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1 Introduction

The problems of sub-Riemannian geometry and Carnot-Caratheodory

spaces are of great importance. For example, methods developed in the

�eld of sub-Riemannian geometry �nd their numerous applications in the

theory of geometric phases [17], [22] and in nonholonomic motion planning

[8], [13]. On the other hand, analysis of sub-Riemannian minimizers is a

challengeable problem for the modern geometrical control theory [1], [2],

[10].

The state of the art in the �eld of sub-Riemannian geometry until 1985

is outlined in the paper [23]. More recent information about this subject

can be found in [7], [12], [17], [25].

Although many interesting and important results on sub-Riemannian

geodesics are already obtained [15], [16], [17], [18], [24], [25], the follow-

ing fundamental question is still unanswered. Is it always true that sub-

Riemannian distance can be measured by means of in�nitely smooth sub-

Riemannian geodesics? This basic question arises from the fact that some-

times sub-Riemannian distance is measured by means of so-called abnor-

mal extremals [11], [15], [16], [18]. For a class of homogeneous systems
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whose state spaces are compact Lie groups [19] and for distributions with

the strong bracket-generating condition [24] it was shown that all sub-

Riemannian minimizers are smooth.

In this paper we consider a sub-Riemannian structure generated by

C
1� vector �elds

B(x) = fb1(x); b2(x); : : : :bm(x)g x 2 R
n
:

The goal of this paper is to present new conditions under which the sub-

Riemannian distance between any two points can be always measured by

a C1 sub-Riemannian geodesic.

Though our main result is proved for the sub-Riemannian structures

de�ned on R
n, it can be easily rephrased in the language of di�erential

geometry where Rn is replaced with a smooth paracompact manifold.

2 Sub-Riemannian Geodesics and a Variational Prob-

lem with Fixed Boundaries

It is well-known [2], that sub-Riemannian geodesics are the extremals of

the following optimal control problem.

Z 1

0

j u(�) j2 d� ! inf; (2.1)

where

j u(�) j2=
mX
i=1

(ui(�))
2

and u(�) : [0; 1]! R
m is subjected to the additional constraining relations

introduced by

_x = B(x)u(t);

(2.2)

x(0) = �x; x(1) = x̂;

with x 2 R
n
; B(x) = fb1(x); b2(x); : : : :bm(x)g:

The points �x; x̂ 2 Rn are assumed to be �xed beforehand. The minimum

of (2.1) is said to be the sub-Riemannian distance between �x and x̂:

The vector �elds

B(x) = fb1(x); b2(x); : : : :bm(x)g

are assumed to be complete C
1-vector-�elds such that the Lie algebra

generated by fbj(x)gmj=1 has the full rank at any point x 2 R
n
: Sometimes

such family of vector �elds is said to be bracket generating [24] and/or
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controllable [20]. Under this condition, for any two points �x; x̂ 2 R
n
; one

can �nd a bounded piecewise-smooth control which steers the system

_x = B(x)u(t)

from �x 2 R
n to x̂ 2 R

n in �nite time. For a detailed justi�cation of this

fact see [20].

Thus the controllable family B(x) generates a metric on R
n, since for

any two �x; x̂ 2 R
n the sub-Riemannian distance between �x and x̂ is well

de�ned by (2.1), (2.2). R
n endowed with this sub-Riemannian metric is

called the sub-Riemannian structure (on R
n).

We call a curve 
 � R
n a sub-Riemannian geodesic (corresponding

to the sub-Riemannian structure) if there exists a parametrization x
(�)

of 
 such that x
(�) is the x-component of a solution for the following

hamiltonian system.

d

d�
x(�) =

@

@p
H(x (�) ; p (�));

d

d�
p(�) = �1

2

@

@x
H(x (�) ; p (�));

where

H(x; p) =
1

2

��BT (x)p
��2 :

Recall the following standard notations:

� C
k[0; 1] - the set of k� times continuously di�erentiable on [0,1] func-

tions.

� k � kk denotes the uniform norm on C
k[0; 1]; i.e.,

kukk = max
t2[0;1];0�i�k

j ( d
dt
)iu(t) j

for u(t) 2 C
k[0; 1]: ( d

dt
)0u(t) is another notation for u(t):

� C
1[0; 1] denotes \kCk[0; 1]; where the intersection is taken over all

non-negative integers k:

The goal of this paper is to prove that under certain conditions sub-

Riemannian distance is measured by means of a C
1 sub-Riemannian

geodesic.

In order to accomplish this task let us replace (2.1), (2.2) by the fol-

lowing variational problem with �xed boundaries

1

2

Z 1

0

j _x (�)�B(x (�)) _y (�) j2 d� + "

2
�
Z 1

0

j _y (�) j2 d� ! inf; (2.3)

3



S. NIKITIN

where " is a positive real number and

x(0) = �x; x(1) = x̂

(2.4)

" _y (t) = (B(x (t)))T ( _x (t)�B(x (t)) _y (t)) for t = 0 and t = 1:

Let (x"(t); y"(t)) denote a minimizer, i.e., a solution for problem (2.3),

(2.4). After imposing some mild constraints on B(x); it is possible to show

that a minimizer (x"(t); y"(t)) always exists for su�ciently small values of

". Indeed, assume that B(x) satis�es the following condition which is called

C-condition in the sequel.

(C) For any �x 2 R
n and any positive constant Q there exist a positive

real number � and a constant A > 0 such that

kxu;�(t; �x)k0 � A;

where xu;�(t; �x) is the solution for the following initial value problem

_x = B(x)u(t) + �(t);

x(0) = �x;

with arbitrary continuous functions u(t) : [0; 1]! R
m
; �(t) : [0; 1]!

R
n satisfying the inequalities

Z 1

0

ju(t)j dt � Q and

Z 1

0

j�(t)j dt � �:

If B(x) satis�es C-condition, then the Hilbert's direct methods (see

[3] pp.420-443 and [5], Chapter 7) allow us to claim that a minimizer

(x"(t); y"(t)) always exists for su�ciently small values of ": The proof of

this fact is fairly standard. Nonetheless we sketch the main steps of this

proof.

Lemma 2.1 Let B(x) be a controllable family of C1 vector �elds and let

C-condition hold. Then there exists a real number "0 > 0 such that for

any 0 < " � "0 a minimizer (x"(t); y"(t)) 2 C
1[0; 1], i.e., a solution for

problem (2.3), (2.4), exists.

Proof: It is well-known [2], [4], that problems (2.3), (2.4) and (2.5), (2.6)

have the same family of extremals. Therefore instead of the variational

problem (2.3), (2.4) we can consider

J" (
) =

Z 1

0

p
j _x (�) �B(x (�)) _y (�) j2 +"� j _y (�) j2d� ! inf; (2.5)
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where 
 = f(x(t); y(t)); t 2 [0; 1]g ; " is a positive real number and

x(0) = �x; x(1) = x̂

(2.6)

" _y (t) = (B(x (t)))T ( _x (t)�B(x (t)) _y (t)) for t = 0 and t = 1:

Set �" = inf J" (
) : Then there exists a sequence of C1-curves 
n" =

f(xn" (t); yn" (t)); t 2 [0; 1]g ; n = 1; 2; : : :, such that limn!1 J (
n" ) = �":

Since B(x) is controllable, one can �nd a bounded piecewise smooth control

u(t) : [0; 1]! R
m which steers the system

_x = B(x)u

from �x to x̂ and for which

8" > 0 9 N(") > 0 such that 8 n � N(") J (
n" ) �
p
" �
Z 1

0

ju(t)j dt:

Hence

Z 1

0

j _xn" (t)�B(xn" (t)) _y
n
" (t) j dt �

p
" �
Z 1

0

ju(t)j dt;
Z 1

0

j _yn" (t)j dt �
Z 1

0

ju(t)j dt;

and therefore, C-condition implies the existence of "0 > 0; N(") and a

compact set K such that

8 n � N("); " � "0 

n
" � K:

Thus we can apply the Hilbert's direct methods (see [5], Theorem 7.17, pp.

193-195). That yields the existence of a continuous curve


" = f(x"(t); y"(t)); t 2 [0; 1]g � K

for which J (
") = �": Moreover, (x"(t); y"(t)) is of bounded variation,

and therefore almost everywhere di�erentiable on [0,1]. Thus it follows

from Weierstrass-Erdmann corner conditions and Euler �rst-order neces-

sary conditions of extremum (see, e.g. [6]) that x"(t) and y"(t) are C
1

functions. Indeed, Weierstrass-Erdmann corner conditions imply that

_x"(t)�B(x"(t)) _y"(t) 2 C
0 [0; 1] ;

_y"(t) 2 C
0 [0; 1] :

Therefore ( _x"(t); _y"(t)) 2 C
0 [0; 1] : On the other hand, (x"(t); y"(t)) is a

solution for the Euler's equations and that implies (�x"(t); �y"(t)) 2 C
0 [0; 1] :
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By di�erentiating the Euler's equations and carrying out the steps of math-

ematical induction with respect to the order of di�erentiating we conclude

that for all positive integers n

(

�
d

dt

�n

x"(t);

�
d

dt

�n

y"(t)) 2 C
0 [0; 1] :

Q.E.D.

It was shown in [9] for some special sub-Riemannian metrics, that as

" ! 0; (x"(t); y"(t)) converges uniformly on [0; 1] to a sub-Riemannian

geodesic. We now impose some conditions which strengthen this result.

One of them is D-condition which is stated as follows.

(D) We say that a system

_x = B(x)u(t)

satis�es D-condition (at the points �x; x̂ 2 R
n), if there exist real

numbers � > 0; Q > 0 and P > 0 such that

8 0 < " � � j
p
" � p"(0) j� Q

implies

8 0 < " � � j p"(0) j� P:

Here p"(0) has to be chosen so that x"(1) = x̂; where x"(t) is the

x-component of a solution of the following hamiltonian system,

_x =
@

@p
H"(x; p);

(2.7)

_p = � @

@x
H"(x; p);

x(0) = �x;

where

H"(x; p) =
1

2

��BT (x)p
��2 + "

2
j p j2 : (2.8)

The following theorem presents the main result of this paper.

Theorem 2.1 Let B(x) = fb1 (x) ; b2 (x) ; : : : bm(x)g be a controllable fam-
ily of C1 vector �elds for which C- and D-conditions hold. Then for any
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�x; x̂ 2 R
n one can �nd a C

1 sub-Riemannian geodesic x(t) which mea-

sures the sub-Riemannian distance between �x and x̂: Thus x(t) is the x-

component of a solution for the following hamiltonian system

_x =
@

@p
H(x; p);

(2.9)

_p = � @

@x
H(x; p);

where

H(x; p) =
1

2

��BT (x)p
��2 : (2.10)

Proof: Consider the variational problem (2.3), (2.4). The functions

(x"(t); y"(t)) representing a solution for (2.3), (2.4) necessarily satisfy the

Euler's equations

d

dt

�
@

@ _x
L"(x; y; _x; _y)

�
� @

@x
L"(x; y; _x; _y) = 0;

(2.11)

d

dt

�
@

@ _y
L"(x; y; _x; _y)

�
� @

@y
L"(x; y; _x; _y) = 0;

where

L"(x; y; _x; _y) =
1

2
j _x� B(x) _y j2 +"

2
� j _y j2 :

We de�ne p" by setting

p" =
1

"

@

@ _x
L"(x; y; _x; _y): (2.12)

We will use the following form of (2.11)

_x" =
@

@p
H"(x"; p");

(2.13)

_p" = � @

@x
H"(x"; p");

_y" = B
T (x")p";

where

H"(x; p) =
1

2
j BT (x)p j2 +"

2
j p j2 : (2.14)
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Due to the boundary conditions (2.4)

x"(0) = �x

and the initial condition for p"(t) has to be chosen so that x"(1) = x̂:

It follows from Weierstrass-Erdmann corner conditions (see the proof of

Lemma 1 presented in this paper or , e.g. the book [6]) that x"(t) and

p"(t) are C
1 functions. On the other hand, since the family of vector

�elds B(x) is controllable, there exists a bounded piecewise smooth control

v : [0; 1]! R
m

which steers the system

_x = B(x)v(t)

from �x to x̂.

If (x"(t); y"(t)) is a minimizer for (2.3), then

Z 1

0

1

2
j _x"(t)�B(x"(t)) _y"(t) j2 +

"

2
� j _y"(t) j2 dt �

"

2
�
Z 1

0

jv(t)j2 dt:

Setting

D =
1

2

Z 1

0

jv(t)j2 dt

and using (2.12), (2.13) we obtain

H"(x"(t); p"(t)) � D 8" � 0; t 2 [0; 1]: (2.15)

Hence k"�p"k ! 0 as "! 0 and, therefore, in accordance with C�condition,
there exists a positive constant � such that for k" � p"k � � the function

x"(t) is uniformly bounded on [0; 1]; i.e., kx"k � A for some positive real

number A:

Thus k @
@p
H"(x"(t); p"(t))k is bounded uniformly with respect to small

enough " � 0 and so is kx"k1; i.e.,

kx"k1 � G1; (2.16)

where G1 is some positive constant which does not depend on ". Then in

accordance with Ascoli's theorem [14] there exist a sequence f"jg1j=1 and

a continuous function �x(t) such that

"j ! 0 as j !1

and

kx"j � �xk ! 0 as j !1:
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On the other hand, for any control v(t) which steers the system

_x = B(x)v(t)

from �x to x̂ we have, for any " > 0;

Z 1

0

j _y"(t) j2 dt �
Z 1

0

j v(t) j2 dt:

Therefore �x(t) is a minimizer which measures the sub-Riemannian distance

between �x and x̂: Our goal is to prove that �x(t) 2 C
1[0; 1]: Notice, that D-

condition implies the existence of a subsequence f"j0g1j0=1 of the sequence

f"jg1j=1 such that j p"j0 (0) j is bounded uniformly with respect to j0; then

for any non-negative integer k;





�
d

dt

�k �
B
T (x"j0 (t))p"j0 (t)

�





0

� Pk;

where the real number Pk does not depend on j
0
:

It follows from (2.15) that for any t 2 [0; 1]

jhbk(x"(t)); p"(t)ij �
p
2 �D k = 1; 2; : : :m;

p
" � jp"(t)j �

p
2 �D:

That yields that

8j0; k



x"j0





k
� Gk;

where Gk does not depend on j
0
:

Thus the Ascoli's theorem (see, e.g., [14]) implies the existence of a

subsequence f"j00g1j00=1 of f"j0g1j0=1 such that

"j00 ! 0 as j
00 !1 (2.17)

and one can �nd C
1 functions �x(t); �p(t) such that

8k kx"j00 � �xkk ! 0 and



p"j00 � �p





k
! 0 as j

00 !1: (2.18)

x"j00 (t); p"j00 (t) satisfy the di�erential equations

_x"j00 =
@

@p
H"j00

(x"j00 ; p"j00 );

(2.19)

_p"j00 = � @

@x
H"j00

(x"j00 ; p"j00 )

for any non-negative integer j00: Therefore taking the limit of (2.19) as

j
00 !1 we conclude that (�x(t); �p(t)) is a solution for (2.9). Q.E.D.
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3 Conclusion

In this paper new conditions were established under which sub-Riemannian

distance can be measured by means of a C1 sub-Riemannian geodesic. The

abnormal minimizers appear if

lim
"!0

p"(0) =1;

where p" is de�ned in (2.12). Consider the function q"(t) = p"(t)=p"(0): It

is easy to see that there exists a sequence f"jg1j=1 such that

lim
j!1

"j = 0

and q"j (t) converges to the q-component of a solution for

_x =
@

@q
H(x; q; u(t));

_q = � @

@x
H(x; q; u(t));

where

H(x; q; u) =< u;B
T (x)q >

and

lim
j!1

B
T (x"j (t))p"j (t) = u(t):

On the other hand,

B
T (x(t))q(t) = 0

for x(t) being the limit of x"j (t) as j !1:

The approach presented in this paper may lead to new results on abnor-

mal minimizers. The further development of this approach and its applica-

tions to the analysis of abnormal minimizers will be published elsewhere.
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