follows from (1.24) under the assumption (A.1) and

Proposition 1.5.

We now use

uN = �R�1b�pN (1:26)

as an approximation of the optimal control. The resulting state xN is

obtained as xN = x(�; uN ). That is, by solving the initial boundary value

problem

xN
0

(t) = A(t)xN (t) + b(t)uN (t) + d(t)

xN (0) = x0 :
(1:27)
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Thus, we may determine bounds on the error in the control and the result-

ing state from (1.26) and Gronwall's inequality.

Lemma 1.5 Under the assumptions of Proposition 1.4, we have the esti-

mates

kuN � ukV0 � ��b(�
2
1=�0)

1=2 C(N)C0(d; T; x
0; z) : (1:28)

jxN (t)� x(t)j � �a�b exp(�aT )

Z
_0juN (s)� u(s)j ds (1:29)

+ �bju
N(t)� u(t)j

and

jxN
0

(t)� x0(t)j � �ajx
N (t)� x(t)j + �bju

N (t)� u(t)j : (1:30)

Proposition 1.6 Under the assumption of Proposition 1.4 there exists a

positive number eK that depends on x0, z, d, T , A, Q, b such that

kuN � ukV0 �
eK C(N)

kxN � xkW 1(0;T ;E) � eKC(N) :

2 Tracking with Disturbance

In this section we consider the case in which the matrix Q is only symmetric

positive semide�nite. Our approach is to perturb the system so that the

resulting Q is positive de�nite. The results from the previous section may

now be applied to obtain numerical solutions. We then show that the

original problem is the limiting case of the perturbed problems. Further,

we obtain an estimate of the perturbation error.

Our starting point is the system of state-costate equations (1.5){(1.7)

that we restate as

x0 �Ax +Bp = d in (0; T )

p0 +A�p+Qx = Qz in (0; T ) (2:1)

x(0) = x0

p(T ) = 0 :

We note that for each t 2 [0; T ], the matrix B(t) = b(t)R�1b(t)� is an n�n
positive semide�nite matrix.
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Remark 2.1 As noted, there is a unique solution to (0.5). It is charac-

terized by the optimality conditions of the form (1.2){(1.4). This does not

depend on the positive de�niteness of Q. Thus, we conclude there exists a

solution to (2.1).

To solve the system (2.1) numerically, we look for a solution of the weak

formulation of (2.1). First, we change variables to obtain a homogeneous

boundary condition by setting x = y+x0. In this way we obtain the system

y0 �Ay +Bp = d+Ax0

p0 +A�p+Qy = �Qx0 (2:2)

y(0) = 0

p(T ) = 0:

De�ne the space

VV = V0L � V0R :

To obtain the weak formulation of (2.1), let  2 V0R and ' 2 V0L and

consider

Z T

0

 �(y0 �Ay +Bp) dt +

Z T

0

'�(p0 +A�p+Qy) dt

=

Z T

0

f �(d+Ax0)� '�Qx0g dt :

(2:3)

We may rewrite (2.3) in terms of a bilinear form on VV. Setting � =

co`(';  ) and Y = co`(y; p) in VV, the bilinear form is given by

A(�; Y ) =

Z T

0

['� �]

�
q d

dt
+A�

d
dt
�A B

��
y

p

�
dt : (2:4)

The weak form of the problem may be written more compactly as

Find Y 2 VV such that for any � 2 VV

A(�; Y ) = h�; fi (2:5)

where

f = co`(�Qx0; d+Ax0) :

The solvability of (2.5) depends on whether A(�; �) is positive de�nite. For
the present case, we have

A(Y; Y ) =

Z T

0

fp�(y0 �Ay +Bp) + y�(p0 +A�p+Qy)g dt :
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Integrating the �rst term by parts, we see that

A(Y; Y ) =

Z T

0

fy�Qy + p�Bpg dt :

We note that the matrices Q and B in (2.6) are symmetric but only positive

semide�nite. Hence, the uniqueness and well-posedness of solutions to (2.5)

cannot be guaranteed. (We already know that there exists a solution.)

As an alternative, we consider the regularization of the optimality con-

ditions (2.2) by introducing the matrix-valued function

Q�(t) = Q(t) + �I

in place of Q. Thus, we obtain

x0 �Ax +Bp = d in (0; T )

p0 +A�p+Q�x = Q�z in (0; T ) (2:7)

x(0) = x0

p(T ) = 0 :

Of course these equations are the state-costate equations of the optimal

control problem

Find u� 2 U such that

J�(u�) = in�mumfJ�(u) :u 2 Ug (2:8)

where

J�(u) =

Z T

0

f(x(u)� z)�Q�(x(u)� z) + u�Rug dt : (2:9)

Note that the perturbation is only in the functional and does not involve

the equation (0.1). Hence, it follows that

J�(u) = J(u) + �kx(u)� zk2H : (2:10)

The optimality conditions are given by

x0� �Ax� � bu� = d in (0; T )

p0� +A�p� +Q�x� = Q�z in (0; T )

u� = �R�1b�p� in (0; T ) (2:11)

x(0) = x0

p(T ) = 0 ;

11
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and (2.8){(2.9) has a unique solution.

For � > 0, the existence of a unique solution to (2.11) follows from the

results of Section 1.

Lemma 2.1 For any � > 0 there exist a unique solution (x�; p�) to the

state-costate equations (2.11). Furthermore, de�ning the symmetric bilin-

ear form

[ ; ']� =

Z T

0

f( 0(t) +A(t)� (t))�Q�1� (t)('0(t) +A(t)�'(t))

 (t)
�B(t)'(t)g dt ;

we obtain the estimate

kp0�k
2
H �

�

�
C(d; T; x0; z) : (2:12)

We now investigate the convergence of the solutions of (2.7) as � ! 0.

Our approach is to use the result that for �xed � � 0, u� is the unique

solution of (2.8).

Proposition 2.2 Let � ! 0. Then x(u�) ! x(u0) and p� ! p0 in En

uniformly for t 2 [0; T ] and u� ! u0 in Em uniformly in [0; T ].

Proof: In the case of null control in which u = the zero function �, we

note
J�(�) = J(�) + �kx(�)� zk2H

� �

Z T

0

ju�(t)j
2 dt :

Hence, it follows that there is a sequence fu�ig
1

i=1 such that u�i ! ~u0
weakly in H . Further, it follows from Gronwall's inequality that the se-

quence fx(u�ig
1

i=1 converges strongly in H to x(~u0). From (2.10) it follows

that for any u 2 H

J�(u) � J�(u�) = J(u�) + �kx(u�)� zk2H :

The weak lower semicontinuity of the Hilbert space norm implies that for

any u 2 H
J(u) � limJ�(u�) � J(~u0) :

We conclude that ~u0 is the unique optimal control for the unperturbed

problem, and in fact u� ! u0 weakly as �! 0.

On the other hand, the solution of the adjoint equation in (2.11) satis�es

p�(t) = �

Z T

t

fA�(s)p�(s) +Q�(x(s;u�)� z(s))g ds :

12
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Thus, x(u�) ! x(u0) in H implies again from Gronwall's inequality that

p� ! p0 uniformly in t 2 [0; T ] as �! 0. Now appealing to equation (2.11)

we see that, in fact, it must be true that

u� ! u0

uniformly in [0; T ] as �! 0. Continuing it follows that x� ! x0 uniformly

in [0; T ].

The above theorem yields the convergence of u� to u0 as � approaches

zero. In fact, we can determine a rate of convergence. Since we know from

the previous section that the state-costate system of the perturbed problem

has a unique solution, our approach is to examine the terms in a formal

�-series expansion of x� and p�. Speci�cally, consider the expansions

x� = x0 + �x1 + �2x2 + � � �+ �`x` + � � �

and

p� = p0 + �p1 + �2p2 + � � �+ �`p` + � � � :

We obtain conditions such that the above series converge in H . Hence,

substituting these expansions into the equations of (2.7) and collecting like

terms, we formally obtain the following systems:

For ` = 0

x00 �Ax0 +Bp0 = d

p00 +A�p0 +Qx0 = Qz (2:14)

x0(0) = x0

p0(T ) = 0 ;

for ` = 1

x01 �Ax1 +Bp1 = 0

p01 +A�p1 +Qx1 + x0 = z (2:15)

x1(0) = 0

p1(T ) = 0 ;

and for ` � 2

x0` �Ax` +Bp` = 0

p0` +A�p` +Qx` + x`�1 = 0 (2:16)

x`(0) = 0

p`(T ) = 0 :

13
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It will be useful also to state (2.14){(2.16) in terms of the corresponding

systems of integral equations. For ` = 0

x0(t) = x0 +

Z t

0

[A(s)x0(s)�B(s)p0(s) + d(s)] ds

p0(t) = �

Z T

t

[A(s)�p0(s) +Q(s)(x0(s)� z(s))] ds

(2:17)

for ` = 1

x1(t) =

Z t

0

[A(s)x1(s)�B(s)p1(s)] ds

p1(t) = �

Z T

t

[A(s)�p1(s) +Q(s)x1(s) + (x0(s)� z(s))] ds

(2:18)

for ` � 2

x`(t) =

Z t

0

[A(s)x`(s)�B(s)p`(s)] ds

p`(t) = �

Z T

t

[A(s)�p`(s) +Q(s)x`(s) + x`�1(s))] ds :

(2:19)

Theorem 2.4 Let K0 be such that

K0 �maxfkx0kH ; kx1kH ; kx1kL1(0;T ;IRn

)
; kx1kL1(0;T ;IRn

)
;

kp0kH ; kp1kH ; kp0kL1(0;T ;IRn

)
; kp1kL1(0;T ;IRn

)
g ;

K = exp(�AT ) ;

� = maxf1; �Qg ;

(2:20)

and without loss of generality let

� = 2�bK
2T=� > 1 :

Then for any � 2 [0; 1
�
)

kx� � x0kH � �K0

and

kp� � p0kH � �K0(1 + 2�KT ) :

We present the proof of this theorem through several lemmas.

14
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Lemma 2.5 Let ` � 2 then

kx`kH � 2�2bK
2��1Tkx`�1kH (2:21)

and

kp`kH � �KT 1=2(kx`kH + kx`�1kH) : (2:22)

Proof: Consider the `th system given in (2.16) and observe that this sys-

tem constitutes the state-costate system for the following control problem.

The underlying control system is given by

x0 �Ax = bu

x(0) = 0
(2:23)

with the optimization problem given by:

Find u` 2 U such that J`(u`) = inffJ`(u) :u 2 Ug (2:24)

where J`(�) is given by

J`(u) =

Z T

0

fx�(Qx� 2x`�1) + u�Rug dt : (2:25)

Clearly, there exists a unique solution u` to the problem (2.23){(2.25) with

the optimality system in which x` = x(u`) on (0; T ) is given by

x0` �Ax` = bu`

p0` +A�p` +Qx` = �x`�1

x`(0) = 0 (2:26)

p`(T ) = 0

u` = �R�1b�p` :

Applying inequality (1.8) with x0 = 0 and d = 0 and inequality (1.9) with

z = x`�1, we see that

kx`kH � �bKT
1=2ku`kU (2:27)

and

kp`kH � �KT 1=2(kx`kH + kx`�1kH)

which gives (2.22). Now from the optimality of u`, it follows that with � =

the zero control

0 = J`(�) � J`(u`) :

15
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Hence, we �nd that

0 � �2kx`�1kHkx`kH + �ku`k
2
U :

From the inequality (2.27) it follows

ku`kU � 2��1�bKT
1=2kx`�1kH :

Substituting back into (2.27), we obtain the recursion estimate (2.21).

From the recursion relation above and the assumptions of Theorem 2.4,

we have the following result.

Lemma 2.6 Under the hypotheses of Theorem 2.4 and with

� = 2�2bK
2��1T (2:28)

the following hold

kx0kH � K0

kx1kH � K0

kx2kH � �K0

...

kx`kH � �`�1K0

and

kp0kH � K0

kp1kH � K0

kp2kH � �KT�K0

...

kp`kH � 2�KT�`�1K0 :

Let us de�ne the nth partial sums in H

Xn = x0 + �x1 + � � �+ �nxn (2:29)

and

Pn = p0 + �p1 + � � �+ �npn : (2:30)

Lemma 2.7 Let � 2 (0; 1=�) where � satis�es (2.28) and let the hypotheses

of Theorem 2.4 hold. Then the series given in (2.29) and (2.30) converge

in H to x� and p�, respectively as n!1.

16



SLIDING HORIZON FEEDBACK CONTROL PROBLEM

Proof: Since �� 2 (0; 1), we see that the series (2.29) and (2.30) are

absolutely convergent. From the completeness of H of H , it follows that

the series converge strongly in H . Thus,

Xn ! X and Pn ! P in H :

By summing the integral equations ` = 0, 1; : : : ; n, we see that

Xn(t) = x0 +

Z t

0

[A(s)Xn(s)�B(s)Pn(s) + d(s)] ds

Pn(t) = �

Z T

t

[A(s)�Pn(s) +Q(s)(Xn(s)� z(s))] ds :

(2:31)

It follows that in the limit (2.27) yields

X (t) = x0 +

Z t

0

[A(s)X (s) �B(s)P(s) + d(s)] ds

P(t) = �

Z T

t

[A(s)�P(s) +Q(s)(X (s) � z(s))] ds :

(2:32)

In fact (2.32) implies that X and P are solutions of (2.7). Hence, from

uniqueness we see that x� = X and p� = P .

We now give the proof of Theorem 2.4.

Proof of Theorem 2.4: Consider the expansions

x� � x0 = �x1 + �2x2 + � � �

and

p� � p0 = �p1 + �2 + � � � :

From Lemma 2.6, we see that

kx� � x0kH � �K0 + �2�K0 + � � �+ �`�`�1K0 + � � �

� �K0f1 + ��+ � � �+ (��)`�1 + � � �g

� �K0

1

1� ��
:

For p� we have similarly

kp� � p0kH � �K0 + �2(2�KT�K0) + � � �+

+ �`(2�KT�`�1K0) + � � �

� �K0f1 + 2�KT
��

1� ��
g ;

17



W.N. PATTEN AND L.W. WHITE

and the result follows.

Finally, we obtain the estimates assumed in Theorem 2.4.

Lemma 2.8 There exists a positive number K0 satisfying (2.20) that

depends only on T , �A, �Q, �b, �d, x
0, z, and �.

Proof: Consider the optimality conditions

x00 �Ax0 � bu0 = d

x0(0) = x0

p00 +A�p0 +Qx0 = Qz

p0(T ) = 0

u0 = �R�1b�p0 :

The control problem associated with this system is given as follows. The

underlying system is
x0 �Ax� bu = d

x(0) = x0

with optimization problem

Find u0 2 U such that J0(u0) = inffJ0(u) :u 2 Ug

where J0(�) is given by

J0(u) =

Z T

0

[(x� z)�Q(x� z) + u�Ru] dt :

From the optimality of u0 we see that, with � the zero element in U ,

bK0 = J0(�) � J0(u0) � �ku0k
2
U :

From Gronwall's inequality Lemma 1.1 with x0 = x(u0)

jx0(t) � (jx0j+ �b( bK0=�)
1=2 + �d) exp(�AT ) = K01

and

jp0(t)j � T 1=2�Q(kx0kH + kzkH) exp(�AT ) = K02

for any t 2 [0; T ].

By a similar argument, we obtain positive constants K11 and K12 such

that

jx1(t)j � K11

and

18
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jp1(t)j � K12

for any t 2 [0; T ]. Finally, choose K0 such that

K0 =maxfK01;K02; T
1=2K01; T

1=2K02;

K11;K12; T
1=2K11; T

1=2K12g

to obtain the result.

Corollary 2.9 Let the assumptions of Theorem 2.4 hold. Then there is a

positive constant K1 such that

kx0� � x00kH � �K1 ;

kp0� � p00kH � �K1 ;

and

kp00� � p000kH � �K2

where K1 and K2 depend only on the problem parameters and � 2 (0; 1=�)

where � satis�es (2.28).

Proof: This result follows immediately by applying Theorem 2.4 to (2.11)

and (2.1).

Remark 2.10 Note that this improves the estimate on p� obtained above

from elliptic estimates. Thus, we have

kp0�kH � eK1

and

kp00� kH � eK2

where eK1 and eK2 depend on problem parameters and are independent of

�.

To approximate numerically the solution of (2.1), we approximate the

associated perturbed problem for � 2 (0; 1=�). This allows us to utilize

the theory from Section 1 along with the estimates of Theorem 2.4 and

Corollary 2.9.

Theorem 2.11 Let � 2 (0; 1=�) and suppose that (R.1), (R.2), and (A.1)

hold. Then

kp0 � pN� kV0 � �K0 + C(N) eK2 :

Proof: From the above estimates and (A.1), we have

kp0 � pN� kV0 � kp0 � p�kV0 + kp� � pN� kV0

� �K0 + C(N)kp00� kH :
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From Remark 2.10 the result follows.

Finally, if we set � = C(N), we immediately have the approximation

result.

Corollary 2.12 Let N be su�ciently large that C(N) 2 (0; 1=�) and

suppose that (R.1), (R.2), and (A.1) hold. Then with � = C(N)

kp0 � pN� kV0 � C(N)K3

where K3 = K0 + eK2.

3 Approximate Sliding Horizon Control

Estimate on the Approximate Sliding Horizon Control

The estimates of the previous section under the assumptions (R.1) and

(R.2) depend only on the length of the time interval (as well as d, x0, and

z) and not on its location. In this section we consider the relation between

the optimal controls on subintervals (t0; T0) and (t1; T1) of (0;+1) that

are of the same length

T = T0 � t0 = T1 � t1

but overlap so that

t0 � t1 � T0 � T1

and are such that the initial condition of the problem on (t1; T1) is the state

of the problem on (t0; T0) evaluated at t = t1. Denote by � = T1 � T0 =

t1 � t0. We assume that

Q = Q(t) satis�es (1:1) for each t 2 [0;+1)

and will indicate the di�erences in results when Q is only positive semidef-

inite.

On (t0; T0) we consider the control system

x00 = Ax0 + bu+ d0

x0(t0) = x0
(3:1)

under the criterion

J0(u) =

Z T0

t0

f(x0(t : u)� z(t))�Q(t)(x0(t;u)� z(t))

+ u(t)�R(t)u(t)g dt :
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While on the interval (t1; T1), we have the problem

x01 = Ax1 + bu+ d1

x1(t1) = x0(t1)
(3:2)

with criterion

J1(u) =

Z T1

t1

f(x1(t;u)� z(t))�Q(t)(x1(t;u)� z(t))

+ u(t)�R(t)u(t)g dt:

Introducing the adjoint variables p0 and p1 for the problems, we obtain

state-costate equations

x00 = Ax0 �Bp0 + d0 in (t0; T0) (3:3)

x0(t0) = x0

�p00 = A�p0 +Q(x0 � z) in (t0; T0) (3:4)

p0(T0) = 0

and

x01 = Ax1 �Bp1 + d1 in (t1;1 ) (3:5)

x1(t1) = x0(t1)

�p01 = A�p1 +Q(x1 � z) in (t1; T1)

p1(T1) = 0 ;

respectively. Correspondingly, we obtain the boundary value problems

�(Q�1(p00 +A�p0))
0 +AQ�1(p00 +A�p0) +Bp0 = ~d0 in (t0; T0)

p0(T0) = 0 (3:7)

p00(t0) +A�p0(t0) = Q(z(t0)� x0);

and

�(Q�1(p01 +A�p1))
0 +AQ�1(p01 +A�p1) +Bp1 = ~d1 in (t1; T1)

p1(T1) = 0 (3:8)

p01(t1) +A�p1(t1) = Q(z(t1)� x0(t1))

respectively, similar to (1.6) in Section 1. Here

~d0 = d0 � z0 +Az in (t0; T0)

and

~d1 = d1 � z0 +Az in (t1; T1) :
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On the intersection (t1; T0) of the intervals (t0; T0) and (t1; T1), set

x = x1 � x0; p = p1 � p0; and d = ~d0 � ~d1 :

Thus, subtracting the state-costate equations (3.3), (3.4) from (3.5), (3.6),

we obtain the system

x0 �Ax�Bp+ d in (t1; T0)

x(t1) = 0
(3:9)

�p0 = A�p+Qx in (t1; T0)

p(T0) = p1(T0)
(3:10)

and the boundary value problem in (t1; T0)

1(Q�1(p0 +A�p))0 +AQ�1(p0 +A�p) +Bp = d in (t1; T0)

p(T0) = p1(T0) (3:11)

p0(t1) +A�p(t1) = 0:

It is convenient to introduce � = p � p1(T0) so that we may consider a

problem with homogeneous essential boundary conditions in (t1; T0)

�Q�1(�0 +A��)0 +AQ�1(�0 +A��) +B� = �

�(T0) = 0 (3:12)

�0(t1) +A��(t1) = �A�(t1)p1(T0)

where

� = d+ [(Q�1A�)0 � (AQ�1A� +B)]p1(T0) :

De�ne the bilinear form

[�; �] =

Z T0

t1

f(�0 +A��)�Q�1(�0 +A��) + ��B�g dt :

By arguments analogous to those of Section 1, we may establish the exis-

tence of a positive number ~� that depends on problem parameters �1, �A,

�Q, �b, �d, and T such that

[�; �] � ~�

Z T0

t1

�(t)��(t) dt:

It follows that there exist positive constants K1 and K2 depending on

problem parameters such that

[�; �] � (K1jp1(T0)j+K2kdkH)(

Z T0

t1

j�0(t)j2 dt)1=2 ;
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and thus, from (3.13)

~�(

Z T0

t1

j�0(t)j2 dt)1=2 � K1jp1(T0)j+K2kdkH :

Noting that Z T0

t1

j�0(t)j2 dt =

Z T0

t1

jp0(t)j2 dt ;

we have the result.

Proposition 3.1 Let Q satisfy (1.1). Then

kp1 � p0kV � (1=~�)fK1jp1(T0)j+K2kdkHg :

To complete the estimate, we bound jp1(T0)j.

Lemma 3.2 There is a positive constant that C depending on T , x0, and

problem parameters such that for any t 2 (t0; T0)

jx0(t)j � C :

Proof: From the optimality of u0, we have for the zero function �

J0(�) � J0(u0) :

Accordingly, it follows that

K0 = J0(�) � �ku0k
2
U0
: (3:15)

We note that the value of J0(�) depends only on T , x0, z and d.

Applying Lemma 1.1, we have

jx0(t)j � (jx0j+ �bku0kU0 + �d) exp(�At) (3:16)

and for any t 2 (t0; T0)

jx0(t)j � (jx0j+ �b(K0=�)
1=2 + �d) exp(�AT ) : (3:17)

Lemma 3.3 There exist a positive constant C depending on T and problem

parameters such that

jp1(T0)j � C� :
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Proof: We note that

p1(t) =

Z T1

t

[A(s)�p1(s) +Q(s)(x1(s)� z(s))] ds

and

jp1(t)j �

Z T1

t

[�Ajp1(s)j+ �Qjx1(s)� z(s)j] ds : (3:20)

By elliptic estimates for the solution of (3.8), we may obtain as in Propo-

sition 1.1 Z T1

t1

jp01(t)j
2 dt � �0C( ~d1; T; x1(t1); z) : (3:21)

Since x1(t1) = x0(t1), we see from Lemma 3.2 that jx1(t1)j � C. It follows
from (1.8) that for any t 2 [t1; T1]

jx1(t)j � (jx0(t1)j+ �b(K0=�)
1=2 + �d) exp(�AT )

and from Lemma 3.2

jx1(t)j � (C + �b(K0=�)
1=2 + �d) exp(�AT ) : (3:22)

Estimates (3.21) and (3.22) in (3.20) yield the result.

The estimate comparing the costates on the interval of intersection now

follows from Proposition 3.1 and Lemma 3.3.

Theorem 3.4 There exist a constant K depending only on problem pa-

rameters such that

kp1 � p0kV = K(� + kdkH) : (3:23)

Remark 3.5 If the disturbances d0 and d1 are the same over (t1; T0), then

kdkH = 0 and

kp1 � p0kV � K� :

The estimates above involve Q�1. If Q is only semide�nite, then the

estimate for the perturbed case with Q� = Q+ �I

kp1 � p0kV �
K

�
(� + kdkH) :

Now we turn to bounding the di�erence between the costate and the

Galerkin approximation of the computed costate on the interval (t1; T1).

To this end, we introduce the elliptic problem on the interval (t1; T1) with
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boundary condition involving xN0 (t1) where u
N
0 and xN0 is determined by

equations as in (1.26) and (1.27)

�Q�1(~p01 +A�~p1)
0 +AQ�1(~p01 +A�~p1) +B~p1 = d1 in (t1; T1)

~p1(T1) = 0 (3:24)

~p01(t1) +A�~p1(t)1) = Q(z(t1)� xN0 (t1)) :

We refer to ~p1 as the compute costate. We estimate the error between p1
and ~p1 using Proposition 1.4 by

kp1 � ~p1kV1 �
1

2
�0T

1=2jxN0 (t1)� x0(t1)j :

We now apply Proposition 1.6 to obtain the following.

Lemma 3.6 Under the assumptions of Proposition 1.4 the estimate

kp1 � ~p1kV1 �
1

2
�0T

1=2 eKC(N) (3:25)

holds.

The error of the Galerkin approximation now is obtained in the follow-

ing.

Theorem 3.7 Under the assumptions of Proposition 1.4, there exits a

positive constant eK depending on problem parameters such that

kp1 � ~pN1 kV1 �
eKC(N) :

Proof: The result follows from the triangle inequality

kp1 � ~pN1 kV1 � kp1 � ~p1kV1 + k~p1 � pN1 kV1 ;

Lemma 3.6, and the Galerkin estimate Proposition 1.4.

We may also compare the Galerkin approximation of the computed

costate on (t1; T1) with the costate on (t0; T0) over the interval of intersec-

tion (t1; T0) to measure the e�ect of the disturbance.

Theorem 3.8 There exists positive numbers K0 and K1 such that

kp0 � ~pN1 kV � K04+K1 C(N) :

Proof: Estimating the quantity kp0 � ~pN1 kV is accomplished by bounding

the terms on the right side of the inequality

kp0 � ~pN1 kV � kp0 � p1kV + kp1 � ~p1kV1 + k~p1 � ~pN1 kV1 : (3:26)
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The �rst term is bounded by (3.23). The second term is estimated by

(3.25). Finally, the last term is dominated means of an argument similar

to (1.25).

From relations similar to (1.4) and (1.26) and the assumptions (0.4)

and (R.2), we have the following.

Corollary 3.9 Under the assumptions of Proposition 1.4 there exists bK0,bK1 and bK2 such that

ku1 � ~uN1 kV1 �
bK0 C(N)

and

ku0 = ~uN1 kV � eK14+ bK2 C(N) :

This section determines two bounds for sliding horizon control. The

�rst isolates the approximation of the computed costate with the costate

of the problem on (t1; T1). This measures error introduced by using an

approximation of the state function of the problem on (t0; T0) at t1 as an

initial condition for the problem on (t1; T1). This error is combined with

the error from the Galerkin approximation in Theorem 3.7. Hence, this

estimate bounds the error between the computed sliding horizon controller

and the sliding horizon controller for a single step and therefore represents

a local error. On the other hand, the estimate contained in Theorem 3.8

compares the approximation of the computed adjoint with the original

adjoint over the interval (t1; T0). It includes the e�ects that may arise if

the disturbance varies over sampling intervals.

Finally, we mention that if the state of the plant is sampled at t1 and

this measurement gives enough information to determine the whole state,

then these observations may be used in place of the computed xN0 (t1). The

error from this method is determined by how well the plant is modeled by

the state equations.

4 A Numerical Feedback Control Algorithm

In this section we present an algorithm based on the sliding horizon concept

for feedback with disturbance and feedforward. It is based on the �nite

element solution of an elliptic boundary value problem such as that in

(1.10), (1.11) coupled with equation (1.25). We also apply this algorithm

to the problem of aircraft terrain tracking.

Our starting point is the boundary value system on a sample interval

(t̂; bT ) where x̂ is the initial value of the state equation.

�(Q�1(p0 +A�p))0 +AQ�1(p0 +A�p) +Bp = ~d in (t̂; bT )
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p0(t̂) +A�p(t̂) = Q(t̂)(z(t̂)� x̂) (4:1)

p( bT ) = 0 :

The variational form of (4.1) is given in terms of the bilinear form [�; �]
de�ned in (1.14) over the space V0 given in Section 1. Thus, we have the

statement
Find p 2 V0 such that for any  2 V0

[p;  ] = ( ~d;  )H + (x̂� z(t̂)) (t̂) :
(4:2)

Let f�jg
M
j=1 be a basis for the �nite dimensional subspace V M0 and V0

and let pM =
PM
i=1 ci�i. The Galerkin approximation pM to p over V M0

satis�es the equation

[pM ; �j ] = ( ~d; �j)H + (x̂� z(t̂))�j(t̂) (4:3)

for j = 1; : : : ;M . De�ne the symmetric, positive de�nite M �M matrix

G by

Gij = [�i; �j ] ;

the n�M matrix-valued function � by

�(t) = [�1(t); : : : ; �M (t)]

with

b�� =
2
64
�1(t̂)

�

...

�M (t̂)�

3
75 :

We also de�ne the M -vectors eD by

eDi = ( ~d; �i)H for i = 1; : : : ;M

and

Dz = eD � b��z(t̂) :
We rewrite (4.3) as

Gc = Dz + b��x̂ (4:4)

and represent the function pN (t) by

pN (t) = �(t)c ; (4:5)

where c = co`(c1; : : : ; cM ).
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Using (1.26), (1.27) and (4.5), we obtain the initial-value problem

xN
0

(t) = A(t)xN (t)�B(t)�(t)c + d(t)

xN (t̂) = x̂:
(4:6)

Now given the value x̂ = x0 at t̂ = t0, a one step method for obtaining an

approximating value at t1 = t0 + h, x1 �= xN (t1) may be expressed by the

equation

x1 = �x0 � �c+ � (4:7)

where

� is an n � n invertible matrix that may depend on the matrix A, t0,

and h

� is an n �M matrix that may depend on the matrices A, B, �, t0,

and h

d is an n-vector that may depend on the matrix A, the n-vector d, t0,

and h.

The algorithm is realized by the following procedure. Given t0, x0, and

h with j = 0

(i) t̂ = tj
x̂ = xj

(ii) Calculate ĉ :Gĉ = Dz + b��x̂
Set cj = ĉ

(iii) Calculate xj+1 :xj+1 = �x̂� �ĉ+ �

(iv) Update j = j + 1, tj = tj + h, and xj = xj+1. Return to (i).

We note that solving equation (4.4) for c and substituting into equation

(4.7) leads to the recursion relation

xj+1 = (�� �G�1b��)xj + (� �G�1Dz)

and then

Gcj+1 = b��xj+1 +Dz :

We now apply the above algorithm to the problem of aircraft terrain

tracking control. A linear model of the longitudinal dynamics of the vehicle

is assumed (�g. 1). The state is de�ned as

x =

2
64
h

�

q

�

3
75

and the control

u = �e
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where x1 = h is the vertical height above the terrain, x2 = � is the pitch

angle, x3 = q is the pitch rate, and x4 = � is the angle of attack. The

control u = �e is the elevator de
ection angle. The state equation takes

the form

x0 = Ax+ bu

where

A =

2
64
0 V 0 �V
0 0 1 0

0 0 Mq M�

0 0 1 Z�=V

3
75

and

b =

2
64

0

0

ME

Ze=V

3
75 :

The variable V is the forward velocity of the aircraft (200 m/sec). Stability

derivative valves for the AFTI-16 are used [5]. They are M1 = �:4932,
M� = 1:4168, ME = �1:645, Z�=V = �:5164, and Ze=V = �:0717.

The following quadratic performance measure is employed [2]

J =
1

2

Z T0

t0

(Q1 � (h� (r1 + c))2 +Q2�
2 +Q3q

2 +Q4�
2 +R�2e) dt

where c = 20m corresponding to the desired elevation above the terrain.

The signi�cant components of the state vector are h and �. Accordingly,

the penalties Q1 and Q2 are set as

Q1 = 102 and Q2 = 103 :

The penalties Q3 and Q4 may be viewed as perturbations. Hence, Q3 and

Q4 in the present example are taken as

Q3 = Q4 = 10�1 :

Computational experience indicates that Q3 and Q4 may be taken even

smaller. The performance of the design is simulated using a �nite forward

preview of the horizon of 1200m. The craft is 
ying straight and level

when a ramp-type terrain feature is detected. The trajectory of the center

of mass of the plane is shown in Fig. 2. The approximate solution employs

a 20 element discretization of the horizon interval. The \dip" down before

the climb re
ects a momentum trade o�. The pitch, angle of attach and

elevator time histories are shown in Fig. 3. Simulations with shorter hori-

zons (300m and 600m) have also been conducted. While not shown, those

results indicate that the design results within acceptable aerodynamics.
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5 Conclusions

A method is developed that employs a sliding horizon procedure with a

time �nite element approximate solution of the open loop quadratic track-

ing problem with a �nite horizon. This method produces an online discrete

feedback/feedforward controller that makes it possible to achieve optimal

terrain tracking and/or command following. The time �nite element pro-

cedure is extended to problems with semide�nite Q-matrices by means of

a perturbation technique that produces errors no worse than those intro-

duced by �nite element approximations. Estimates of errors introduced in

approximations for sliding horizon controllers are established using elliptic

methods. A numerical example is presented for aircraft terrain tracking

control.
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