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Control Lyapunov Functions, Input-To-State

Stability and Applications to Global Feedback

Stabilization for Composite Systems
�

J. Tsinias

Abstract

The concepts of control Lyapunov function and the feedback sta-

bilization are extended for the case of parameterized control systems.

These concepts are related with the input-to-state stability condition

introduced by Sontag and the corresponding results consist general-

izations of the Artstein's theorem on stabilization. Versions of the

input{to{state stability properties are also discussed. We use these

results in order to face the partial-state feedback global stabilizabil-

ity problem for composite nonlinear systems specially those having

triangular structure.

Key words: nonlinear parameterized systems, smooth feedback, global stabiliz-

ability, control Lyapunov function, input-to-state stability

1 Introduction

Our goal is to derive su�cient conditions for partial-state global stabiliza-

tion by smooth (C1) static feedback for composite systems, specially those

having triangular structure. The main tools we use in order to face this

problem are certain properties and results relative to the input-to-state-

stability condition (I.S.S.C.) introduced by Sontag in [14,15] and some ex-

tensions of the Artstein's theorem on stabilization (see [2,13,21]) concerning

parameterized systems of the form

_y = F (y; u; x)

(y; u; x) 2 Rn � R
m � R

k
(1:1)

�Received May 22, 1995; received in �nal form September 3, 1995. Summary ap-

peared in Volume 7, Number 2, 1997.
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where the map F is continuous on R
n+m+k (C0) vanishing at zero, i.e.

F (0; 0; 0) = 0, y is the state, u is the input and x is a continuous time

varying parameter.

In Section 2 we give the notion of the input{to{state{attractivity con-

dition (I.S.A.C.) which is a weak version of the I.S.S.C. and was originally

introduced in [24]. We also provide extensions of the concepts of the \con-

trol Lyapunov functions" and the \global feedback stabilization" for pa-

rameterized systems (1.1). For instance, it is reasonable to de�ne a system

(1.1) to be globally feedback stabilizable, if there exists a static feedback

u = u(y) such that the corresponding closed-loop system

_y = F (y; u(y); x) with x as input (1:2)

satis�es the I.S.S.C. In Section 3 we give extensions of the Artstein's theo-

rem for parameterized systems (1.1). Special emphasis is given for single-

input systems which are a�ne in the control, namely systems of the form

_y = A(y; x) + uB(y); (1:3)

where the mappings A and B are C0 and A vanishes at zero. Theorem 3.5

in Section 3 consists one of our main results o�ering su�cient conditions

for global feedback stabilization for the following a�ne in the control case.�
_y1
_y2

�
=

�
G1(x; y)

G2(x; y)

�
+ u

�
0

�(y)

�
(1:4)

y := (y
0

1; y2)
0

(
0

stands for transpose); y1 2 R
n
; y2 2 R; x 2 R

k
;

where G1 : Rn+k+1 ! R
n , G2 : Rn+k+1 ! R and � : Rn+1 ! R are C1

mappings with G1 and G2 vanishing at zero and � being everywhere strictly

positive. We use this theorem to study the output feedback stabilizability

problem for composite systems (1.4) together with a given subsystem _x =

G0(x; y), particularly for systems of the form0
@ _x

_y1
_y2

1
A =

0
@ G0(x; y)

G1(x; y)

G2(x; y)

1
A+ u

0
@ 0

0

�(y)

1
A (1:5)

where G0 : R
n+k+1 ! R

k is C0 vanishing at zero, the subsystem

_x = G0(x; y) with y as input (1:6)

satis�es the I.S.A.C. and we assume that only the y-component of the state

(x; y) is available (Corollary 3.9). The previous results are applied in Sec-

tion 4 to derive su�cient conditions for the output feedback stabilizability

problem for general triangular single-input systems of the form

_x = f(x; y1)
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GLOBAL FEEDBACK STABILIZATION

_yi = gi(x; y1; : : : ; yi) + hi(y1; : : : ; yi+1); 1 � i � n; (1:7a)

u := yn+1

with

hn(y1; : : : ; yn; u) � u (1:7b)

where y := (y1; : : : ; yn)
0

is the output and (x; y) 2 Rk � R
n is the state of

the system and we assume that the subsystem

_x = f(x; y1) with y1 as input (1:8)

satis�es the I.S.A.C. The corresponding result (Theorem 4.1) consists a

considerable generalization of our recent work [25] also dealing with systems

(1.7) where some more strict assumptions than those of the present work

had imposed. It also consists an extension of earlier works, see for instance

[6,7,10-12,18-20,22], and most notably of [4,24] dealing with the particular

case (1.7) with

hi(y1; : : : ; yi+1) = yi+1; 8 i = 1; : : : ; n� 1:

Our approach combines and simultaneously extends the methodology em-

ployed in [23-26].

2 De�nitions

Throughout the paper we use the notation K for the class of all increasing

C
0 functions a : R+ ! R

+ with a(0) = 0. A function a is said to be

of class K1, if a 2 K and a(s) ! +1 as s ! +1. A C
0 function

a : R+ �R+ ! R
+ is of class KL if for every �xed t a(�; t) is of class K and

for each s the function a(s; �) is nonincreasing, tending to zero at in�nity.

We say that the system

_y = F (y; u); (y; u) 2 Rn � R
m with u as input (2:1)

F being C1 vanishing at zero, satis�es the I.S.S.C., if it is complete and

there exists a pair of functions � 2 KL and � 2 K such that for every

essentially bounded input u and for almost all t � 0 it holds that

jy(t; y0; u)j � �(jy0j; t) + �(jjutjj) (2:2)

where y(t; y0; u) denotes the trajectory of (2.1) starting from y0 at time

t = 0 with input u, ut equals u(t) for 0 � t � T and is zero otherwise and

jj jj, j j are the L1 and the usual Euclidean norms, respectively.
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Remark 2.1 It is known from [14,15,8] that, if there exists a positive

de�nite, uniformly unbounded (p.d.u.u.) C
1 function V : Rn ! R

+ and

C
0 functions a; b, where a is of class K, b is positive de�nite and such that

DV (y)F (y; u) � �b(jyj)

8 y; a(juj) � jyj (2:3)

(DV means the derivative of V ), then (2.1) satis�es the I.S.S.C. Further-

more, in the recent contributions [9,16] of Lin, Sontag and Wang it has

been established that the I.S.S.C. and its Lyapunov description (2.3) are

equivalent, provided that the map F is C1.

A weaker version of the I.S.S.C. is the following property which origi-

nally proposed and studied in [24].

De�nition 2.2 We say that (2.1) satis�es the input-to-state-attractivity

condition (I.S.A.C.) if there exists a function 
 2 K such that for any

initial y0, input u and time T � +1 for which the corresponding trajectory

y(t; y0; u) of (1.1) exists on [0; T ) and satis�es

ju(t)j � 
(jy(t; y0; u)j); 8 t 2 [0; T ) (2:4)

it holds that

lim
t!T

jy(t; y0; u)j < +1; (2:5a)

particularly, for T = +1

lim
t!+1

y(t; y0; u) = 0: (2:5b)

It can be shown that I.S.S.C. implies I.S.A.C.; particularly, if (2.2) is

satis�ed then I.S.A.C. holds with 
 be any function of class K1 such that


(�(s)) < s, 8 s > 0 (see [24]).

We now provide some extensions of the concepts of the control Lya-

punov function (clf) and the feedback stabilization for the case (1.1).

De�nition 2.3 Let a; b : R+ ! R be a pair of C0 functions, a being of class

K and b being positive de�nite. We say that the function V : Rn ! R
+ is

an (a; b)-clf (or simply clf) with respect to (1.1), if it is p.d.u.u. and C1 on

R
n and there exists a set M � R

n � R
m with (y; u) 2M for every y 2 Rn

and for some u depending on y such that the following holds.

DV (y)F (y; u; x) < �b(jyj)

8 (y; u) 2M; y 6= 0; a(jxj) < jyj: (2:6)
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Remark 2.4 It can be easily established that for the a�ne in the control

case (1.3) the existence of an (a; b)-clf V is equivalent to the following

condition

DV (y)B(y) = 0; y 6= 0)

DV (y)A(y; x) < �b(jyj); a(jxj) < jyj: (2:7)

Remark 2.5 The de�nition of the control Lyapunov function given above

is a reasonable extension of the corresponding notion introduced in [13]

by Sontag for systems without parameters, which according to Artstein's

theorem is equivalent to global stabilization by means of a relaxed feedback

controller. Speci�cally, for the a�ne in the control single-input systems

_y = A(y) + uB(y) (2:8)

condition (2.7) is reduced to the following implication:

DV (y)B(y) = 0; y 6= 0) DV (y)A(y) < �b(jyj);

which according to Artstein's theorem is equivalent to the fact that (2.8)

is globally asymptotically stabilizable at the origin (G.A.S.) by means of an

ordinary static feedback being C1 on Rn n f0g.

Finally, we give a direct extension of the notion of stabilization for

parameterized systems (1.1).

De�nition 2.6We say that (1.1) is input-to-state stabilizable at the origin

(I.S.S.), if there exists an ordinary static feedback u = u(y) such that the

closed-loop parameterized system (1.2) satis�es the I.S.S.C.

As in the case of systems without parameters and taking into account

the recent results [9,16] it can be established that the existence of an (a; b)-

clf with respect to (1.3) where a is of class K1 implies that (1.3) is I.S.S.

by means of an ordinary static feedback u = u(y) being C1 on Rn n f0g

(see Proposition 3.1 in Section 3); the converse claim is also true provided

that the mappings A and B as well as the feedback stabilizer are at least

C
1.

3 Global Feedback Stabilization

The following result consists a direct extension of the Artstein's theorem

for the a�ne in the control case. Version of this result is also obtained in

the recent work [5] of Freeman-Kokotovic.

Proposition 3.1 Consider the parameterized single-input system (1.3) and

suppose that there exists an (a; b)-clf V with a 2 K1. Then there exists a

function u : Rn ! R which is C1 on Rn n f0g such that

DV (y)(A(y; x) + u(y)B(y)) < �b(jyj)
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8 y 6= 0; jxj < a
�1(jyj); (3:1)

hence (1.3) is I.S.S. If furthermore we assume that there exists a Ck (0 �

k � 1) function us vanishing at zero such that (3.1) holds for y near zero

with us instead of u, then the corresponding stabilizer u can be constructed

in such a way that (3.1) is satis�ed and further u(y) = us(y) for y near

zero.

Proof: (Outline). Condition (3.1) follows by taking into account Remark

2.4 and applying standard partition of unity based arguments. From (3.1)

and Remark 2.1 it follows that (1.3) is I.S.S. by means of the ordinary static

feedback u = u(y). The rest part of the proof follows easily by applying

the same discussion with that given in [25] or [26]. 2

Next we derive su�cient conditions for the existence of a feedback sta-

bilizer being linear near zero and C1 on the whole state space. First, we

need the following elementary result.

Lemma 3.2 Consider a general parameterized system (1.1). Assume that

the mapping F : Rn � R
m � R

k ! R
n is C1 and there exist C0 functions

a; b : R+ ! R
+
a being linear (without any loss of generality we may

assume that a 6� 0) and b quadratic near zero and a C2 positive de�nite

function V : Rn ! R
+ such that the matrix D2

V (0) is positive de�nite,

i.e.,

D
2
V (0) > 0 (3:2)

and the following implication holds:

y
0
D

2
V (0)

#F

#u
(0; 0; 0) = 0; y 6= 0 near zero

) y
0
D

2
V (0)F (y; 0; x) < �b(jyj); 8 jxj < a

�1(jyj): (3:3)

Then there exists a constant c0 such that for any c � c0 it holds that

y
0
D

2
V (y)F (y; �c(y); x) < �b(jyj); 8jxj < a

�1(jyj); y 6= 0 near zero (3:4a)

with

�c(y) := cy
0
D

2
V (0)

#F

#u
(0; 0; 0): (3:4b)

Proof: (Outline). We take into account conditions (3.2) and (3.3), the

fact that locally around zero the functions a and b1=2 are linear and apply

similar procedure with that in [1] for the linearization of (1.1) at the origin

in order to determine a constant c0 such that

y
0
D

2
V (0)

n
#F

#y
(0; 0; 0)y +

#F

#u
(0; 0; 0)�c(y) +

#F

#x
(0; 0; 0)x

o
< �b(jyj)
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8 jxj < a
�1(jyj); y 6= 0 near zero; c � c0

with �c as de�ned in (3.4b). The desired conclusion is a direct implication

of the previous inequality. 2

An immediate consequence of Proposition 3.1 and Lemma 3.2 is the

following result. Its proof is omitted, since it is analogous with that given

in [25, Lemma 2.1].

Corollary 3.3 Consider the system (1.3) and in addition to the hypothesis

of Proposition 3.1 assume A and B are C1, a and b1=2 are linear near zero,

V is C2 and satis�es (3.2) and the following holds

y
0
D

2
V (0)B(0) = 0; y 6= 0 near zero

) D
2
V (y)A(x; y) < �b(jyj); 8 jxj < a

�1(jyj): (3:5)

Then (1.3) is I.S.S. by means of a C1 static feedback. In particular, there

exist a constant c0 and a C1 function uc := u(y; c); (y; u) 2 Rn � [c0;+1)

which for c � c0 and for y near zero coincides with �c (as the latter de�ned

in (3.4b)) and further condition (3.1) is satis�ed with uc instead of u.

Next we deal with the stabilization problem for parameterized single{

input systems of the form (1.4). We assume that the mappings G1 and G2

are C1 vanishing at zero and � is a C0 being everywhere strictly positive.

Furthermore the following assumption is imposed.

Assumption 3.4. Suppose that there exist a closed subset M 2 R
n+1 ,

a pair of disjoint open subsets U+
; U

� 2 R
n+1 , a p.d.u.u. C1 function

V : Rn ! R
+ satisfying (3.2), functions a; a1; a2 2 K1 being linear near

zero, a positive de�nite C0 function b : R+ ! R
+ being quadratic near

zero and a linear map � : Rn ! R with �(0) = 0 such that

(i) Rn+1 = U
+
S
U
�
S
M; �(M) = R

n (�(M) means the projection

of M on Rn along the y2 axis); for each compact set Q 2 R the set

fy := (y01; y2)
0 2 M; y1 2 Qg is bounded, the graph of the mapping

y2 = �(y1) coincides with the restriction of the set M near zero, i.e.,

fy 2 Rn+1 : y2 = �(y1); jy1j � �g =M

\
fy 2 Rn+1 : jy1j � �g

(3:6)

for some positive constant �;

(ii)

a
2
1(jyj) < V̂ (y) := V (y1) + C(y2 � �(y1))

2
< a

2
2(jyj)

8 0 < jyj � � (3:7)
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for some positive constant C;

maxfa1(2s); a1(k(s))g <
1

2
a2(s); 8 s > 0 (3:8a)

for some k 2 K1 for which

maxfjy2j; y 2Mg <
1

2
k(jy1j); 8 y1 6= 0 (3:8b)

(iii)

DV (y1)G1(x; y) < �b(jyj); 8jxj < a
�1(jyj); y 2M

/
f0g; (3:9)

which in turns implies that V is an (a; b) - clf with respect to _y1 =

G1(x; y1; y2) with y2 as input.

Theorem 3.5 Consider the system (1.4) and suppose that Assumption 3.4

is ful�lled. Then there exists a C1 p.d.u.u. function W (y), a constant c0
and a C1 map uc := u(y1; y2; c); (y1; y2; c) 2 R

n+1 � [c0;+1) such that

W coincides with V̂ for y near zero (3:10)

uc coincides with �̂ := �2cC(y2 � �(y1))�(0; 0) near zero (3:11)

a
2
1(jyj) < W (y) < a

2
2(jyj); 8 y 2 R

n+1
/
f0g (3:12)

and furthermore, if we call G := (G01; G2)
0 then

DW (y)G(x; y) + (uc�)(y)
#W

#y2
(y) < �b(jyj)

8 jxj < a
�1(jyj); y 6= 0; c � c0; (3:13)

which in turns implies that W is an (a; b)-clf with respect to (1.4) and (1.4)

is I.S.S. by means of the static feedback u = uc.

Remark 3.6.

� It should be noted that weaker versions of the previous theorem have

been obtained in [3, 17, 21, 23, 26] for systems without parameters (\back-

stepping design"). However, because of the additional requirements of the

present work we need to apply a di�erent and more technical procedure

than these proposed in the previously mentioned works. To be more pre-

cise, repeating step{by{step the approach in [23] or [26] we can construct a

pair of C1 functionsW and uc satisfying (3.10), (3.11) and (3.13) provided

only that conditions (i) and (iii) of Assumption 3.4 hold. For the purposes

of our present work the function W should be constructed in such a way

8
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that the additional condition (3.12) is satis�ed for given a1; a2 2 K1.

This is feasible by following a di�erent approach from that in [23, 26] and

assuming that the functions a1; a2 satisfy condition (ii) of Assumption 3.4.

� Conditions (i) and (iii) of Assumption 3.4 are ful�lled, if for instance we

assume that the subsystem _y1 = G1(x; y1; y2) with y2 as input is I.S.S. by

means of static C1 feedback y2 = �(y1) being linear near zero. Indeed, in

that case M := fy 2 Rn+1 : y2 = �(y1)g and (3.9) follows by applying the

converse stability theorem in [16].

� The result of Theorem 3.5 can be used to obtain a general su�cient

conditions for global exponential stabilizability for systems (1.4) without

parameters, namely systems of the form _y1 = G1(y1; y2), _y2 = G2(y1; y2)+

u�(y), where G1; G2; � are C; G1; G2 vanishing at zero and � is everywhere

strictly positive. Assume that condition (i) and (ii) of Assumption 3.4 are

satis�ed for some appropriate setsM;U
+
; U

� and functions V; � and b, (i.e.

it holds that DV (y1)G1(y) < �b(jyj), 8 y 2M nf0g). Furthermore assume

that the function b is quadratic and (3.8a) holds with k being globally

Lipschitzian, i.e. jk(y1)j � Kjy1j, 8 y1 for certain positive constant K.

Then the overall system is globally exponentially smoothly stabilizable.

Indeed, since V satis�es (3.2) and k is globally Lipschitzian a pair of linear

functions a1; a2 : R
+ ! R

+ can be determined satisfying (3.7) and (3.8a).

The desired conclusion is then a direct consequence of (3.12) and (3.13) of

the statement of Theorem 3.5 together with the fact that a21; a
2
2 and b are

quadratic.

Proof of Theorem 3.5: First we determine a locally �nite partition of

R
nnf0g consisting of open bounded subsets Di associated with nonnegative

C
1 functions  i with Di := supp  i; � i(y1) = 1 and in such a way that

if we de�ne

ki := sup fa21(2jy1j)� V (y1); y1 2 Dig (3:14a)

`i := inf f
1

2
a
2
2(jy1j)� V (y1); y1 2 Dig; (3:14b)

then from (3.8a) the following property is ful�lled.

Property a.

ki + sup
y12Di

a
2
1(k(jy1j)) < `1: (3:15)

In addition to the previous requirement we can determine for each i an open

subset �i 2 R such that if we de�ne M̂ :=
S
Di ��i then the following

property holds.

Property b. The set M is contained in the closure of M̂ , speci�cally,

M̂ is a neighborhood of Mnf0g with M̂
T
fy 2 R

n+1 : y1 = 0g = � and

properties (i) - (iii) of Assumption 3.4 are satis�ed with c`M̂ instead ofM .

9
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Particularly, instead of (3.9) and (3.8b) we may assume that

DV (y1)G1(x; y) < �b̂(jyj);

8 jxj < a
�1(jyj); y 2 c`M̂nf0g

(3:16a)

for some b̂ : R+ ! R
+ being C0 and positive de�nite with

b̂(s) > b(s); 8 s > 0 (3:16b)

and

jy2j <
1

2
k(jy1j); 8 y 2 c`M̂nf0g: (3:17)

Moreover, by (3.7) our partition can be constructed in such a way that

the following additional local property is satis�ed.

Property c. There is a positive constant �� < � such that for every y1
belonging to the sphere S(0; ��) of radius �� centered at zero there exists

an index i such that

sup fa21(jyj)� V (y1); y 2 Di ��ig < 0; (3:18a)

0 < inf fa22(jyj)� V (y1); y 2 Di ��ig; (3:18b)

furthermore we can assume that for every i for which Di

T
S
c(0; �) 6= �(Sc

means the complement of S) we have Di

T
S(0; ��) = �. (Note that (3.18a)

is a consequence of (3.6) and (3.7); indeed the latter imply a1(jjy1; y2jj) <

V (y1), for y1 6= 0 near zero and y2 near �1(y1)).

Consider �nally a C0 function � : R ! R
+ vanishing at zero (whose

existence is guaranteed by condition (i) of Assumption 3.4 and (3.16b))

such that for every y1 6= 0 it holds that

0 < �(y1) � max
n

b̂(jyj)� b(jyj)

1 + (�jD i(y1)j)jG1(x; y)j
; a(jxj) < jyj; y 2 c`M̂

o
:

(3:19)

We now proceed to the construction of the desired clf as follows. First,

by taking into account Properties a and b of the previous partition and

recalling condition (i) of Assumption 3.4 we can construct for each i a C1

real function �i(y2) with D�i(y2) = 0 for y2 2 c`�i; D�i(y2) > 0 for

(y01; y2)
0 2 U+nDi ��i; D�i(y2) < 0 for (y01; y2)

0 2 U�nDi ��i and such

that for every i and j for which Di \Dj 6= � the following hold:

j�i(y2)� �j(y2)j < �(y1); 8 (y
0

1; y
0

2) 2 (Di \Dj)� R: (3:20)

In particular, by (3.15) for every i for which

Di

\
S
c(0; ��) 6= �; (3:21)

10
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the corresponding �i can be constructed such that the following inequality

is satis�ed

ki + a
2
1(k(jy1j)) < �i(y2) < `i; 8 y2 2 �i; y1 2 Di;

which by (3.17) implies

ki + a
2
1(2jy2j) < �i(y2) < `i; 8 y2 2 �i: (3:22)

Moreover, by (3.8a) for every index i for which (3.21) is satis�ed, the func-

tion �i can be constructed such that in addition to (3.22) the following

holds.

ki + a
2
1(2jy2j) < �i(y2) < `i +

1

2
a
2
2(jy2j); 8 y2 2 �c

i : (3:23)

From (3.22), (3.23) and the de�nition (3.14) of the pair ki; `i we get

a
2
1(j(y1; y2)j) < a

2
1(2jy1j) + a

2
1(2jy2j) < V (y1) + �i(y2)

<
1

2
(a22(jy1j) + a

2
2(jy2j)) < a

2
2(j(y1; y2)j); 8 (y1; y2) 2 Di � R (3:24)

and for every i for which (3.21) holds. Finally by using Property c (condi-

tions (3.18a) and (3.18b)) for every i for which

Di � S(0; ��) (3:25)

the corresponding �i can be constructed in such a way that (3.24) is satis-

�ed for y 6= 0 and D�i(y2) 6= 0 for y2 2 �c
i , particularly D�i(y2) > 0 for

(y01; y2) 2 U
+nDi � �i; D�i(y2) < 0 for (y01; y2)

0 2 U
�nDi � �i, and in

addition

�i(y2) = 0; 8 y2 2 c`�i: (3:26)

Next we de�ne

L(y) :=

�
� i(y1)�i(y2); for y1 6= 0

0 for y1 = 0
(3:27a)

�(y) := V (y1) + L(y): (3:27b)

We can easily verify that � is p.d.u.u. on Rn+1 and smooth on the region

R
n+1nf(y1; y2) 2 R

n+1 : y1 6= 0g. Furthermore, by taking into account the

de�nition (3.27) and the properties of �i it follows that

DL(y) = 0(y1 6= 0)) y 2 c`M̂ n f0g; (3:28)

#L

#y2
(y) > 0 for y 2 U+

= c`M̂ n f0g; (3:29)

11
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#L

#y2
(y) < 0 for y 2 U�= c`M̂ n f0g: (3:30)

Since (3.24) holds for all i; we also get

a
2
1(jyj) < � i(y1)(V (y1) + �i(y2))

= V (y1) + � i(y1)�i(y2) = �(y) < a
2
2(jyj); 8 y 6= 0:

(3:31)

Furthermore, from the additional property (3.26)(which holds for every i

satisfying (3.25)) and taking into account the fact thatDi

T
S(0; ��) = � for

all i for which Di

T
S
c(0; �) 6= �, it follows that for y such that 0 < y1 � �

�

it holds

L(y) = 0() y 2 c`M̂; (0 < y1 � �
�): (3:32)

This property is quite necessary for the construction of the desired clf; this

explains the reason that we have considered separately the cases (3.21) and

(3.25).

Next we show that the following implication holds.

#�

#y2
(y) = 0; (y1 6= 0))

#�

#y1
G1(x; y1) < �b̂(jyj); 8 jxj < a

�1(jyj): (3:33)

Indeed, consider any vector �y := (�y1;
0
; �y2)

0 with �y1 6= 0 and #�=#y2(�y) = 0.

Then, since the summation in the right hand side in (3.27a) is �nite, there

exist integers i1; : : : ; i� depending on �y such that

� i�i =

�X
k=1

 ik (�y1)�ik (�y2):

It follows that
�X

k=1

 ik (�y1)D�ik (�y2) = 0:

The latter in conjunction with the facts that each D�ik (�y2) is strictly pos-

itive (negative) for y belonging to U+n c`M̂ (U�n c`M̂ , resp.) and  ik are

nonnegative with

�X
k=1

 ik (�y1) = 1, imply that

�y 2 c`M̂n f0g: (3:34)

From (3.16a), (3.27) and (3.34) we get

#�

#y1
G1(x; �y) < �b̂(j�yj) +

 
�X

k=1

D ik (�y1)�i(�y2)

!
G1(x; �y)

12
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8 jxj < a
�1(jyj): (3:35)

Since

�X
k=1

D i
k
(�y1) = 0 and assuming without any loss at generality that

D i� (�y1) 6= 0 it follows by (3.16b), (3.19), (3.20) and (3.35) that

#�
#y1

G1(x; �y) < �b̂(j�yj)

+
���1X
k=1

j�in(�y2)� �i
k
(�y2)jjD i

k
(�y1)j

�
jG1(x; �y)j

� �b̂(j�yj) + "(�y1)
���1X
k=1

jD ik (�y1)j
�
jG1(x; �y)j

< �b̂(j�yj); 8 jxj < a
�1(j�yj)

hence the implication (3.33) is established. We are now in a position to

build a pair of appropriate smooth functions W and u satisfying (3.10),

(3.11) and (3.12). We proceed as in the proof of Theorem 1.1 in [26]. Let

� : Rn ! R be a C1 map taking values on the interval [0,1] and such that

�(y1) = 0 for jy1j < 1=2 and �(y1) = 1 for jy1j > 1. Then using (3.28) -

(3.33) we can show quite similar to [26] that for appropriate small � > 0

the mapping

W (y) := V (y1) + �(�y1)L(y) + C(1��(�y1))(y2 � �(y1))
2 (3:36)

is C1 and p.d.u.u. on Rn+1 , (particularly (3.7) and (3.31) imply the desired

inequality (3.12)), and satis�es the implication

DW (y)

�
0

�(y)

�
= �(y)

#W

#y2
(y) = 0; y 6= 0)

#W

#y2
(y) = 0; y 6= 0

) DW (y)

�
G1(x; y)

G2(x; y)

�
=
#W

#y1
(y)G1(x; y) < �b(jyj); 8 jxj < a

�1(jyj):

(3:37)

(Note at this point that, as we have mentioned before, condition (3.32) is

quite necessary to establish (3.37); details are left to the reader.)

It follows that property (3.1) of Proposition 3.1 is satis�ed with respect

to the parameterized system (1.4), hence there exists a map v = v(y) being

C
1 on Rn+1nf0g such that (3.13) is satis�ed with v instead of uc. We now

take into account that according to (3.36)W coincides with V̂ (y) = V (y1)+

C(y2 � �(y1))
2 for y near zero, D2

V (0) is positive de�nite and for y1; y2
near zero the functions �, a and b1=2 are linear. It follows that the matrix

13
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D
2
V (0) is also positive de�nite and by (3.6) the following implication holds

in a neighborhood of zero:

y
0
D

2
W (0)

�
0

�(0)

�
= DW (y)

�
0

�(y)

�
= 0, y2 = �(y1); near zero

) DW (y)
�
G1(x;y)
G2(x;y)

�
= #W

#y1
(y)G1(x; y) < �b(jyj); 8 jxj < a

�1(jyj):

Hence by Lemma 3.2 there exists a constant c0 such that for every c � c0

the linear map

�̂(y) = �cy0D2
W (0)

�
0

�(0)

�
= �2cC(y2 � �(y1))�(0)

satis�es (3.13) with �̂ instead of uc locally around zero. The desired

conclusion, namely the existence of a C
1 map u = uc satisfying both

(3.11) and (3.13) follows directly from the previous discussion and Corollary

3.3. 2

Next we deal with the output feedback stabilization problem for com-

posite systems, specially those having the general form (1.5). The corre-

sponding result (see Corollary 3.9 below) is used in Section 4 in order to

derive su�cient conditions for stabilization for the triangular case (1.7).

We �rst need the following lemma whose proof consists a generalization of

our analysis in [24].

Lemma 3.7 Consider the system

_x = G0(x; y) (3:38a)

_y = G(x; y) (3:38b)

(x; y) 2 Rk � R
n

where the mappings G0 and G are C0 vanishing at zero. Assume that there

exist functions a1; a2 2 K1, b : R+ ! R
+ being C0 and positive de�nite

and a C1 p.d.u.u. map W : Rn ! R
+ such that

A1. The subsystem (3.38a) with y as input satis�es the I.S.A.C., partic-

ularly the implication (2.4) ) (2.5) holds with x; y instead of y and

u, respectively and


 = a
�1
1 : (3:39)

A2. Condition (3.12) holds and further

DW (y)G(x; y) < �b(jyj); 8 jxj < a2(jyj); y 6= 0: (3:40)

A3. The origin O 2 R
k+n is locally asymptotically stable with respect to

(3.38).

14
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A4.

2jx0G0(x; y)j � b(jyj); 8 jxj < a2(jyj): (3:41)

Then the origin is globally asymptotically stable with respect to (3.38).

Proof: We de�ne

R := f(x; y) : jyj < a
�1
2 (jxj)g;

S := f(x; y) : jyj < a
�1
1 (jxj)g;

L := f(x; y) :W (y) < jxj2g:

Obviously, by (3.12) we have R � L � S. Let N be an invariant open

neighborhood of zero which is contained in the region of attraction of the

origin with respect to (3.38) and whose existence is guaranteed by As-

sumption A3. We show that the region L
S
N is positively invariant with

respect to (3.38). Indeed, if we evaluate the derivative _W of W along the

trajectories of (3.38) we get from (3.40) and (3.41) that

_W (y) < 2x0G0(x; y); 8 jxj < a2(jyj); y 6= 0;

therefore,

W (y(t)) =W (y(0)) +
R t
0
_W (y(p))dp

� jx(0)j2 +
R t
0

d
dt jx(p)j

2
dp � jx(t)j2

(3:42)

for any trajectory (x(t); y(t)) of (3.38) starting from (x(0); y(0)) 2 L at

t = 0 and such that (x(�); y(�)) 2 R
c for 0 � � � t. Since R � L the

inequality (3.42) in conjunction with the positively invariance of N imply

that L
S
N is positively invariant. To complete the proof it su�ces to show

that each trajectory of (3.38) is de�ned for all t � 0 entering N after some

�nite time. Indeed, from (3.40) we get

_W (y) � �b(jy(t)j) (3:43)

for each trajectory (x(t); y(t)) of (3.40) for which jx(t)j < a2(jy(t)j) with

initial value (x(0); y(0)) 2 (N
S
L)c. This trajectory enters N

S
L af-

ter some �nite time, for otherwise, because of the positively invariance

of N
S
L, there exists a constant � > 0 such that j(x(t); y(t))j � � and

a2(jy(t)j) > jx(t)j for all t � 0. It turns out that b(jy(t)j) � �̂; 8 t � 0 for

some constant �̂ > 0, hence by (3.46) we get

W (y(t)) �W (y(0))�
R t
0
b(jy(p)j)dp

�W (y(0))� t�̂; 8 t � 0;

15
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which is a contradiction, because W is p.d.u.u.

Since L � S the previous discussion asserts that each trajectory of

(3.38) enters S after some �nite time. This in conjunction with our As-

sumption A1 that (3.38a) with y as input satis�es the I.S.A.C. with 
 = a
�1
1

and the fact that N is contained in the region of (3.38) imply as in the proof

of Theorem 3.1 in [24] that each trajectory of (3.38) is de�ned for all t � 0

tending to zero as t! +1. 2

Remark 3.8. The same result at the previous lemma holds if A2 is satis�ed

and instead of A1, A3 and A4 we assume that the subsystem (3.38a) with

y as input satis�es the I.S.S.C., namely (2.2) holds with x; y instead of y; u

and � := �1 being a function of class K satisfying

(1 + p1)�1(s) < a1((1� p2)s); 8 s > 0 (3:44)

for some strictly positive constants p1 and p2. Indeed, by the main result

in [14] condition A2 implies that the subsystem (3.38a) with x as input

satis�es the I.S.S.C., namely (2.2) holds with x instead of u and

�2 := (a21)
�1 � a22 � a

�1
2 (3:45)

instead of �. Then by (3.44) and (3.45) we get

�2((1 + p1)�1(s)) < (1� p2)s; 8 s > 0

which according to the small gain theorem of Jiang{Teel{Praly in [4] implies

that zero is globally asymptotically stable with respect to (3.38). Mainly

because of the absence of Condition A3, the previous assumptions seem to

be rather weaker than those of Lemm 3.7. However the analysis of Lemma

3.7 is simpler than this of the small gain theorem and quite useful to explore

in the global feedback stabilization problem for composite systems.

To be more speci�c, for composite control systems of the form:

_x = G0(x; y) (3:46a)

_y = G(x; y; u) (3:46b)

(x; y; u) 2 Rk � R
n � R

where the mappings G0 and G are C0 vanishing at zero and (3.46a) satis�es

assumption A1, Lemma 3.7 indicates the following algorithm scheme for

stabilization by output feedback:

� First de�ne a1 = 

�1, where 
 is the characteristic function of the

I.S.A.C. imposed for (3.46a).

16
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� Next, consider any p.d.u.u. C
1

W : Rn �! R
+ and a function

a2 2 K1 such that

a
2
1(jyj) < W (y) < a

2
2(jyj); 8 y 6= 0:

� Determine a positive de�nite function b : R+ �! R
+ satisfying

(3.41).

� Finally, determine if possible a feedback law u = u(y) satisfying (3.40)

and such that zero is locally asymptotically stable with respect to

_x = G0(x; y)

_y = G(x; y; u(y)):
(3:47)

Then Lemma 3.7 asserts that zero is globally asymptotically stable with

respect to the closed-loop system (3.47).

The previous algorithm consists of a powerful tool to face the feedback

stabilization problem for systems (3.46) with n = 1, namely when (3.46b)

operates on the real line. To illustrate the usefulness of the previous scheme

we consider the following example.

Example Consider the planar case

_x = �x3 + x
2
y (3:47a)

_y = u� x
3 + x

2
y
2
�(x; y) (3:47b)

where � is C0 vanishing at zero and y is the output of the system. First,

notice that (3.47a) satis�es the I.S.S.C. with y as input. Particularly, if

one takes V (x) = 1
2
x
2, then it holds that

DV (x)(�x3 + x
2
y) < 0; 8 jyj <

3

4
jxj:

The latter implies that (3.47a) satis�es the I.S.S.C. with �(s) = 4
3
s, which

in turns implies that I.S.A.C. is satis�ed with 
 being any function of class

K1 such that 
(�(s)) < s, s 6= 0. Let 
(s) := 1
2
s, a1(s) := 


�1(s) := 2s,

a2(s) := 3s, b(s) := 26s and W (s) := 5s2. By applying Proposition 3.1 for

the subsystem (3.47b), we can determine a C1 map n = u(y) such that

u(y) = �30y; y near zero;

DW (y)(u(y)� x
3 + x

2
�(x; y)) < �b(jyj); 8 jxj < a2(jyj):

Then it can be easily established that all the requirements of Lemma 3.7

are satis�ed hence the previous feedback globally asymptotically stabilizes

the system (3.47) at 0 2 R
2 . For reasons of completeness we note that

17
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under the previous choice of the map u(y) near zero and if we evaluate

the derivative �(x; y) of �(x; y) := 1
2
(x2 + y

2) along the trajectories of the

closed-loop system we get _�(x; y) = �x4 � 30y2 + x
2
y
3
�(x; y) < 0, for

(x; y) 6= 0 near zero which guarantees that zero is locally asymptotically

stable with respect to the corresponding closed-loop system.

We conclude this section by the following corollary which is an immedi-

ate consequence of Theorem 3.5 and Lemma 3.7 for the case (1.5). We use

this result in Section 4 to face the global feedback stabilization problem for

triangular systems.

Corollary 3.9 Consider the composite system (1.5) and, in addition to

the hypothesis of Theorem 3.5, assume that a = a
�1
2 and the subsystem

(1.6) satis�es Conditions A1 and A4 of Lemma 3.7. Moreover, assume

that 0 2 R
k+n is locally asymptotically stable with respect to the closed{

loop system (1.5) with u = uc(y), where uc(y) is the smooth output feedback

satisfying (3.11) and (3.13). Then the same feedback globally asymptotically

stabilizes (1.5) at the origin.

4 Partial-State Stabilizability for Triangular Systems

We now state and prove our result concerning the output feedback global

stabilizability problem for the general triangular case (1.7), where we as-

sume that y = (y1; : : : ; yn)
0 is the output of the system.

Theorem 4.1 Consider the system (1.7) where the mappings f , gi and

hiare C
1 vanishing at zero. Assume that:

A1 The subsystem (1.8) satis�es the I.S.A.C. (or its stronger version

I.S.S.C).

A2 The matrix (#f=#x)(0,0) is Hurwitz.

A3 For each i = 1; : : : ; n� 1 and every nonzero wi := (y1; : : : ; yi)
0 there

exists an odd integer ni := ni(wi) and a neighborhood Ni := Ni(wi)

at wi (both depending on wi) such that

c`

 [
wi2R

#
nihi

#y
ni
i+1

(Ni � R)

!
� R

+ (R�resp)
�
f0g (4:1a)

particularly, for wi = 0

#hi

#yi+1
(0; 0) 6= 0; (4:1b)

moreover we assume that

hi(0; yi+1) = 0 i� yi+1 = 0: (4:1c)

18
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(Without any loss of generality we may assume in the sequel that the

sets in the left hand side in (4.1a) is contained in (R+nf0g).

Under the previous hypothesis the system (1.7) is G.A.S. by means of a

C
1 output feedback u = u(y) being linear zero.

Remark 4.2 For instance (4.1a) is ful�lled if each hi(wi; yi+1) is a polyno-

mial with respect to yi+1 at odd degree. Particularly, Condition A3 holds

if it is assumed that for each 1 � i � n � 1 there exist an odd integer ni
and C

1 functions aij(y1; : : : ; yi), 0 � j � ni � 1 with ai1(0; : : : ; 0) 6= 0

such that

hi(y1; : : : ; yi; yi+1) = y
ni
i+1 +

ni�1X
j=0

aij(y1; : : : ; yi)y
j
i+1

whereas the polynomial �(yi+1) := y
ni�1
i+1 +

nX
j=1

aij(0)y
j�1
i+1 has no ordinary

roots. Indeed, in that case @hi=@yi+1
ni is everywhere strictly positive,

(@hi=@yi+1)(0; 0) = ai1(0) 6= 0 and hi(0; yi+1) = yi+1�(yi+1) = 0 if and

only if yi+1 = 0. Finally, note that (4.1b) implies that (1.7) is locally

asymptotically stabilizable by linear feedback (see Lemma 4.3 below).

As we have mentioned in the introduction, Theorem 4.1 consists a

considerable extension of the main result in [25]. Speci�cally, in [25] it

is assumed that (1.8) satis�es a strong version of the I.S.S.C., namely,

there exist a p.d.u.u. C1 map �0(x) positive constants c0; R1 and R2 such

that jD�0(x)j � R1jxj, jf(x; y1) � f(x; 0)j � R2jy1j and D�0(x)f(x; 0) <

�c0jxj
2, 8 x; y1. The previous assumptions imply that there exist positive

constants K and L such that

D�0(x)f(x; y1) < �Kjxj
2
; 8 jy1j < Ljxj

which obviously consists of a special case of the input-to-state stability

property. Furthermore, in [25] the following additional inequality is im-

posed:

gi(x; y1; : : : ; yi)j �M jxj; 8 x; y1; : : : ; yi; 1 � i � n

for certain positive constant M . The previous assumptions together with

(A3) permits us to apply in [25] a rather simpli�ed Lyapunov technique in

order to obtain the desired output feedback. Unfortunately, this approach

is not applicable in our case, under the general hypothesis of Theorem 4.1.

In order to establish Theorem 4.1 we need �rst the following elementary

results (Lemma 4.3) dealing with the local stabilizability problem for sys-

tems (1.7). The proof of Lemma 4.3 follows by repeating similar discussion

with that given in [25] and is omitted.
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Lemma 4.3 Consider the system (1.7) and assume that Property A2 of

Theorem 4.1 holds and (#hi
�
#yi+1)(0; : : : ; 0) 6= 0, i = 1; : : : ; n� 1. Let P

be the positive de�nite solution of the Lyapunov matrix equation

P
#f

#y
(0; 0) +

�#f
#y

(0; 0)
�0
P = �I (4:2)

and let

V1(y1) := C1y
2
1

Vi(y1; : : : ; yi) := V1(y1)+

i�1X
j=1

Cj+1(yj+1��j(y1; : : : ; yj))
2
; 1 � i � n�1

(4:3a)

�i(x; y1; : : : ; yi) := x
0
Px+ Vi(x; y1; : : : ; yi); 1 � i � n� 1 (4:3b)

C1; : : : ; Cn being arbitrary positive constants and

�1(y1) := �c1DV1(y1)
#h1

#y2
(0; 0) = �2c1C1

#h1

#y2
(0; 0)y1;

�i(y1; : : : ; yi) := �ciDVi(y1; : : : ; yi)

0
BBB@

0
...

0

(#hi
�
#yi+1)(0; : : : ; 0)

1
CCCA

= �2ciCi
#hi

#yi+1
(0; : : : ; 0)(yi � �i�1(yi; : : : ; yi�1))

2
; 1 � i � n: (4:4)

Then there exist constants c10; : : : ; ci0 such that for every cj � cj0, 1 � j �

i the derivative of the Lyapunov function �j along the trajectories of the

linearization of the system

_x = f(x; y1);

_y1 = g1(x; y1) + h1(y1; y2);

_y2 = g2(x; y1; y2) + h2(y1; y2; y3); : : : ;

_yj = gj(x; y1; : : : ; yj) + hj(y1; : : : ; yj ; �j(y1; : : : ; yj))

at the origin is negative de�nite locally around zero.

The following lemma is a direct consequence of Lemmas 3.2 and 4.3.

Details are left to the reader.

Lemma 4.4 Under the same hypothesis with those of Lemma 4.3, for each

pair of positive constants a and b there exist constants c10; : : : ; ci0 such that
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for every Cj � cj0, 1 � j � i the conclusion of Lemma 4.3 holds and in

addition the following inequality is satis�ed in a neighborhood at zero.

DVj(�y)(g1 + h1; g2 + h2; : : : ; gj + hj)
0(x; y1; : : : ; yj ; �j(y1; : : : ; yj)) �

�bj(y1; : : : ; yj)j
2 8�y := (y1; : : : ; yj) 6= 0 ; jxj < aj�yj;

where �j is de�ned in (4.4).

Proof of Theorem 4.1. For reasons of simplicity we consider the case

n = 3, namely we prove that the (k + 3)-dimensional system

_x = f(x; y1)

_y1 = g1(x; y1) + h1(y1; y2)

_y2 = g2(x; y1; y2) + h2(y1; y2; y3)

_y3 = g3(x; y1; y2; y3) + u

(4:5)

is G.A.S. by smooth output feedback. The proof of the general case follows

similarly by induction. We divide our procedure into two steps.

Step I Global stabilization of

_x = f(x; y1); _y1 = g1(x; y1) + h1(y1; y2); _y2 = g2(x; y1; y2) + u: (4:6)

First, we need some elementary facts which follow directly from our

hypothesis. Without any loss of generality we may assume that because of

our Assumption A2 the characteristic function 
 of the I.S.A.C., imposed

for the subsystem (1.8), is linear near zero (see [24] for details). We de�ne

a1 := 

�1

and let a2; k 2 K1 being linear near zero such that

maxf(a1 � k)(s); a1(2s)g <
1

2
a2(s); 8s > o: (4:7)

We consider the map

J(y1) := maxfjxf(x; y1)j; jy1j � a
�1
2 (jxj)g (4:8a)

and let � 2 K1 being linear near zero and a pair of constants �0 and C

such that

J(y1) � �
2(jy1j); 8y1; (4:8b)

a
2
1(s) � Cs

2 � a
2
2(s); s > 0 near zero; (4:9a)

a
2
1(j(y1; y2)j) < Cy

2
1 + C(y2 � �y1)

2
< a

2
2(j(y1; y2)j)

8(y1; y2) 6= 0 near zero; � � �0 (4:9b)
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whose existence is guaranteed by the fact that both a1 and a2 are linear

near zero.

We now recall condition (4.1b) of our Assumption A3 from which it

follows that there exists a constant �1 > 0 such that

#h1

#y2
(y1; y2) 6= 0; 8j(y1; y2)j � �1: (4:10)

Without any loss of generality we may assume that the functions a1(s);

a2(s); k(s); �(s) are linear and (4.9) holds for 0 � s � �1. Furthermore,

we may assume that (4.8) and (4.9) hold for every 0 � j(y1; y2)j � �1. We

now invoke Lemmas 4.3 and Corollary 3.3 as well as our Assumption A2

and (4.10) in order to determine a linear map of the form �(y1) = c1y1,

jy1j � �2 for some appropriate constants c1 and 0 � �2 � �1, a C
1 map

u1(y1); y1 2 R vanishing at zero and being linear for jy1j � �2, a positive

de�nite C0 map c1(s); s 2 R
+ being quadratic for 0 � s � �1 such that if

we de�ne

V1(y1) := Cy
2
1 (4:11)

(C being the constant de�ned in (4.9)) then the following properties are

satis�ed:

� Property a1. The origin O 2 Rn+1 is locally asymptotically stable with

respect to

_x = f(x; y1); _y1 = g1(x; y1) + h1(y1; �1(y1)) (4:12)

speci�cally, if we denote by P the solution of the matrix equation (4.2),

then the derivative of the positive de�nite function x
0
Px + V1(y1) (V1 is

de�ned by (4.11)) along the trajectories of the linearization of (4.12) at

zero is negative de�nite for 0 � j(x; y1)j � �2.

� Property b1.

DV (y1)(g1(x; y1) + h1(y1; �1(y1))) < minf�q1(jy1j);�2�
2(jy1j)g

8 0 < jy1j � �2; jxj < a2(jy1j): (4:13)

� Property c1.

DV (y1)(g1(x; y1) + u1(y1)) < minf�q1(jy1j);�2�
2(jy1j)g

8 jxj < a2(jy1j); y1 6= 0: (4:14)

Note that Properties a1, b1 follow directly from Lemma 4.3 respectively,

whereas Property c1 is a consequence of Corollary 3.3 for the case _y1 =

g1(x; y1) + u.
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We now establish the �rst part of our theorem by using the previous

properties and Theorem 3.5. However, a direct application of Theorem

3.5 for the case (4.6) is in general impossible; we need �rst to apply an

appropriate global change of coordinates. We proceed as follows. Consider

a function r(s), s 2 R+ of class K1 which is linear for jsj � �3, �3 being a

positive constant with �3 � �2 such that

maxfjy2j : h1(y1; y2) = u1(y1)g � r(jy1j); 8 jy1j � �3; (4:15a)

j�1(y1)j � r(jy1j); 8 jy1j � �3: (4:15b)

Without any loss of generality assume in the sequel that �1 = �2 = �3. It

should be noted that the existence of the function r satisfying (4.15a) fol-

lows directly from our Assumption A3 (see [23,26] where analogous state-

ments are established). We now consider a di�eomorphish m1 : R ! R

with Dm1(s) 6= 0; 8 s; m1(s)! �1 as s! �1 being linear for jsj � �1,

speci�cally

m1(s) = 
1s; for jsj � �1

for some constant 
1 > 0 and such that

(r � k�1)(2jsj) � jm1(s)j; 8 s ; (4:16a)

1

�0

j�1(s)j

jsj
=
c1

�0
� 
1; 0 < jsj � �1 (4:16b)

where k and �0 are de�ned in (4.7) and (4.9), respectively. We apply the

transformation

(x; y1; y2)! (x; y1;m
�1
1 (y2)): (4:17)

In the new coordinates the system (4.6) takes the form

_x = f(x; y1)

_y1 = g1(x; y1) + h1(y1;m1(y2))

_y2 = m
�
1(y2)g2(x; y1;m1(y2)) + um

�
1(y)

(4:18)

where m�
1 := Dm

�1
1 �m1.

Note that our Assumption A3 remains invariant under the change of

coordinates (4.17). Particularly, from (4.10) we get

#h1

#y2
(y1;m1(y2)) 6= 0; 8j(y1; y2)j � b� (4:19)

for certain b� > 0. Moreover in the new coordinates we can determine by

using (4.13) and (4.14) a positive de�nite C0 function q2(s); s 2 R
+ being

quadratic near zero such that

DV (y1)(g1(x; y1) + h1(y1; �1(y1))) < �q2(j(y1; y2)j)
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8 jxj < a2(j(y1; y2)j); y1; y2 near zero; (4:20)

DV (y1)(g1(x; y1) + u1(y1)) < �q2(jy1; y2j)

8 jxj < a2(j(y1; y2)j); (4:21)

�q2(j(y1; y2)j) � minf�q1(jy1j);�2�
2(jy1j)g; 8 y1; y2: (4:22)

Notice that from (4.8) and (4.22) we get

2jxf(x; y1)j < q2(j(y1; y2)j); 8 jxj < a2(j(y1; y2)j): (4:23)

Let 0 < � � �
� and de�ne

�1(y1) := maxfy2 : h1(y1;m1(y2)) = u1(y1)g;

�1(y1) := minfy2 : h1(y1;m1(y2)) = u1(y1)g;

M1 := f(y1; y2) 2 R
2 : m1(y2) = �1(y1); jy1j < �gS

f(y1; y2) 2 R
2 : y2 2 C

�
fm�1

1 (�1(y1)); �1(y1); �1(y1)g
���
jy1j= �

�
S
f(y1; y2) 2 R

2 : h1(y1;m1(y2)) = u1(y1); jy1j > �g;

where C(S)denotes the convex hull at a subset S of a given vector space,

U
+
1 := f(y1; y2) 2 R

2 : m1(y2) > �1(y1); jy1j < �g

S
f(y1; y2) 2 R

2 : y2 > max C
�
fm�1

1 (�1(y1)); �1(y1)g
���
jy1j= �

�
S
f(y1; y2) 2 R

2 : h1(y1;m1(y2)) > u1(y1); jy1j > �g;

U
�
1 := f(y1; y2) 2 R

2 : m1(y2) < �1(y1); jy1j < �g

S
f(y1; y2) 2 R

2 : y2 < min C
�
fm�1

1 (�1(y1)); �1(y1)g
���
jy1j= �

�
S
f(y1; y2) 2 R

2 : h1(y1;m1(y2)) < u1(y1); jy1j > �g:

We are now in a position to show that for appropriate small � all con-

ditions of Assumption 3.4 are satis�ed with respect to (1.4) with dynamics

G1(x; y1; y2) := g1(x; y1) + h1(y1;m1(y2))

G2(x; y1; y2) := m
�
1(y2)g2(x; y1;m1(y2))

�(y1; y2) := m
�
1(y2)

(4:24)
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namely with respect to

_y1 = g1(x; y1) + h1(y1;m1(y2))

_y2 = m
�
1(y2)g2(x; y1;m1(y2)) + um

�
1(y2)

(4:25)

where M1; : U
+
1 ; U

�
1 ; V1; q2; a

�1
2 and �̂1 := �1=
1 play the role of

M; U
+
; U

�
; V; b; a and �, respectively. Indeed, using our Assumption

A3 (for i = 1) and taking into account that this property remains invariant

under the change of coordinates (4.17) we can easily establish similar to

[26] that property (i) of Assumption 3.4 is satis�ed with respect to (4.25).

Particularly, the intersection of M1 with the region f(y1; y2) : jy1j < �g

coincides with the graph of the function �̂1 = m
�1
1 (�1(y1)) = �1=
1 for

jy1j < �, hence (3.6) is satis�ed. The most crucial observation is that in

the new coordinates the corresponding system (4.25) satis�es conditions

(3.7) and (3.8) of Assumption 3.4. Indeed, if we de�ne

V̂1(y1; y2) := V1(y1) + C(y2 � �̂1(y1))
2 (4:26)

then (3.7) is a direct consequence of (4.9), (4.11) and (4.16). Furthermore,

for each y1 we have

2max fjy2j : (y1; y2) 2M1g � k(jy1j): (4:27)

Indeed, for given y1 let w := max fjy2j : (y1; y2) 2 M1g. Then from (4.15)

and the de�nition of M1 we get jm1(w)j � r(jy1j) which by (4.16a) implies

2w � k(jy1j), hence (4.27) is satis�ed. The latter in conjunction with (4.7)

implies condition (3.8) of Assumption 3.4. Finally, from (4.20), (4.21) and

the de�nition of the set M1 we can easily establish as in [26] that (3.9) is

also satis�ed with b = q2. For reasons of completeness we note that for

appropriate small � and because of (4.20), (4.21) and (4.19) it follows

DV1(y1)(g1(x; y1) + h1(y1;m1(y2))) < �q2(j(y1; y2)j)

8 y2 2 C
�
fm�1

1 (�1(y1)); �1(y1); �1(y1)g
���
jy1j= �

�
:

(The inequality above is quite necessary to establish (3.9).) Consequently,

according to Theorem 3.5 there exists a p.d.u.u. C1 function V2(y1; y2)

associated with a real constant c20 and a C1 map u2 := u2(y1; y2; c2) 2

R
2 � [c20;+1) such that V2 coincides with V̂1 near zero (as the latter is

de�ned by (4.26)) and satis�es

a
2
1(j(y1; y2)j) < V2(y1; y2) < a

2
2(j(y1; y2)j); 8 (y1; y2) 6= 0; (4:28)

u2 is linear for y in a neighborhood of zero, particularly

u2(y) = �2c2C(y2 � �̂1(y1)); y := (y1; y2)
0 near zero (4:29)
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and such that

DV2(y)

�
G1(x; y1; y2)

G2(x; y1; y2)

�
+ (u2�)(y)

#V2

#y2
(y1; y2) < �q2(jyj)

8 jxj < a2(jyj); y = (y1; y2)
0

6= 0; (4:30)

where G1; G2 and � are de�ned in (4.24). In addition to the previous

properties we can select the constant c2 su�ciently large so that 0 2 Rk+2

is locally asymptotically stable with respect to the closed-loop system (4.18)

with (4.29). This claim is a direct consequence of Lemma 4.3 for the case

i = 2 and Property a1. Particularly, for appropriate c2 the derivative of the

Lyapunov function x0Px+ V̂1(y1; y2) = x
0
Px+Cy21+C(y2� �̂1(y1))

2 along

the trajectories of the closed-loop system (4.18) with (4.29) is negative

de�nite in a neighborhood of zero. The previous discussion in conjunction

with (4.8), (4.23) and (4.30) and the fact that (1.8) satis�es the I.S.A.C.

with 
 = a
�1
1 imply that all conditions of Corollary 3.9 are satis�ed with

respect to (1.5) with dynamics G0(x; y) = f(x; y);G1; G2 and � as de�ned

in (4.24) and b = q2. Therefore zero is globally asymptotically stable with

respect to the closed-loop system (4.18) with (4.29). This property remains

invariant under the change of coordinates (4.17), hence we conclude that

(4.6) is G.A.S. by means of a C1 output feedback.

Step II Global stabilization of (4.5), or equivalently of the system

_x = f(x; y1)

_y1 = g1(x; y1) + h1(y1;m1(y2));

_y2 = m
�
1(y2)g2(x; y1;m1(y2)) +m

�
1(y2)h2(y1;m1(y2); y3);

_y3 = g3(x; y1;m1(y2); y3) + u:

(4:31)

We use the result that we have derived in Step I and apply the same pro-

cedure. For reasons of completeness we brie
y present the most important

part of the proof.

Taking into account our hypothesis A2 and A3 and using Lemmas 4.3

and 3.2 we can �nd a linear map �2(y1; y2) vanishing at zero such that the

following properties are satis�ed.
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Property a2. The origin O 2 Rk+2 is locally asymptotically stable with

respect to

_x = f(x; y1);

_y1 = g1(x; y1) + h1(y1;m1(y2));

_y2 = m
�
1(y2)g2(x; y1;m1(y2)) +m

�
1(y2)h2(y1;m1(y2); �2(y1; y2)):

(4:32)

Particularly, the derivative of x0Px + V2(y1; y2), along the trajectories of

the linearization of (4.32) at the origin is negative de�nite locally around

zero.

Property b2.

DV2(y1; y2)

 
g1(x; y1) + h1(y1;m1(y2))

m�

1(y2)g2(x; y1;m1(y2)) +m�

1(y2)h2(y1;m1(y2); �2(y1; y2))

!

< �q2(jy1; y2j); 8 jxj < a2(jy1; y2j); (y1; y2) 6= 0 near zero:

For reasons of completeness we note that Property b2 is a direct conse-

quence at Property b1 and Lemma 3.2. Furthermore from Step I we recall

the fact that the following property holds.

Property c2. There exists a C1 map u2(y1; y2) such that (4.30) is ful-

�lled.

Next we consider a di�eomorphish m2 : R ! R with Dm2(y3) 6= 0; 8 y3
with m2 ! �1 as y3 ! �1 being linear near zero, i.e. m2(y3) = 
2y3 for

some constant 
2, and apply in (4.31) the transformation

(x; y1; y2; y3)! (x; y1; y2;m
�1
2 (y3)):

The resulting system is

_x = f(x; y1)

_y1 = g1(x; y1) + h1(y1;m1(y2))

_y2 = m
�
1(y2)g2(x; y1;m1(y2)) +m

�
1(y2)h2(y1;m1(y2);m2(y3))

_y3 = m
�
2(y3)g3(x; y1;m1(y2);m2(y3)) + um

�
2(y3)

(4:33)

where m�
2 = Dm

�1
2 �m2. We de�ne as in Step I

�2(y1; y2) := maxfy3 : h2(y1;m1(y2);m2(y3)) = u2(y1; y2)g;
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�2(y1; y2) := minfy3 : h2(y1;m1(y2);m2(y3)) = u2(y1; y2)g;

and for su�ciently small � > 0 let

M2 := f(y1; y2; y3) 2 R
3 : m2(y3) = �2(y1; y2); j(y1; y2)j < �g

[
f(y1; y2; y3) 2 R

3 : y3

�2(y1; y2); �2(y1; y2)g
���
j(y1;y2)j= �

�
[
f(y1; y2; y3) 2 R

3 : h2(y1;m1(y2);m2(y3)) = u2(y1; y2); j(y1; y2)j > �g:

Analogously with Step I we de�ne the sets U+
2 and U�2 and consider the

functions

V̂2(y1; y2; y3) := V̂1(y1; y2) + C(y3 � �̂2(y1; y2))
2 ;

�̂2(y1; y2) := �2(y1; y2)=
2

Then by using our hypothesis A3 and Properties b2 and c2 we can establish

that for appropriate choice of m2 all conditions of Theorem 3.5 are satis�ed

with respect to (1.4) with dynamics

G1(x; y1; y2) :=

 
g1(x; y1) + h1(y1;m1(y2))

m�

1(y2)g2(x; y1;m1(y2)) +m�

1(y2)h2(y1;m1(y2);m2(y3))

!

(4:34a)

G2(x; y1; y2) := m
�
2(y2)g3(x; y1;m1(y2);m2(y3)) (4:34b)

� := m
�
2(y2) (4:34c)

and M2; : U
+
2 ; U

�
2 ; V2; a

�1
2 and �̂2 := �2=
2 instead of M; U

+
; U

�
; V; a

and �, respectively and b := q3, q3 being an appropriate positive de�nite

C
0 function being quadratic near zero and such that q2(s) � q3(s); 8s � 0.

Therefore we can determine a p.d.u.u. C1 function V3(y1; y2; y3) which co-

incides with bV2(y1; y2; y3) := Cy
2
1+C1(y2� �̂2(y1; y2))

2 near zero and satis-

�es a21(j(y1; y2; y3)j) < V3(y1; y2; y3) < a
2
2(j(y1; y2; y3)j) for all (y1; y2; y3) 6=

0, associated with a constant c30 and a C1 map u3 = uc3(y1; y2; y3; c3)

which coincides with �2c3C1(y3 � �̂2(y1; y2)) near zero and such that

(3.13) holds with W = V3; b = q3; a = a
�1
2 and G1; G2 and � as de-

�ned in (4.34). Furthermore, by evaluating the derivative at the Lyapunov

function x0Px+ V̂3(y1; y2; y3) along the trajectories of the closed-loop sys-

tem (4.33) with u = u3, we can determine by taking into account prop-

erty the constant c3 su�ciently large so that zero is locally asymptoti-

cally stable with respect to (4.33) with u = u3. Since (1.8) satis�es the

I.S.A.C. with 
 = a
�1
1 , from Corollary 3.9 we conclude that zero is globally

asymptotically stable with respect to the closed-loop system (4.33) with

u = u3. 2
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5 Robust Stabilization

The result of Theorem 4.1 can be generalized for the following more general

class of triangular systems whose dynamics also depend on some unknown

time-varying parameters

_x = f(x; y1; �)

_yi = gi(x; y; �) + hi(y1; : : : ; yi+1); 1 � i � n� 1

_yn = gn(x; y; �) + u

(x; y) := (x; y1; : : : ; yn) 2 R
k � R

n

(5:1)

where � = �(t) 2 R
� is a time varying vector parameter and there exist

positive de�nite C1 mappings �0 : Rk+1 �! R
+ , �i : Rk+1 �! R

+ ,

i = 1; 2; : : : ; n such that

jf(x; y1; �)j+

����
�
@f

@x
;
@f

@y

�
(x; y1; �)

���� � �0(x; y1)

jgi(x; y; �)j � �i(x; y1; : : : ; yi); 8 x; y; �:

Also assume that x
0

Lf(x; 0; �) � �`jxj2, 8 �; x near zero for certain positive

constant ` and positive de�nite matrix L and the parameterized subsystem

_x = f(x; y1; �) with y1 as input satis�es a stronger version of the I.S.S.C.

Particularly, we assume that each trajectory x(t) + x(t; x0; y1; �) is de�ned

for almost all t � 0, essentially bounded input y1 and parameter � and

there exists a pair of functions a 2 KL and � 2 K such that

jx(t)j � �(jx0j; t) + �(jj(y1)tjj)

for all t � 0 and � = �(t). (See also [27] where a weaker version, being

analogous with the I.S.A.C. property, has been imposed.)

If in addition Condition A3 of Theorem 4.1 are satis�ed, then by using

a slight modi�cation of the approach used in Section 4 it can be shown that

(5.1) is G.A.S. (uniformly on �) by means of a C1 output feedback u = u(y)

being independent of � and vanishing at zero. The previous extension has

been already obtained in [27] for the particular case of systems (5.1) with

hi � yi+1, 1 � i � n� 1; in the previous mentioned paper this result was

used to explore the dynamic output feedback stabilization for triangular

systems where only the y1 component is available.
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