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Abstract

This paper presents new conditions under which sub-Riemannian
distance can be measured by means of a C°° sub-Riemannian
geodesic.
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1 Introduction

The problems of sub-Riemannian geometry and Carnot-Caratheodory
spaces are of great importance. For example, methods developed in the
field of sub-Riemannian geometry find their numerous applications in the
theory of geometric phases [17], [22] and in nonholonomic motion planning
[8], [13]. On the other hand, analysis of sub-Riemannian minimizers is a
challengeable problem for the modern geometrical control theory [1], [2],
[10].

The state of the art in the field of sub-Riemannian geometry until 1985
is outlined in the paper [23]. More recent information about this subject
can be found in [7], [12], [17], [25].

Although many interesting and important results on sub-Riemannian
geodesics are already obtained [15], [16], [17], [18], [24], [25], the follow-
ing fundamental question is still unanswered. Is it always true that sub-
Riemannian distance can be measured by means of infinitely smooth sub-
Riemannian geodesics? This basic question arises from the fact that some-
times sub-Riemannian distance is measured by means of so-called abnor-
mal extremals [11], [15], [16], [18]. For a class of homogeneous systems
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whose state spaces are compact Lie groups [19] and for distributions with
the strong bracket-generating condition [24] it was shown that all sub-
Riemannian minimizers are smooth.

In this paper we consider a sub-Riemannian structure generated by
C*° — vector fields

B(z) = {bi(x),ba(x),....bp(x)} =€ R".

The goal of this paper is to present new conditions under which the sub-
Riemannian distance between any two points can be always measured by
a C'* sub-Riemannian geodesic.

Though our main result is proved for the sub-Riemannian structures
defined on R", it can be easily rephrased in the language of differential
geometry where R" is replaced with a smooth paracompact manifold.

2 Sub-Riemannian Geodesics and a Variational Prob-
lem with Fixed Boundaries

It is well-known [2], that sub-Riemannian geodesics are the extremals of
the following optimal control problem.

| 1oy dr = inf, 2.1)
0

where
m

| u(r) P= (ui(r)”

i=1
and u(-) : [0,1] — R™ is subjected to the additional constraining relations
introduced by

(2.2)

z(0) = =z, 2(1) =42,

with z € R", B(z) = {bi(z), b2(z),... .bp(x)}.
The points Z, & € R™ are assumed to be fixed beforehand. The minimum

of (2.1) is said to be the sub-Riemannian distance between Z and Z.
The vector fields

B(z) = {b1(z),b2(), . . . by ()}

are assumed to be complete C'°-vector-fields such that the Lie algebra
generated by {b;(z)}/L, has the full rank at any point z € R". Sometimes
such family of vector fields is said to be bracket generating [24] and/or
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controllable [20]. Under this condition, for any two points Z,# € R", one
can find a bounded piecewise-smooth control which steers the system

& = B(z)u(t)

from Z € R™ to & € R" in finite time. For a detailed justification of this
fact see [20].

Thus the controllable family B(z) generates a metric on R", since for
any two Z,Z € R" the sub-Riemannian distance between z and # is well
defined by (2.1), (2.2). R" endowed with this sub-Riemannian metric is
called the sub-Riemannian structure (on R™).

We call a curve v C R"™ a sub-Riemannian geodesic (corresponding
to the sub-Riemannian structure) if there exists a parametrization x.(7)
of v such that x,(7) is the z-component of a solution for the following
hamiltonian system.

d 0
~a(r) = a—pH(m (1), p (7)),
%p@-) — _%%H(m (1),p(7)),

where 1
2
H(z,p) = 5 |B" (2)p|

Recall the following standard notations:

e C¥[0,1] - the set of k— times continuously differentiable on [0,1] func-
tions.

e || - ||lx denotes the uniform norm on C*[0,1], i.e.,

d

max —_-
te[0,1],0<i<k = dt

)'u(t) |

lully =

for u(t) € C¥[0,1]. (£)%u(t) is another notation for u(t).

e C[0,1] denotes N C*[0, 1], where the intersection is taken over all
non-negative integers k.

The goal of this paper is to prove that under certain conditions sub-
Riemannian distance is measured by means of a C'*° sub-Riemannian
geodesic.

In order to accomplish this task let us replace (2.1), (2.2) by the fol-
lowing variational problem with fixed boundaries

1t € !

3] 1EO=Ba@@ Fdr+g [ i@ P e =i (23
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where ¢ is a positive real number and

z(0)=z, z(1)=2
(2.4)
ey (t) = (B(x (1)) (& (t) — Bz (t)y (1)) fort =0and ¢t = 1.

Let (z(t),y:(t)) denote a minimizer, i.e., a solution for problem (2.3),
(2.4). After imposing some mild constraints on B(z), it is possible to show
that a minimizer (z.(t),y.(t)) always exists for sufficiently small values of
¢. Indeed, assume that B(x) satisfies the following condition which is called
C-condition in the sequel.

(C) For any T € R" and any positive constant () there ezist a positive
real number 6 and a constant A > 0 such that

[[u,e(t, T)llo < A,
where T,¢(t,Z) is the solution for the following initial value problem
& = B(z)u(t) + £(1),
z(0) = &,

with arbitrary continuous functions w(t) : [0,1] — R™, £(¢) : [0,1] —
R" satisfying the inequalities

1 1
/|u(t)|dt§Q and /|£(t)|dt§6.
0 0

If B(z) satisfies C-condition, then the Hilbert’s direct methods (see
[3] pp.420-443 and [5], Chapter 7) allow us to claim that a minimizer
(z:(t),y:(t)) always exists for sufficiently small values of . The proof of
this fact is fairly standard. Nonetheless we sketch the main steps of this
proof.

Lemma 2.1 Let B(x) be a controllable family of C™ vector fields and let
C-condition hold. Then there exists a real number €y > 0 such that for
any 0 < & < gg a minimizer (z.(t),y:(t)) € C*[0,1], i.e., a solution for
problem (2.3), (2.4), exists.

Proof: It is well-known [2], [4], that problems (2.3), (2.4) and (2.5), (2.6)
have the same family of extremals. Therefore instead of the variational
problem (2.3), (2.4) we can consider

Je (7) :/0 VI (1) = Bz (r)y (1) > +e- | g (r) Pdr — inf,  (2.5)
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where v = {(z(t),y(t));t € [0,1]}, € is a positive real number and

=X
=2
=
=X
=

IS

(2.6)
ey (t) = (B(z (1)) (& (t) — B(z (£))3 (1)) for t = 0 and ¢ = 1.

Set p. = inf J. (7). Then there exists a sequence of C*®-curves v =
{(z2(t),y"(t));t € [0,1]}, n = 1,2,..., such that lim,_... J (7)) = p..
Since B(z) is controllable, one can find a bounded piecewise smooth control
u(t) : [0,1] = R™ which steers the system

& = B(z)u

from z to & and for which
1
Ve >0 3 N(e) >0 suchthat Vn>N() J()< \/E/ lu(t)| dt.
0
Hence

/m) Bz <>>y8<>|dt<f/|u ()] dt,

l/w W</M|ﬁ

and therefore, C-condition implies the existence of 9 > 0, N(¢) and a
compact set K such that

Vn>N(),e<e P CK.

Thus we can apply the Hilbert’s direct methods (see [5], Theorem 7.17, pp.
193-195). That yields the existence of a continuous curve

Ve = {(ms(t)vys(t));t € [07 1]} CK

for which J(v.) = p.. Moreover, (z.(t),y:(t)) is of bounded variation,
and therefore almost everywhere differentiable on [0,1]. Thus it follows
from Weierstrass-Erdmann corner conditions and Euler first-order neces-
sary conditions of extremum (see, e.g. [6]) that z.(¢) and y.(t) are C*
functions. Indeed, Weierstrass-Erdmann corner conditions imply that

i (t) — B(z-(1))j:(t) € C°[0,1],
y-(t) € C°0,1].

Therefore (i.(t), y-(t)) € C*[0,1]. On the other hand, ( (1), y-(t)) is a
solution for the Euler’s equations and that implies (i.(t), 4-(t)) € C°[0,1].
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By differentiating the Euler’s equations and carrying out the steps of math-
ematical induction with respect to the order of differentiating we conclude
that for all positive integers n

((%)nwg(t), (%)nyg(t)) e€C’o,1].
Q.ED.

It was shown in [9] for some special sub-Riemannian metrics, that as
e — 0, (z:(t),y:(t)) converges uniformly on [0,1] to a sub-Riemannian
geodesic. We now impose some conditions which strengthen this result.
One of them is D-condition which is stated as follows.

(D) We say that a system
z = B(x)u(t)

satisfies D-condition (at the points T, & € R ™), if there exist real
numbers 6 >0, @ >0 and P > 0 such that

V0<e<s |V p(0)]<Q

implies
V 0<e<éd |p(0) <P

Here p:(0) has to be chosen so that x.(1) = &, where x.(t) is the
x-component of a solution of the following hamiltonian system,

0
= _HE ) )
=5 (z,p)
(2.7)
0
p= _%Hi(xap)a
z(0) = &,
where
1 €
H.(z,p) = 5 |B"@)p|" + 5 | p[*. (2.8)

The following theorem presents the main result of this paper.

Theorem 2.1 Let B(z) = {by (z),b2 (z),...bn(x)} be a controllable fam-
ily of C* wvector fields for which C- and D-conditions hold. Then for any
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Z,2 € R" one can find a C*® sub-Riemannian geodesic x(t) which mea-
sures the sub-Riemannian distance between T and &. Thus z(t) is the x-
component of a solution for the following hamiltonian system

0
._ 0
=35 (z,p),
(2.9)
.0
b= —%H(.’I},p),
where
1
H(w,p) = 5 BT (@)p[” . (2.10)

Proof: Consider the variational problem (2.3), (2.4). The functions
(2:(t),y:(t)) representing a solution for (2.3), (2.4) necessarily satisfy the
Euler’s equations

d (90 . 0 .
(_Ls(mayaxay)> - %Li(mayaxay) = 07

dt \ 0
(2.11)
d (9 1o}
N _LE >7.). __LE )7.).:)
dt(@g) (xymy)> By (z,y,%,9) =0
where 1
.. . . £ .
L.(z,y,2,9) = 3 | & — B(z)y |? +3 |9 1*.
We define p. by setting
10 ..
P = E%Li(mayaxay)' (212)
We will use the following form of (2.11)
. 1o}
Te = %Hs(msaps)a
(2.13)
. 0
P = _%Hs(ms:ps):
ys = BT(xs)psy
where
1 €
H.(z,p) =5 | B (@)p[* +5 |p | . (2.14)

7



S. NIKITIN

Due to the boundary conditions (2.4)

z:(0) ==

~

and the initial condition for p.(¢) has to be chosen so that z.(1) = Z.
It follows from Weierstrass-Erdmann corner conditions (see the proof of
Lemma 1 presented in this paper or , e.g. the book [6]) that z.(¢) and
p:(t) are C* functions. On the other hand, since the family of vector
fields B(z) is controllable, there exists a bounded piecewise smooth control

v:[0,1] - R™

which steers the system
& = B(z)v(t)

from Z to Z.
If (z(t),y-(t)) is a minimizer for (2.3), then

| 3180 =B F +5 1.0 Fae< 5 [P

Setting
1/t )
D= [ |@®| dt
2 Jo
and using (2.12), (2.13) we obtain
Ho(e.(t),p:() <D Ve >0, te01] (2.15)

Hence ||ep:|| — 0 ase — 0 and, therefore, in accordance with C'—condition,
there exists a positive constant ¢ such that for ||e - p.|| < § the function
z(t) is uniformly bounded on [0,1], i.e., ||z.|| < A for some positive real
number A.

Thus ||8%H5(m5(t),p5(t))|| is bounded uniformly with respect to small
enough € > 0 and so is ||z.||1, i.e.,

z:|li < G, (2.16)

where GG; is some positive constant which does not depend on ¢. Then in
accordance with Ascoli’s theorem [14] there exist a sequence {¢;}92, and
a continuous function %(¢) such that

e;—0 asj— o0

and
|lz-, — 2| =0 asj— oo.
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On the other hand, for any control v(¢) which steers the system
& = B(z)v(t)

from Z to & we have, for any ¢ > 0,

Al%wlﬁsé|mw|a

Therefore Z(t) is a minimizer which measures the sub-Riemannian distance
between Z and Z. Our goal is to prove that Z(t) € C°°[0, 1]. Notice, that D-
condition implies the existence of a subsequence {e; }3°_; of the sequence
{ej}32, such that | p.,(0) | is bounded uniformly with respect to j', then
for any non-negative integer k,

where the real number Pj, does not depend on j'.
It follows from (2.15) that for any ¢ € [0,1]

|(bp(z-(t)),p-(1))] < V2-D k=1,2,...m,
Ve-lp-()] < V2-D.

SPIM

That yields that
Vi k ‘

; | SGka
i

where G}, does not depend on j'.
Thus the Ascoli’s theorem (see, e.g., [14]) implies the existence of a
subsequence {e;~}27_; of {;}37_; such that

gjr =0 as j'— o0 (2.17)

and one can find C* functions &(t), p(t) such that

vk H%W—MMHOam‘

pé‘jrr _ﬁHk — 0 as j” — Q. (218)

e, (1), pe,, (t) satisfy the differential equations

. 0
mf:‘j// = 8_pHEj// (mf:‘juapsj-rr))
(2.19)
) 0
pé‘jrr = _%HE]-// (mi]-/lﬂpi]-//)

for any non-negative integer j”. Therefore taking the limit of (2.19) as
j" — oo we conclude that (Z(t), p(t)) is a solution for (2.9). Q.E.D.
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3 Conclusion

In this paper new conditions were established under which sub-Riemannian
distance can be measured by means of a C* sub-Riemannian geodesic. The
abnormal minimizers appear if

lim p.(0) = oo,
e—0

where p. is defined in (2.12). Consider the function g.(t) = p:(t)/p-(0). It
is easy to see that there exists a sequence {¢;}72; such that

lim €5 = 0
Jj—oo

and ¢, (t) converges to the g-component of a solution for

. 0

r = a_qH(x)Q7u(t)))

i = —LH(w,qu)

q - a"L’ m’q’“ b
where

H(z,q,u) =< u,BT(a:)q >
and

Jim BT (z,(t))p-, (t) = u(t).
On the other hand,
BT (x(t))q(t) = 0

for (t) being the limit of x.; (t) as j — oc.

The approach presented in this paper may lead to new results on abnor-
mal minimizers. The further development of this approach and its applica-
tions to the analysis of abnormal minimizers will be published elsewhere.
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