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Abstract

In this paper, su�cient conditions are obtained for asymptotic

null controllability of nonlinear neutral Volterra integrodi�erential

systems. The results are obtained by using the Leray{Schauder �xed

point theorem.
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1 Introduction

Compartmental models are frequently used in, e.g., theoretical epidemi-
ology, physiology, population dynamics, the analysis of ecosystems, and
chemical reaction kinetics. These models are used to describe the evolu-
tion of systems which can be divided into separate compartments, marking
the pathways of material 
ow between compartments and the possible out-

ow to and in
ow from the environment of the system (see [1, 7{11] and the

references particularly in [1, 7, 8]). For some such models the time required
for the material 
ow between compartments cannot be neglected, i.e., is
not instantaneous. A paradigm for such systems can be visualized as one in
which compartments are connected by pipes through which material passes
in de�nite time. Because of the time lags caused by the passage though
the pipes, the model equations for such systems are di�erential equations
with deviating arguments; this is contrary to the classical case where model
equations have transport time that can be considered negligible and thus
can be modelled satisfactorily using ordinary di�erential equations. For
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more details, we refer to the work of Anderson [1], Gyori [7, 8] and Gyori
and Wu [9].

A concrete example of a compartmental model is the radiocardiogram,
where the two compartments correspond to the left and right ventricles of
the heart and the pipes between these compartments represent the pul-
monary and systematic circulation. Pipes coming out from and returning
into the same compartment may represent shunts and the coronary circu-
lation (see [7]). Other applications arise in tracer kinetics, in modeling the
uptake of potassium by red blood cells, as well as in such environmentally
oriented applications as modeling the kinetics of lead in a body (see [1]).
A system for representing such models is obtained using nonlinear neutral
Volterra integrodi�erential equations of the form (1.1) given below. The
aim of this paper is to study the controllability problem for such systems
and to signi�cantly extend the application of controllability to the above
class of models (see [1, Section 21]).

Consider the nonlinear neutral Volterra integrodi�erential systems of
the form

d

dt

�
x(t)�

Z t

0

C(t� s)x(s)ds � g(t)

�
= Ax(t) +

Z t

0

G(t� s)x(s)ds

+ B(t)u(t) + f(t; x(t); u(t)); x(0) = x0 (1.1)

where x 2 En, u 2 Em, t 2 J = [0;1), C(t) and G(t) are continuous
n � n matrix valued functions, B(t) is a continuous n �m matrix valued
function, A is a constant n � n matrix and f : J � En � Em ! En and
g: J ! En are, respectively, continuous and absolutely continuous vector
valued functions.

In this paper we develop conditions for the system (1.1) to be asymp-
totically null controllable. Let Ck denote the space of bounded continuous
k-vector valued functions de�ned on J with the usual sup norm.

De�nition 1.1 The system (1.1) is said to be asymptotically null control-

lable if for every x0 2 En there exists a control u de�ned on J such that

x(0) = x0 and limt!1 x(t) = 0.

Balachandran and Dauer [2] introduced the concept of �-controllability
by using an idea of Russell [14]. A similar concept was developed by
Chukwu [4] to study controllability to a�ne manifolds, and Eke [5, 6]
extended the concept to perturbed nonlinear systems. Recently Balachan-
dran and Balasubramaniam [3] studied the null controllability of nonlinear
systems. The work reported in [2{6] are based on the work of Kartsatos [12,
13] on generalized boundary conditions in ordinary di�erential equations.
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2 Preliminary Results

Consider the linear system

d

dt

�
x(t) �

Z t

0

C(t� s)x(s)ds� g(t)

�

= Ax(t) +

Z
t

0

G(t� s)x(s)ds +B(t)u(t): (2.1)

The solution of (2.1) can be written as (see [15])

x(t) = Z(t)[x(0)�g(0)]+g(t)+

Z t

0

_Z(t�s)g(s)ds+

Z t

0

Z(t�s)B(s)u(s)ds

where Z(t) is an n� n continuously di�erentiable matrix satisfying

d

dt

�
Z(t)�

Z t

0

C(t� s)Z(s)ds

�
= AZ(t) +

Z t

0

G(t� s)Z(s)ds (2.2)

with Z(0) = I , the identity matrix. Assume the following limits exist

lim
t!1

Z(t) = Z 6= 0; lim
t!1

_Z(t) = �Z;

lim
t!1

g(t) = k (constant), lim
t!1

W (t) =W

where

W (t) =

Z t

0

ZB(s)(ZB(s))�ds; (2.3)

the asterisk denotes the matrix transpose.
Further, (see Wu [15]) the solution of the system (1.1) is given by

x(t) = Z(t)[x(0)� g(0)] + g(t) +

Z t

0

_Z(t� s)g(s)ds

+

Z t

0

Z(t� s)[B(s)u(s) + f(s; x(s); u(s))]ds:

Theorem 2.1 The system (2:1) is asymptotically null controllable if and

only if W is nonsingular.

Proof: Assume that W is nonsingular, then for each x0 2 En, x0 6= 0,
de�ne the control function u on J as

u(t) = �(Z(t)B(t))�W�1

�
Z[x(0)� g(0)] + k +

Z
1

0

�Zg(s)ds

�
:
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Clearly x(0) = x0 and limt!1 x(t) = 0, and so system (2.1) is asymptoti-
cally null controllable.

Conversely, assume thatW is singular. Then there exists a vector y 6= 0
such that y�Wy = 0. It follows that

Z
1

0

y�ZB(s)(y�ZB(s))�ds = 0:

Therefore,
y�ZB(s) = 0 for s 2 J:

Since the solution is asymptotically null controllable, there exists a control
u(�) such that

lim
t!1

x(t) = lim
t!1

�
Z(t)[x(0) � g(0)] + g(t) +

Z t

0

_Z(t� s)g(s)ds

+

Z t

0

Z(t� s)B(s)u(s)ds

�
= 0:

Letting g = 0, we have

Zx0 +

Z
1

0

ZB(s)u(s)ds = 0:

So that

y�Zx0 +

Z
1

0

y�ZB(s)u(s)ds = 0;

which implies that y�Zx0 = 0. So y� = 0, which is a contradiction to the
fact that y 6= 0. Hence W must be nonsingular. 2

Example 2.1 Consider the linear system (2.1) with

G(t� s) = C(t� s) = � exp(t� s); g(t) = exp(�t)

A = �1; B(t) = 1
2
exp(�t):

(2.4)

Therefore Z(t) = 2 exp(�t)� 1 satis�es (2.2), so that

Z(0) = 1; lim
t!1

Z(t) = �1:

Hence from (2.3) we have W = 1
4

R
1

0
exp(�2s)ds = 1

8
and jW j = 1

8
is

nonsingular. Therefore the system is asymptotically null controllable.

To approach the asymptotic null controllability for the system (1.1), we
de�ne an operator S:Cn � Cm ! Cn � Cm, S(x; u) = (z; v), for which
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any �xed point (x; u) 2 Cn � Cm will satisfy (1.1) with x(0) = x0 and
limt!1 x(t) = 0. Now, for each (x; u) 2 Cn � Cm, we de�ne

z(t) = Z(t)[x(0)� g(0)] + g(t) +

Z t

0

_Z(t� s)g(s)ds

+

Z t

0

Z(t� s)[B(s)u(s) + f(s; x(s); u(s))]ds

v(t) = (Z(t)B(t))�W�1

�
�Z[x(0)� g(0)]� k

�

Z
1

0

�Zg(s)ds�

Z
1

0

Zf(s; x(s); u(s))ds

�
:

Note that if (x; u) 2 Cn � Cm is a �xed point of S, we have

x(t) = Z(t)[x(0)� g(0)] + g(t) +

Z t

0

_Z(t� s)g(s)ds

+

Z t

0

Z(t� s)[B(s)u(s) + f(x(s); u(s))]ds

u(t) = (Z(t)B(t))�W�1

�
�Z[x(0)� g(0)]� k

�

Z
1

0

�Zg(s)ds�

Z
1

0

Zf(s; x(s); u(s))ds

�
:

Thus x(t) is the solution of (1.1) corresponding to the control u(t) with
x(0) = x0 and limt!1 x(t) = 0. To �nd such a �xed point, we introduce a
parameter � 2 [0; 1] into the problem (1.1) as follows,

d

dt

�
x(t)�

Z t

0

C(t� s)x(s)ds � g(t)

�
= Ax(t)

+

Z t

0

G(t� s)x(s)ds+ �fB(t)u(t) + f(t; x(t); u(t))g:

Consider the operator
S(x; u; �) = (z; v)

where

z(t) = �

�
Z(t)[x(0) � g(0)] + g(t) +

Z t

0

_Z(t� s)g(s)ds

+

Z t

0

Z(t� s)[B(s)u(s) + f(s; x(s); u(s))]ds

�
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v(t) = �

�
(Z(t)B(t))�W�1[�Z[x(0)� g(0)]� k

�

Z
1

0

�Zg(s)ds�

Z
1

0

Zf(s; x(s); u(s))ds]

�
:

We want to show that, in an appropriate Banach space D, there exists
a function pair (x; u) 2 D with S(x; u; 1) = (x; u). For that we need the
following Leray{Schauder �xed point theorem [6]. Note that S(x; u; �) is
completely continuous in (x; u) if, for each � 2 [0; 1], S(x; u; �) is continuous
in (x; u) and maps every bounded subset of D into a relatively compact
set.

Theorem 2.2 Let D be a Banach space. For the equation

S(x; u; �)� (x; u) = 0 (2.5)

assume the following:

(i) S(x; u; �) is de�ned on D � [0; 1], with values in D and is com-

pletely continuous in (x; u). Moreover, if K is a bounded subset of

D, S(x; u; �) is continuous in � uniformly with respect to (x; u) 2 K.

(ii) S(x; u; �0) = 0, for some �0 2 [0; 1] and for every (x; u) 2 D.

(iii) If there are any solutions of (2:5), then they belong to some closed

ball �B of D, independently of �.

Then there exists a continuum of solutions of (2:5), corresponding to all

values of � 2 [0; 1], and all of these solutions lie in �B.

3 Main Result

We now state and prove su�cient conditions for the system (1.1) to be
asymptotically null controllable. For this result, we denote � = kW�1k

and for any bounded interval Ĵ , we let C(Ĵ ; Ed) (d = n+m) be the Banach
space of all continuous Ed-valued functions on Ĵ with the sup norm.

Theorem 3.1 Assume the following to hold for system (1.1):

(i) The fundamental matrix solution Z(t) is such that

kZ(t)k � k1 and kg(t)k � k2; for all t 2 J;

where k1 and k2 are some positive constants.

(ii) The n�m continuous matrix B(t) is bounded on J , with

max
t2J

kB(t)k � �; for some � > 0:
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(iii) There exists constants H, P , R, N such that for all s 2 J we have

lim sup
t!1






Z
t

0

_Z(t� s)g(s)ds





 � P;

lim sup
t!1






Z
t

0

Z(t� s)B(s)ds





 � H;

lim sup
t!1






Z
t

0

Z(t� s)f(s; x(s); u(s))ds





 � R(kxk+ kuk) +N:

(iv) The matrix W is nonsingular.

If we can choose the constants satisfying [(H +R) + �k1�R] < 1, then the

system (1:1) is asymptotically null controllable.

Proof: Let J1 = [0; 1], d = n +m and let the sup norm of C(J1; E
d) be

k � k1. Assume that w = (x; u) 2 C(J1; E
d) and consider the function �w(�)

de�ned by

�w(t) = w(t); t 2 J1

�w(t) = w(1); t 2 [1;1):

Clearly, the set of all such �w is a Banach space, which we designate by
C1 with the norm k �wk2 = kwk1. Note that C1 = D1 � H1, where D1

is de�ned with elements x 2 C(J1; E
n) and H1 is de�ned with elements

u 2 C(J1; E
m). So

k �wk2 = k�xkD1
+ k�ukH1

; where �w = (�x; �u) 2 C1 = D1 �H1:

Consider the operator S:C1 ! C1 de�ned by

S(�x; �u; �) = (�z; �v)

where

�z(t) = �

�
Z(t)[x(0) � g(0)] + g(t) +

Z t

0

_Z(t� s)g(s)ds

+

Z t

0

Z(t� s)[B(s)�u(s) + f(s; �x(s); �u(s))]ds

�

�v(t) = �

�
(Z(t)B(t))�W�1[�Z[x(0)� g(0)]� k

�

Z
1

0

�Zg(s)ds�

Z
1

0

Zf(s; �x(s); �u(s))ds

�
:

7



K. BALACHANDRAN, J.P. DAUER, AND P. BALASUBRAMANIAM

Our aim is to show that S(�x; �u; 1) has a �xed point. First, we shall prove
that S(�x; �u; �) is continuous in �. To see this, let �1; �2 2 [0; 1] and (�x; �u) 2
C1. Then we have

jS(�x; �u; �1)(t)� S(�x; �u; �2)(t)j

� j�1 � �2j

�
jZ(t)[x0 � g(0)]j+ jg(t)j+

����
Z
t

0

_Z(t� s)g(s)ds

����
+

����
Z t

0

Z(t� s)[B(s)�u(s) + f(�x(s); �u(s))]ds

����
�

+ j�1 � �2j

����(Z(t)B(t))�W�1[�Z[x(0)� g(0)]� k

�

Z
1

0

�Zg(s)ds�

Z
1

0

Zf(s; �x(s); �u(s))ds]

����
� j�1 � �2j[k1jx0 � g(0)j+ k2 + P +Hk�uk+R(k�uk+ k�xk) +N ]

+ j�1 � �2j[�k1�fk1jx0 � g(0)j+ k + P +R(k�uk+ k�xk) +Ng]:

Because

kS(�x; �u; �1)� S(�x; �u; �2)k2 = sup
t2J1

jS(�x; �u; �1)(t) � S(�x; �u; �2)(t)j

it follows that the operator S(�x; �u; �) is continuous in �, uniformly on any
bounded subset of C1. Let

�w = (�x; �u); �wn = (�xn; �un); �w; �wn 2 C1; n = 1; 2; : : : ;

�yn = (�zn; �vn) = S(�xn; �un; �); �y = (�z; �v) = S(�x; �u; �):

Suppose that

lim
n!1

k �wn � �wk2 = lim
n!1

kwn � wk1 = 0;

that is
lim
n!1

k�xn � �xk = 0 and lim
n!1

k�un � �uk = 0:

Then we have

k�yn � �yk = sup
t2J1

jyn(t)� y(t)j = sup
t2J1

[jzn(t)� z(t)j+ jvn(t)� v(t)j]:

Now,

sup
t2J1

jzn(t)� z(t)j �

Z
1

0

kZ(s)[B(s)(�un(s)� �u(s))

+ f(s; �wn(s))� f(s; �w(s))]kds

8
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and the integrand tends to zero as n ! 1. Thus, it follows from the
Lebesgue dominated convergence theorem that limn!1 k�zn� �zk = 0. Sim-
ilarly,

lim
n!1

k�vn � �vk = 0:

Therefore,
lim
n!1

k�yn � �yk = 0:

This proves the continuity of S( �w; �) with respect to �w. Let K be a
bounded subset of C1 with bound bk. We now show that the family of func-
tions �y = S( �w; �), �w 2 K, � 2 [0; 1], are equicontinuous. Let t1; t2 2 [0; 1].
Then,

j�y(t1)� �y(t2)j = j�z(t1)� �z(t2)j+ j�v(t1)� �v(t2)j:

Now,

j�z(t1)� �z(t2)j � kZ(t1)� Z(t2)k jx0 � g(0)j+ jg(t1)� g(t2)j

+






Z t1

0

_Z(t1 � s)g(s)ds�

Z t2

0

_Z(t2 � s)g(s)ds






+






Z t1

0

Z(t1 � s)[B(s)�u(s) + f(s; �x(s); �u(s))]ds

�

Z t2

0

Z(t2 � s)[B(s)�u(s) + f(s; �x(s); �u(s))]ds






� kZ(t1)� Z(t2)k jx0 � g(0)j+ kg(t1)� g(t2)k

+

Z t1

0

k _Z(t1 � s)� _Z(t2 � s)k kg(s)kds

�

Z t2

t1

k _Z(t2 � s)k kg(s)kds

+

Z t1

0

kZ(t1 � s)� Z(t2 � s)k kB(s)�u(s) + f(s; �x(s); �u(s))]kds

+

Z t2

t1

kZ(t2 � s)[B(s)�u(s) + f(s; �x(s); �u(s))]kds

and

j�v(t1)� �v(t2)j � k(Z(t1)B(t1))
� � (Z(t2)B(t2))

�k�[k1jx0 � g(0)j

+ k + P +Rk �wk+N ]:

These estimates show that the given family of functions is equicontinuous.
That the family is uniformly bounded follows from the following argument

k�yk2 = k�zkD1
+ k�vkH1

;
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where

k�zkD1
� k1jx0 � g(0)j+ k2 + P +H(k�ukH1

+ k�xkD1
) +N

k�vkH1
� �k1�[k1jx0 � g(0)j+ k + P +R(k�ukH1

+ k�xkD1
) +N ]:

Thus, the given family of functions is uniformly bounded and equicontin-
uous. Hence S(k; �) is relatively compact in C1 for each � 2 [0; 1]. Now,
assume that the equation

S( �w; �)� �w = 0 (3.1)

has a solution in C1 and that �w is such a solution which corresponds to
�xed � 2 [0; 1]. Then

j �w(t)j = j�x(t)j+ j�u(t)j � k1jx0 � g(0)j+ k2 + P +Hk�uk+Rk �wk

+ N + �k1�[k1jx0 � g(0)j+ k + P +Rk �wk+N ]

� �1 + �2k �wk; t 2 [0; 1]

where

�1 = (1 + �k1�)[k1jx0 � g(0)j+ P +N ] + k2 + �k1�k

�2 = (H +R) + �k1�R

which implies
k �wkC1

= kwk � �1(1� �2)
�1 � �: (3.2)

By assumption [(H + R) + �k1�R] < 1. Thus the solutions of (3.1)
are bounded uniformly with respect to � 2 [0; 1]. It is clear that all the
assumptions of Theorem 2.2 are satis�ed, so that S( �w; 1) has a �xed point
�y = S( �w; 1) = �w 2 C1.

We now inductively repeat the process as follows. Let Jm = [0;m] and
let Cm be the Banach space of all functions �w which are obtained from the
functions w 2 C([0;m], Ed) as follows:

�w(t) = w(t); t 2 [0;m];

�w(t) = w(m); t 2 [m;1);

with the sup norm

k �wkCm = kwkm = sup
t2Jm

jw(t)j:

Then, there is a sequence fxmg, m = 1; 2; : : : and a corresponding sequence
fumg such that xm is a solution of

d

dt

�
xm(t)�

Z t

0

C(t� s)xm(s)ds� g(t)

�
= Axm(t)

+

Z t

0

G(t� s)xm(s)ds+B(t)um(t) + f(t; xm(t); um(t))

10
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with the property that

�ym = (�xm; �um) 2 Cm; kymkm = kymk � �;

where � is identi�ed in (3.2),

xm(t) = Z(t)[x(0)� g(0)] + g(t) +

Z
t

0

_Z(t� s)g(s)ds

+

Z
t

0

Z(t� s)[B(s)um(s) + f(s; xm(s); um(s))]ds

um(t) = (Z(t)B(t))�W�1[�Z(x(0)� g(0))� k

�

Z
1

0

�Zg(s)ds�

Z
1

0

Zf(s; xm(s); um(s))ds]:

Since, obviously, the sequence fym(t)g = f(xm(t), um(t))g, m = 1; 2; : : :, is
uniformly bounded and equicontinuous on [0; 1], there exists a subsequence
fy1m(t)g, such that

lim
m!1

y1
m(t) = y(t) = (x(t); u(t)) 2 C([0; 1]; Ed):

In the same way, there exists a subsequence fy2m(t)g of fy1m(t)g which is
uniformly convergent to a function p(t), t 2 [0; 2], such that

p(t) = y(t); t 2 [0; 1]:

Using the diagonal process, we see that there exists a subsequence fykm(t)g
of the original sequence fym(t)g such that

lim
m!1

jykm(t)� y(t)j = 0 (3.3)

uniformly on every �nite subinterval of J , where y 2 C(J;Ed) and kyk � �.
Clearly, given an arbitrary �nite interval I = [0; c] � J , there exists some
m1 such that km1

� c for m � m1. Hence, fym(t)g is de�ned for m � m1,
and the limit of (3.3) is well de�ned. It is evident that

lim
m!1

jykm(t)� y(t)j = 0

uniformly on any �nite subinterval of J . Now, �x c > 0 and let m(t) =
(x(t); u(t)), where

x(t) = Z(t)[x(0)� g(0)] + g(t) +

Z t

0

_Z(t� s)g(s)ds

+

Z t

0

Z(t� s)[B(s)u(s) + f(s; y)]ds

11
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u(t) = (Z(t)B(t))�W�1

�
�Z(x0 � g(0))� k

�

Z
1

0

�Zg(s)ds�

Z
1

0

Zf(s; y(s))ds

�
:

Then, by the Lebesgue dominated convergence theorem,

lim
m!1

jykm(t)�m(t)j = 0; t 2 [0; c]:

Since c was chosen arbitrarily, m(t) = y(t) for t 2 [0;1). Thus

x(t) = Z(t)[x(0)� g(0)] + g(t) +

Z t

0

_Z(t� s)g(s)ds

+

Z t

0

Z(t� s)[B(s)u(s) + f(s; x(s); u(s))]ds

u(t) = (Z(t)B(t))�W�1

�
�Z(x(0)� g(0))� k

�

Z
1

0

�Zg(s)ds�

Z
1

0

Zf(s; x(s); u(s))ds

�
:

Hence the proof is completed. 2

Example 3.1 Consider the system (1.1) with G, C, g, A, B are as in (2.4)
and

f(t; x; u) = " exp(�t)[log(1 + jxj) + u] + (sinx)=(1 + t2):

Now, since Z(t) = 2 exp(�t) � 1, we have kZ(t)k � 3, kZ�(t)k � 3,
kg(t)k � 1 for all t 2 J and maxt kB(t)k � 1. Also, we have

lim sup
t!1






Z t

0

_Z(t� s)g(s)ds





 � P = 1;

lim sup
t!1






Z t

0

Z(t� s)B(s)ds





 � H =
1

2
;

lim sup
t!1






Z t

0

Z(t� s)f(s; x(s); u(s))ds





 � R(kxk+ kuk) +N;

where R = ", N = � and W is nonsingular.

It follows from Theorem 3.1 that, for su�ciently small " > 0, there is
at least one solution to the problem (1.1) and the system is asymptotically
null controllable.

12
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