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Frequency Domain Criteria for Hurwitz

Stability of Generalized Disc Polynomials
�
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Abstract

This paper derives a frequency domain criterion for Hurwitz sta-

bility of polynomials with complex coe�cients in Lp domains for a

�xed real p 2 [1;1] (generalized disc polynomials). The frequency

domain criterion only requires one frequency domain plot to check

the robustness of generalized disc polynomials for all real p 2 [1;1].

Furthermore the largest allowable perturbation bounds for all real

p 2 [1;1] can be graphically estimated from the same frequency

domain plot.

1 Introduction

The stability of polynomial sets with complex coe�cients in Lp domains

for a �xed real p 2 [1;1] has been satisfactorily tackled for the special case

of p =1 and p = 2. Kharitonov [5] has shown that a polynomial set with

complex coe�cients in L1 domains or interval polynomials is Hurwitz sta-

ble if and only if eight speci�c polynomials are Hurwitz stable. Recently,

Chapellat et al. [2] have shown that a polynomial set with complex coef-

�cients in L2 domains or disc polynomials is Hurwitz stable if and only if

the nominal polynomial is Hurwitz stable and the H1-norms of two spe-

ci�c stable rational functions are less than one. However the criteria of

Chapellat et al. [2] for p = 2 appears unrelated to the well-known result of

Kharitonov [5] for p =1.

This paper derives a frequency domain criterion for Hurwitz stability of

polynomial sets with complex coe�cients in Lp domains for a �xed real p 2
[1;1] (generalized disc polynomials). The frequency domain criterion only

requires one frequency domain plot to check the robustness of generalized

disc polynomials for all real p 2 [1;1]. Furthermore, the largest allowable

perturbation bounds for all real p 2 [1;1] can be graphically estimated
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from the same frequency domain plot. The results are useful in several

engineering applications where it is required to ensure that the zeros of a

polynomial set with complex coe�cients belong to the open left half plane.

Such requirements are necessary, for example, in the theory of whirling

shafts [3], in the design of asymmetric bandpass and bandrejection �lters

from a complex coe�cient low-pass design [1], and models of vibrational

systems and stable control of such systems [4].

The paper is organized as follows. In section 2, the notation to be used is

de�ned. The required supporting results are derived in section 3. In section

4, the frequency domain criterion for Hurwitz stability of generalized disc

polynomials is derived. In section 5, we show that the frequency domain

criterion is also applicable to handle a wider class of polynomial sets. The

use of the frequency domain criterion for Hurwitz stability of generalized

disc polynomials is illustrated in section 6.

2 Notation

Consider the complex polynomial set for a �xed real p 2 [1;1]

P (s; p; r) = tns
n + tn�1s

n�1 + : : :+ t0 ; tn 6= 0 (2.1)

where ti = _ti + �ti. The coe�cients _ti ; i = 0; : : : ; n are �xed complex

coe�cients and �ti 2 Di(p) where Di(p) is a Lp domain in the complex

plane of radius �ir � 0, centred at the origin and de�ned by

Di(p) = fz = x+ jy : [jxjp + jyjp]1=p � �irg (2.2)

where �i � 0 for i = 1; : : : ; n; �0 > 0 and r > 0. Let

S(w) =

nX
i=0

�ijwji (2.3)

and

P0(s) =

nX
i=0

_tis
i : (2.4)

Note that S(w) > 0 for all real w.

De�ne

P (w) =
P0(s = jw)

S(w)
(2.5)

and Lp(r) to be a Lp domain in the complex plane centred at the origin of

radius r > 0 and de�ned by

Lp(r) = fz = x+ jy : [jxjp + jyjp]1=p � rg : (2.6)
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3 Supporting Results

In this section, we develop the geometrical tools necessary for attaining the

ultimate objective.

Lemma 3.1 Suppose p is a �xed real number which lies in the range [1;1].

Let Ui be a Lp domain in the complex plane of radius Ri � 0, centred at

the origin and de�ned by Lp(Ri) in (2.6).

Then the sum of the Lp domains
Pn

i=0 Ui is also a Lp domain in the

complex plane of radius Sr � 0, centred at the origin and de�ned by Lp(Sr)

in (2.6) where

Sr =

nX
i=0

Ri :

Proof: First note that the result is geometrically obvious for

1X
i=0

Ui = U0 + U1 :

By induction, this implies that the general result is also correct since

i+1X
i=0

Ui =

iX
i=0

Ui + Ui+1 :

Lemma 3.2 Suppose p is a �xed real number which lies in the range [1;1].

Let

�P (w) =

nX
i=0

�ti(jw)
i

where �ti 2 Di(p) ; i = 0; : : : ; n.

Then

�P (w) = S(w)Lp(r) :

Proof: First note that �ti(jw)
i is a Lp domain in the complex plane of

radius �irjwji � 0, centred at the origin and de�ned by Lp(�irjwji) in

(2.6).

Using Lemma 3.1, �P (w) is also a Lp domain in the complex plane of

radius

(

nX
i=0

�ijwji)r = S(w)r

centred at the origin and de�ned by Lp(S(w)r) in (2.6). Since

Lp(S(w)r) = S(w)Lp(r) ;
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it also follows that

�P (w) = S(w)Lp(r) :

Lemma 3.3 Let F be a simply connected region in the complex plane and

Fc be the complex plane not including the open region F. De�ne the common

boundary of F and Fc to be �F . Let B(s) be a connected set of degree q

polynomials. Then every polynomial P (s) 2 B(s) has m(0 � m � q) zeros

in the open region F and q-m zeros in the open region Fc if and only if

1. There exists at least one polynomial P0(s) 2 B(s) which has the spec-

i�ed distribution of zeros;

2. For every s 2 �F , the image of B(s) does not include the origin of

the complex plane.

Proof: The necessity of conditions (1) and (2) is obvious. To prove su�-

ciency, we proceed by contradiction. Suppose conditions (1) and (2) hold

but there exists P1(s) 2 B(s) which does not have the speci�ed distribution

of zeros. We need to show that there exists some P (s) 2 B(s) such that

P (s0) = 0 where s0 2 �F . By connectedness of B(s), we can construct a

continuous path � in B(s) connecting P0(s) and P1(s). Then, � induces at

least one continuous path in the complex plane connecting a zero of P0(s)

in the open region F (or open region Fc) with a zero of P1(s) in Fc(or F).

This guarantees the existence of some P (s) 2 � with P (s) = 0 for at least

one value of s 2 �F .

4 Frequency Domain Criterion

We now derive the frequency domain criterion for robust stability of gen-

eralized disc polynomials for a �xed real p 2 [1;1].

Theorem 4.1 Suppose p is a �xed real number which lies in the range

[1;1]. Then every polynomial in the polynomial set P(s,p,r) in (2.1) has

m(0 � m � n) zeros in the open left half plane and n-m zeros in the open

right half plane if and only if

1. P0(s) has the same distribution of zeros;

2. The polar plot P (w) in (2.5) does not intersect the domain Lp(r)

de�ned in (2.6) for all real w.

Proof: First note that the frequency domain image of P(s,p,r) in (2.1) is

given by

P (s = jw; p; r) = P0(s = jw) + �P (w)
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where

�P (w) =

nX
i=0

�ti(jw)
i

and �ti 2 Di(p) ; i = 0; : : : ; n. Using Lemma 3.2,

P (s = jw; p; r) = P0(s = jw) + S(w)Lp(r) :

Scaling the frequency domain image of P (s = jw; p; r) above by 1=S(w)

gives
P (s = jw; p; r)

S(w)
=

P0(w)

S(w)
+ Lp(r) = P (w) + Lp(r) :

Since S(w) > 0 for all real w, the scaled frequency domain image above

does not include the origin of the complex plane if and only if the original

frequency domain image does not include the origin of the complex plane.

Furthermore

�Lp(r) = Lp(r) ;

which implies that
P (s = jw; p; r)

S(w)
6= 0

is equivalent to

P (w) 6= Lp(r) :

It also follows that the frequency domain image of P (s = jw; p; r) does

not include the origin of the complex plane for all real w if and only if

condition (2) of Theorem 4.1 holds. The proof is completed by noting

that every polynomial in a connected set of degree n polynomials has a

speci�ed number of zeros in the open left half plane and the other zeros in

the open right half plane if and only if the frequency domain image of the

connected set of degree n polynomials does not include the origin of the

complex plane for all real w and at least one polynomial in the connected

set of polynomials has the speci�ed distribution of zeros (Lemma 3.3).

Remark 4.1 First note that the polar plot P (w) = P0(s = jw)=S(w) is

independent of p: Therefore only one polar plot is required to check the ro-

bustness of generalized disc polynomials for all real p 2 [1;1]. The largest

disc polynomial set P (s; p; r) for any �xed real p 2 [1;1], say P (s; p; rm),

which has the same distribution of zeros as P0(s), can be graphically esti-

mated by �nding the radius rm of the largest Lp domain centred at the ori-

gin which can be inscribed within the polar plot P (w) = P0(s = jw)=S(w).

This is the geometrical implication of Theorem 4.1.

5



C.B. SOH

Remark 4.2 Consider the contour of the left half plane speci�ed by

s1 = jw ; �1 < w <1
and

s2 = lim
R!1

Rexp(j�) ; �=2 � � � 3�=2 :

Since

ARG(P0(s = jw)) = ARG(P0(s = jw)=S(w)) ;

the number of encirclements of the origin of the complex plane by the polar

plot P0(s = jw) as w increases from �1 to +1 is the same as the number

of encirclements, say k; of the origin of the complex plane by the polar

plot P (w) = P0(s = jw)=S(w) as w increases from �1 to +1. Using

the Argument Principle, a necessary and su�cient condition for P0(s) to

have m zeros in the open left half plane and n � m zeros in the open

right half plane is the condition that k + n=2 = m and P0(s = jw) (or

P (w) = P0(s = jw)=S(w)) does not touch the origin of the complex plane

for all real w. This is because the number of encirclements of the origin

of the complex plane by P0(s) as s traverses the segment s2 once in the

counter-clockwise direction is n=2 and P0(s = jw)=S(w) 6= 0 for all real

w implies that P0(s) has no zeros on the imaginary axis. Hence condition

(1) of Theorem 4.1 can be replaced with the condition that k + n=2 = m

since condition (2) of Theorem 4.1 guarantees that P0(s) has no zeros on

the imaginary axis.

Remark 4.3 Consider

P0(s = jw) = R(w) + jI(w)

where R(w) and I(w) are real polynomials speci�ed by

R(w) =

n1X
i=0

aiw
i ; an1 6= 0

and

I(w) =

n2X
i=0

biw
i ; bn2 6= 0 :

Marden [6] has shown that all the zeros of R(w) lie within the circle centred

at the origin of radius r1 given by

r1 = 1 + max
i=0;:::;n1�1

fjai=anjg :

It also follows that all the real zeros of R(w) lie on the real segment

(�r1; r1). Similarly, all the real zeros of I(w) lie on the real segment

(�r2; r2) where
r2 = 1 + max

i=0;:::;n2�1
fjbi=bn2 jg :
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Let

r3 = maxfr1; r2g :
Then the polar plot of P0(s = jw) (or P (w) = P0(s = jw)=S(w)) only

intersects the real and imaginary axis for �nite values of w in the range

(�r3; r3). This implies that the polar plot P (w) in condition (2) of The-

orem 4.1 is not necessarily to be plotted for all real w and should �rst be

plotted from w = �r3 to w = r3 and adjusted accordingly. Furthermore,

since the number of encirclements of the origin of the complex plane by

the polar plot P (w) as w increases from �1 to +1 is the same as the

number of encirclements of the origin of the complex plane, say k; by the

straight line segment connecting the asymptotic value of limw!�1 P (w)

with P (w = �r3), polar plot P (w) from w = �r3 to w = r3 and the

straight line segment connecting P (w = r3) with the asymptotic value

of limw!1 P (w), condition (1) of Theorem 4.1 can be replaced with the

condition k + n=2 = m.

5 Extensions

We now extend the frequency domain criterion to be applicable to handle

a linear combination of generalized disc polynomial sets for a �xed real

p 2 [1;1] described by

H(s; p; r) =

dX
k=1

Qk(s)Pk(s; p; r) (5.1)

where

Pk(s; p; r) =

n(k)X
i=0

tkis
i (5.2)

and Qk(s) ; k = 1; : : : ; d are �xed complex polynomials such that

Qk(s = jw) = Re(Qk(s = jw))

for all real w or

Qk(s = jw) = Im(Qk(s = jw))

for all real w. The coe�cients tki = _tki + �tki ; i = 0; : : : ; n(k) where
_tki ; i = 0; : : : ; n(k) are �xed complex coe�cients and �tki 2 Dki(p) where

Dki(p) is a Lp domain in the complex plane of radius �kir � 0, centred at

the origin and de�ned by

Dki(p) = fz = x+ jy : [jxjp + jyjp]1=p � �kirg (5.3)

where �ki � 0 for i = 0; : : : ; n(k) and r > 0.
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Let

G(w) =

dX
k=1

jQk(s = jw)j(
n(k)X
i=0

�kijwji) (5.4)

and

H0(s) =

dX
k=1

Qk(s)P0k(s) (5.5)

where

P0k(s) =

n(k)X
i=0

_tkis
i :

Note that G(w) � 0 for all real w.

De�ne the frequency domain plot

H(w) =

�
H0(s = jw)=G(w) ; G(w) > 0

Hc(w) ; G(w) = 0
(5.6)

where

Hc(w) =

�
(
p
2r + 1)H0(s = jw)=(jH0(s = jw)j) ; H0(s = jw) 6= 0

0 ; H0(s = jw) = 0

(5.7)

We now derive the frequency domain criterion to check the robustness

of a linear combination of generalized disc polynomial sets.

Theorem 5.1 Suppose p is a �xed real number which lies in the range

[1;1] and H(s,p,r) in (5.1) is a polynomial set of degree q. Then every

polynomial in the polynomial set H(s,p,r) in (5.1) has m(0 � m � q) zeros

in the open left half plane and q-m zeros in the open right half plane if and

only if

1. H0(s) has the same distribution of zeros;

2. The polar plot H(w) de�ned in (5.6) does not intersect the Lp domain

Lp(r) de�ned in (2.6) for all real w.

Proof: First note that from the proof of Theorem 4.1, the frequency

domain image of Pk(s; p; r) in (5.2) is given by

Pk(s = jw; p; r) = P0k(s = jw) + �Pk(w)

where

�Pk(w) = (

n(k)X
i=0

�kijwji)Lp(r) :
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First note that

Lp(r) = �Lp(r) = jLp(r) = �jLp(r) :

Since

Qk(s = jw) = Re(Qk(s = jw)) ;

for all real w or

Qk(s = jw) = Im(Qk(s = jw))

for all real w, we have

Qk(s = jw)�Pk(w) = jQk(s = jw)j(
n(k)X
i=0

�kijwji)Lp(r) ;

which implies that the frequency domain image of H(s,p,r) in (5.1) is given

by (see Lemma 3.1 and the proof of Theorem 4.1)

H(s = jw; p; r) = H0(s = jw) +G(w)Lp(r) :

The proof then follows similar arguments as used in the proof of Theo-

rem 4.1 for the case of G(w) > 0. For the case of G(w) = 0 ,H(s =

jw; p; r) = H0(s = jw). We now recall that the intersection of the polar

plot H(w) with the region Lp(r) in (2.6) is equivalent to H(s = jw; p; r)

containing the origin of the complex plane. Since H(s = jw; p; r) = H0(s =

jw) for this special case, we only need to consider the case of the polar plot

H(w) = Hc(w) = (
p
2r+1)H0(s = jw)=(jH0(s = jw)j) ; H0(s = jw) 6= 0 :

Note that jHc(w)j =
p
2r + 1 implies that Hc(w) lies outside the region

Lp(r) in (2.6) for any �xed real p 2 [1;1]. This is because Lp(r) � L1(r)

for any real p 2 [1;1) and the points (�r;�r) in L1(r) with euclidean

distance of
p
2r are the furthest from the origin. Hence Hc(w) 62 L1(r)

which is equivalent to H0(s = jw) 6= 0.

Remark 5.1 Remarks 4.1 and 4.3 are also applicable.

Remark 5.2 For the special case of p = 1, Soh [7] has shown that

H(s;1; r) in (5.1) is Hurwitz stable if and only if 2�4d speci�c polynomi-

als are Hurwitz stable which is a generalization of the result of Kharitonov

[5].

We now generalize Theorem 4.1 to take into consideration the case

where the nonnegative weights �i's are dependent on each other.
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Theorem 5.2 Consider again the polynomial set P(s,p,r) in (2.1). Sup-

pose p is a �xed real number which lies in the range [1;1] and the nonneg-

ative weights �i's satisfy the following constraints

�i = 0 ; i = b; : : : ; n

[

b�1X
i=0

j�i=�ija]1=a � � ; b > 1

where � > 0 and �i > 0 for all i = 0; : : : ; b� 1 and a is a �xed real number

which lies in the range (0;1]. Then every polynomial in the polynomial set

P(s,p,r) in (2.1) has m(0 � m � n) zeros in the open left half plane and

n-m zeros in the open right half plane if and only if

1. P0(s) has the same distribution of zeros;

2. The polar plot

P (w) =
P0(s = jw)

S(w; a)

where

S(w; a) =

�
�(
Pb�1

i=0 (�ijwji)f )1=f ; a > 1

� maxi=0;:::;b�1(�ijwji) ; 0 < a � 1

where f is a real value satisfying

1=f + 1=a = 1

does not intersect the domain Lp(r) de�ned in (2.6) for all real w.

Proof: First note that

S(w; a) = maxf
b�1X
i=0

�ijwjig

subject to the constraints on the nonnegative weights �i's in Theorem 5.2

[8]. Since � > 0, S(w; a) is real and greater than zero. Furthermore note

that S(w; a)r is the radius of the Lp domain that encloses the frequency

domain images P (s = jw; p; r) in Theorem 4.1 for all �xed real a 2 (0;1].

Therefore the polar plot in condition (2) of Theorem 4.1 that is most likely

to intersect the domain Lp(r) is given by the polar plot in condition (2) of

Theorem 5.2.

Remark 5.3 Remarks 4.1,4.2 and 4.3 are also applicable.
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Remark 5.4 Suppose the nonnegative weights �i's are subject to d con-

straints

fi(�n; �n�1; : : : ; �0) ; i = 1; : : : ; d : (5.8)

Let the maximization of (
Pb�1

i=0 �ijwji) subject to the d constraints in 5.8

be denoted by S(�n; �n�1; : : : ; �0; w). Suppose S(�n; �n�1; : : : ; �0; w) > 0.

Then condition (1) of Theorem 5.2 and the condition that the polar plot

P (w) =
P0(s = jw)

S(�n; �n�1; : : : ; �0; w)

does not intersect the domain Lp(r) de�ned in (2.6) for all real w are

necessary and su�cient conditions for every polynomial in P (s; p; r) in (2.1)

for a �xed real p 2 [1;1] and with nonnegative weights �i's satisfying the

d constraints in 5.8to have the same distribution of zeros as P0(s).

We now generalize Theorem 5.1 to take into consideration the case of

the nonnegative weights �ki's being dependent on each other.

Theorem 5.3 Consider again the polynomial set H(s,p,r) in (5.1) with

the nonnegative weights �ki's for each k 2 [1; d] satisfying dk constraints

fki(�k) ; i = 1; : : : ; dk where �Tk = [�kn(k); : : : ; �k0]. Let the maximiza-

tion of (
Pn(k)

i=0 �kijwji) for each k 2 [1; d] subject to the dk constraints

fki(�k) ; i = 1; : : : ; dk be denoted by Ek(w). Suppose p is a �xed real

number which lies in the range [1;1] and the polynomial set H(s,p,r) is a

polynomial set of degree q. Then every polynomial in the polynomial set

H(s,p,r) has m(0 � m � q) zeros in the open left half plane and q-m zeros

in the open right half plane if and only if

1. H0(s) has the same distribution of zeros,

2. The polar plot

H1(w) =

�
H0(s = jw)=G1(w) ; G1(w) > 0

Hc(w) ; G1(w) = 0

where

G1(w) =

dX
k=1

jQk(s = jw)jEk(w)

does not intersect the Lp domain Lp(r) de�ned in (2.6) for all real

w. Hc(w) and H0(s) are de�ned in (5.7) and (5.5) respectively.

Proof: Using Theorem 5.1, the proof is similar to the proof of Theorem 5.2.
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Remark 5.5 Remarks 4.1,4.2 and 4.3 are also applicable.

Remark 5.6 Suppose D is a quarterplane or half-plane of the complex

plane and Dc is the complex plane not including the open region D: De�ne

�D to be the common boundary of D and Dc. It is easily veri�ed that the

image of H(s; p; r) in (5.1) (or P (s; p; r) in (2.1)) for every s 2 �D is also

Lp domain centred on H0(s) (centred on P0(s)). This also implies that all

the results obtained can be generalized to be applicable to constrain zeros

in a speci�ed manner to lie in the open region D and the rest of the zeros

to lie in the open region Dc.

6 Illustrative Examples

6.1 Example 1

Consider the polynomial set P (s; p; r) in (2.1) with

P0(s) = s4 + (2 + j1:1)s3 + (3:4 + j2:1)s2 + (2:4 + j1:7)s+ (1 + j1:5)

being Hurwitz stable and �4 = 0 and �3 = �2 = �1 = �0 = 1.

Using Theorem 4.1, the frequency domain plot of

P1(w) =
P0(s = jw)

(
P3

i=0 jwji)

from w = �4 to w = 4 is plotted in Figure 1.

From Figure 1, the largest L1 domain and L2 domain centred at the

origin of the complex plane that can be inscribed within the polar plot

P1(w) is estimated to have a radius of 0.253 and 0.246 respectively. Using

Theorem 4.1, the largest polynomial set P (s; 1; r1) which is Hurwitz stable

for p = 1 is estimated to be r1 = 0:253. Similarly, the largest polynomial set

P (s; 2; r2) which is Hurwitz stable for p = 2 is estimated to be r2 = 0:246.

6.2 Example 2

Consider the polynomial set P (s; p; r) in (2.1) with the same P0(s) as in

example 1, �4 = 0 and
3X

i=0

j�ij � 1 :

Using Theorem 5.2, the frequency domain plot of

P2(w) =
P0(s = jw)

S(w; 1)
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Figure 1: Polar Plot for Example 1

where

S(w; 1) =

�
1 ; jwj � 1

jwj3 ; jwj > 1

is plotted in Figure 2.

From Figure 2, the largest L1 domain and L2 domain centred at the

origin of the complex plane that can be inscribed within the polar plot

P2(w) is estimated to have a radius of 0.691 and 0.583 respectively. Using

Theorem 5.2, the largest polynomial set P (s; 1; r1) which is Hurwitz stable

for p = 1 is estimated to be r1 = 0:691. Similarly, the largest polynomial set

P (s; 2; r2) which is Hurwitz stable for p = 2 is estimated to be r2 = 0:583.
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Figure 2: Polar Plot for Example 2
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