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Abstract

The identi�cation problem of di�usion coe�cient in the homoge-

nous, parabolic equation is considered. For this purpose, methods

are introduced which use the well-known output least squares idea

with modi�cations. For the proposed methods, both semidiscrete

and fully discrete estimates of the rate of convergence are proved,

when the �nite element and Crank-Nicolson methods are applied.

Some numerical results are included.
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1 Introduction

In this article, we consider the homogenous, parabolic equation

@u(t; x)

@t
�r � (b(t; x)ru(t; x)) = f(t; x) in [0; T ]�
 ;

uj�0 =
@u

@n

����
�1

= 0 in [0; T ] ;

u(0; x) = u0(x) in 
 ;
(1.1)

where 
 is a bounded domain in Rd; d � 3; with smooth boundary @
 =
�0 [ �1: �0 and �1 are open disjoint subsets of @
; and [0; T ] is a �xed
time interval with T <1: A direct problem in (1.1) consists of �nding the
unknown solution u when we know functions b; f; and u0; but here we are
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interested in the corresponding inverse problem: with some information
about the solution u recover the parameter b:

We assume that we have two distributed observations: z of the solution
u and � of @u

@t
: In practice, we can usually measure observations in some

points of the domain 
 at di�erent time levels, i.e., we have a discrete ob-
servation of the form u(tj ; xi); j = 0; :::; n; i = 0; :::;m: After interpolating
this point data we get a distributed observation for both u and @u

@t
with

some interpolation and measurement errors. Notice that if it is (physically)
possible to set up the measurement points as we like, we can take these
points to be the same as the discretization points used in the computa-
tions. In this way, the observation functions are already in a discrete form
(interpolants from point-wise values using a discrete basis). Moreover, the
same is true, if we �rst interpolate values from the measurements points
to the discretization points. The third possibility, if we have enough ob-
servation points, is to make the triangulation of the domain so that the
observations points are exactly vertices of the elements. In this case, how-
ever, the triangulation should be regular and quasi-uniform, which cannot
be ensured with arbitrary measurement points. Anyway, because of this
practical consideration, it is reasonable to assume that our observations are
initially discrete functions which are de�ned in a suitable basis.

With the given observations we use �rst the output least squares method
to transform the identi�cation problem of b to a minimization problem.
The main idea of this work is to include extra terms to the least squares
cost functional, which take into account the underlying equation (1.1).
For elliptic identi�cation problems, similar methods are presented in [16]
and [12]. Moreover, the well-known augmented Lagrangian formulation
of the identi�cation problem ([13] and articles therein) can lead to a very
similar approximation. However, at least we do not know any other work,
where estimates of the rate of convergence for a general �nite element
approximation of linear parabolic identi�cation problems are given. In
[11] we proved a semidiscrete error estimate for a parabolic identi�cation
problem, but essentially with a di�erent technique, because in [11] the
governing equation with Neumann boundary conditions was quasilinear
and the identi�ed parameter nonlinear. We can notice that also in [11] the
availability of observations for both u and @u

@t
was assumed.

In fact, with the proposed method one identi�es b by minimizing

J(u; b) = ku� zk2V + �(k
@u

@t
� �k2H + k

@u

@t
�r � (bru)� fk2H)

(1.2)

for suitable norms V and H: For obvious reasons, namely the di�erent
amount of di�erentiation which will be included in the cost functional, �
must depend on the discretization parameter h (in our case � = h4 or
h2). This means that when h (�) tends to zero, (u; b) converge to the
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output least squares solution of the identi�cation problem. In our case, for
�xed h > 0; the extra terms included improve the convexity properties of
the cost functional near the minimum, and the existence of a minimizer
over a non-empty, closed and convex set of admissible pairs (u; b) follows.
However, because we solve the original equation (1.1) in a discrete form
during the minimization process, we have actually u = u(b) and J(u; b) =
J(b): Therefore, the price we must pay for this improvement is the more
complicated right-hand side of the adjoint equation, which is solved to �nd
the gradient of the cost functional with respect to b: If we would like to avoid
this, we can regard u and b as separate variables (like in the augmented
Lagrangian method) without solving any state equation. The weakness
of this approach compared to our method is the fact that it needs the
minimization over a larger space V �M (u 2 V; b 2M). Nevertheless, from
the following error analysis it is easy to see that the same error estimates
between the true and the computed parameter remain valid, if u and b are
treated separately in the cost functional. Because of the computational
simplicity, the numerical examples will be computed in this way.

The error analysis of the parabolic inverse problem will be based on the
techniques used for the corresponding direct problems. Useful references
for our work have been, for example, the books [2], [3], and the papers [7],
[8], and [9].

Standard notations for Sobolev spaces and associated norms will be
used. We regard C as a generic constant which may vary in di�erent
contexts, but is always independent of the discretization parameter h: From
now on we denote by Dt the derivative with respect to time variable t:

This paper is organized as follows. In section 2, we formulate the
identi�cation problem as an optimal control problem by introducing cost
functionals which are minimized in the computational procedure. This is
followed by estimates of the rate of convergence when equation (1.1) is
semidiscretized with the �nite element method. In section 3, we analyze a
fully discrete case when the discretization in time is made with the Crank-
Nicolson scheme. In section 4, we give some numerical results which are
computed with the proposed methods. For theorems in sections 2 and 3 we
need a few preliminary lemmas. Proofs of these lemmas are quite lengthy,
so we include them in the Appendix at the end of the paper.

2 Error Estimates for the Semidiscrete Problem

In order to de�ne the �nite element spaces, let Th; 0 < h < 1; be a family of
triangulations of �
: If the boundary of 
 is curved, we use either isopara-
metric elements ([1]) or triangles with one edge replaced by the curved
segment of the boundary ([6]). We assume that the family Th is regular
and quasi-uniform. For �xed integers r � 1; l � 0; we de�ne a �nite element

3



T. K�ARKK�AINEN

space as

Srh;l =
n
v j v 2 Cl�1(�
); vjT 2 Pr 8 T 2 Th

o
; (2.1)

where Pr is the space of polynomials of degree less than or equal to r: By
S
r;0
h;l we denote the subspace of S

r
h;l of functions which vanish on �0 � @
:

The parabolic equation (1.1) in a weak Galerkin form states as follows:

�nd u = u(t) : [0; T ]! eH1(
) such that

(Dtu; v) + (bru;rv) = (f; v) 8v 2 eH1(
) ;
u(0; x) = u0(x) in 
 ;

(2.2)

where

eH1(
) =
�
v 2 H1(
) j vj�0 = 0

	
: (2.3)

The semidiscrete �nite element approximation of (2.2) reads: �nd uh =
uh(t) : [0; T ]! Uh such that

(Dtuh; vh) + (bruh;rvh) = (f; vh) 8vh 2 Uh ;

u(0; x) = u0;h in 
 ;
(2.4)

where u0;h is the interpolant of u0 in Uh � eH1:

If v is a strongly measurable map of (0; T ) into the Banach space X
with a norm k � kX ; we set

kvk2L2((0;T );X) = kvk2L2(X) =

Z T

0

kv(s)k2X ds : (2.5)

Moreover, if v is continuous from [0; T ] into X; we take

kvkC0([0;T ];X) = kvkC0(X) = sup
t2[0;T ]

kv(t)kX : (2.6)

By eH�1 we denote the dual space of eH1 equipped with the natural norm

kvk�1 = sup
 2fH1

 6=0

j(v;  )j

k k1
: (2.7)

Then, for v 2 eH�1 and  2 eH1; we have an inequality

j(v;  )j � kvk�1k k1 : (2.8)

We assume the following smoothness of the functions in (1.1)

u 2 C0( eH1
\W 2;1

\Hr+1) \ L2(Hr+2) ; Dtu 2 C
0(Hr�1);

b 2 C0(Hr
\W 1;1) \ L2(Hr+1); and f 2 C0(Hr�1) (2.9)
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for r � 2: For the computational procedure, we introduce four discretization
spaces: Uh for the solution u, Bh for the parameter b; Zh for the observa-
tions zh and �h; and �nally Fh which is used to discretize the right-hand
side f: We choose

Uh = S
r+1;0
h;2 ; Bh = Srh;1; Zh = S

r+1;0
h;1 ; Fh = Sr�2h;0 :

(2.10)

Let zh(t; x) be the distributed L
2-observation of the state u and �h(t; x)

of Dtu at each time level t: As explained in the introduction, we assume
that these observations are given already in the discrete space Zh: Notice
that because zh observes u (without an observation error zh is nothing
more than the interpolant of u in Zh), the degree of local interpolation
polynomials in Zh depends on the regularity of u: Moreover, because we
do not want to de�ne an extra discrete space for �h (just to keep the
presentation clearer), we use Zh for this observation as well. We assume
that the observation error takes the form

ku� zhk0 � "1 ;

kDtu� �hk0 � "2 ;
(2.11)

for all t 2 [0; T ]:
The cost functional to be minimized is de�ned as

J(bh) = sup
t2[0;T ]

n
kuh(bh)� zhk

2
0 + h4

�
kDtuh(bh)� �hk

2
0

+kDtuh(bh)�r � (bhruh(bh))� fhk
2
0

�o
: (2.12)

Here, uh(bh) = uh(bh)(t) is the solution of (2.4) with the parameter bh =
bh(t; x); zh = zh(t; x) and �h = �h(t; x) are the given observations in
Zh; and fh = fh(t; x) is the interpolant of f(t; x) in Fh: We see that all
functions in (2.12) are piecewise polynomials. This is to ensure that we can
compute the cost functional by applying a suitable quadrature formula. As
explained in the introduction, J(bh) can be seen as a weighted combination
of output least squares and equation error cost functionals.

The actual identi�cation problem is of the form:

�nd bh 2Mh : J(bh) � J(~bh) 8 ~bh 2Mh ; (2.13)

where

M =
n
~b 2 C0([0; T ];H1

\ L1) j 0 < �1 � ~b(t) � �2 <1 a.e. in 
 ;

kr~b(t)k0 � � <1 8t 2 [0; T ]
o

(2.14)

is the set for admissible parameters with given positive constants �1; �2; � 2
R; and Mh = M \ Bh for all t 2 [0; T ]: Using the well-known theory of
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lower semicontinuous functionals the existence of a solution bh for (2.13)
follows.

We require that the true parameter b = b(t; x) satis�es

�1 < b(t) < �2 a.e in 
 ;

krb(t)k0 < � ;
(2.15)

8t 2 [0; T ]: Notice that the �rst condition assumed in (2.15) is exactly of
the same form as in the Falk's paper ([14]), which contains error estimates
for an elliptic identi�cation problem. The second assumption in (2.15)
follows naturally from the structure of setM (which in our case is di�erent
from [14]), as we can see from the proof of Lemma 2.2. The reason for
this assumption is the technical fact that we must �nd an element from the
discrete space Bh which is close to b and belongs to the set Mh of discrete
admissible parameters. For this purpose, we need b to be isolated from the
constraints in M:

Let us �rst state some lemmas which are proved in the Appendix.

Lemma 2.1 Between the solution u = u(b)(t) of (1.1) and the solution
uh = uh(b)(t) of (2.4) we have estimates

ku� uhkC0(Hk) � C hr+1�k for k = 0; 1 ;

ku� uhkL2(H1) � C hr+1 ;

kDt(u� uh)kC0( eH�1)
� C hr ;

kDt(u� uh)kC0(L2) � C hr�1 :

Lemma 2.2 For all t 2 [0; T ]; let �h be the L
2-projection of b into Bh; and

uh(�h) the corresponding state which is calculated from (2.4). Then, for h
small enough, �h 2Mh; and we have

kuh(�h)� ukC0(Hk) � C hr+1�k for k = 0; 1 ;

kDt(uh(�h)� u)k
C0( eH�1)

� C hr ;

kDt(uh(�h)� u)kC0(L2) � C hr�1 :

Lemma 2.3 Between the solution u = u(b)(t) of (1.1) and the solution
wh = uh(bh)(t) of (2.4) which corresponds to a minimizer bh of J(bh); we
have, for h small enough, estimates

kwh � ukC0(Hk) � C h�k (hr+1 + "1 + h2 "2) for 0 � k � 2 ;

kDt(wh � u)kC0(L2) � C (hr�1 + h�2 "1 + "2) ;

kDtwh �r � (bhrwh)� fkC0(L2) � C (hr�1 + h�2 "1 + "2) :
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Theorem 2.1 There exists a constant C > 0 independent of h; such that,
between the original parameter b and the calculated parameter bh; an esti-
mate Z




jb(t)� bh(t)jjru(t)j
2 dx � C

�
hr�1 + h�2"1 + "2

�
is valid, for h su�ciently small and 8t 2 [0; T ]:

Proof: By (1.1) and the regularity of our functions, the following equation
between b(t); u(t) and bh(t); wh(t) is valid in L2(
) for all t 2 [0; T ] :

�r � ((b(t)� bh(t))ru(t))

= �Dtu(t) + f(t) +r � (bh(t)ru(t))

= Dt(wh(t)� u(t))�Dtwh(t) +r � (bh(t)rwh(t)) + f(t)

�r � (bh(t)r(wh(t)� u(t))) :
(2.16)

We proceed now with the technique introduced in [13]. For �xed t 2 [0; T ];
let us de�ne two disjoint subsets of 
; such that R1 = fx 2 
 : b(t; x) �
bh(t; x) � 0g and R2 = 
 � R1: Let the function  (t) 2 L1(
) be as
 (t) = 1 in R1 and  (t) = �1 in R2: Now, by taking the L2-inner product
of (2.16) with  (t)u(t) 2 L1(
) we get

�(r � (jb(t)� bh(t)j ru(t)); u(t))

= (Dt(wh(t)� u(t))� (Dtwh(t)�r � (bh(t)rwh(t))� f(t))

�r � (bh(t)r(wh(t)� u(t)));  (t)u(t)) : (2.17)

Since b(t) and bh(t) are both in C0(H1); jb(t) � bh(t)j ru(t) 2 C0(H1) as
a consequence of u 2 C0(W 2;1): Hence, an application of Green's formula
together with the boundedness of bh(t) in C0(H1

\ L1) and  (t)u(t) in
C0(L1) showsZ




jb(t)� bh(t)j jru(t)j
2 dx

� C (kDt(wh(t)� u(t))k0 + kDtwh(t)�r � (bh(t)rwh(t))� f(t)k0

+kwh(t)� u(t)k2) (2.18)

8t 2 [0; T ]: The result follows now from Lemma 2.3.

Next we will use the estimate of Lemma 2.2 established in eH�1: In the
case d = 1 the domain 
 reduces to an interval I = (a; b): From now on
we assume that at least on one end of the interval we have a Neumann
condition u0(a) = 0 or u0(b) = 0: Moreover, because Uh � C1(�I); we can
take the discrete solution uh(t) of (2.4) to satisfy also the homogenous

Neumann boundary conditions exactly while the test function space eH1

7
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is kept as before. Notice that in this way the so-called Petrov-Galerkin
procedure (discrete spaces for solutions and test functions are di�erent)
for solving (1.1) is de�ned ([15], Chapter 5), for which the estimates in
Lemmas 2.1 and 2.2 remain valid.

We de�ne a new cost functional as

~J(bh) = sup
t2[0;T ]

n
kuh(bh)� zhk

2
0 + h2

�
kDtuh(bh)� �hk

2
�1

+kDtuh(bh)� (bh u
0
h(bh))

0
� fk2�1

�o
; (2.19)

where 0 denotes the di�erentiation with respect to x-variable and the last
two norms are realized in the dual space eH�1: The new cost functional
(2.19) is introduced, because we can improve the convergence estimate of
Theorem 2.1 in this special case. Moreover, to consider the last two terms
in (2.19) in eH�1-norm means that we must solve two additional Laplace or
Helmholz equations with suitable boundary conditions in order to compute
these terms (see Lemma 3.4 in section 3).

Theorem 2.2 Assume that (2.9), (2.11), (2.15) hold and d = 1: Then,
there exists a constant C > 0 independent of h; such that an error estimate

k(b� bh)u
0
kC0(L2) � C (hr + h�1 "1 + "2)

between the original parameter b = b(t; x) and a minimizer bh = bh(t; x) of
(2.19) is valid, for h su�ciently small.

Proof: For simplicity, we write the functions here without the variable
(t; x): First, however, let us �x t 2 [0; T ]: A weak form of equation (2.16)
reads as

((b� bh)u
0; v0) = (Dt(wh � u); v) + (�Dtwh + (bh w

0
h)
0 + f; v)

+(bh (wh � u)0; v0) 8v 2 eH1 ; (2.20)

because also wh satis�es the boundary conditions exactly. Since eH1 is now
either the whole space H1 or its subspace of the form

eH1 =
�
v 2 H1

j v(e) = 0
	

(2.21)

for e equal to a or b; we can de�ne the test function v 2 eH1 as a solution
of the boundary value problem�

v0(x) = [(b� bh)u
0](x); x 2 I ;

v(e) = 0 :
(2.22)

8
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So, using this v in (2.20) and applying (2.8)

k(b� bh)u
0
k
2
0 � C (kDt(wh � u)k�1 + kDtwh � (bh w

0
h)
0
� fk�1

+kbh (wh � u)0k0) kv
0
k0

� C (kDt(wh � u)k�1 + kDtwh � (bh w
0
h)
0
� fk�1

+k(wh � u)0k0) k(b� bh)u
0
k0 : (2.23)

A direct calculation shows that in the dual space eH�1 we have

k(a g0)0k�1 � ka g0k0 ; (2.24)

when g satis�es the boundary conditions in (1.1). Finally, using (2.19) and
(2.24) we have, like in the proof of Lemma 2.3

kwh � zhk
2
0 + h2 (kDtwh � �hk

2
�1 + kDtwh � (bh w

0
h)
0
� fk2�1)

� kuh(�h)� zhk
2
0 + h2 (kDtuh(�h)� �hk

2
�1

+kDtuh(�h)� (�h u
0
h(�h))

0
� fk2�1)

� 2(kuh(�h)� uk20 + ku� zhk
2
0)

+2h2 (kDt(uh(�h)� u)k2�1 + kDtu� �hk
2
�1)

+h2kDtuh(�h)� (�h u
0
h(�h))

0
�Dtu+ (b u0)0k2�1

� C (h2(r+1) + "21 + h2 "22) + h2 (kDt(uh(�h)� u)k2�1

+k(�h (u� uh(�h))
0)0k2�1 + k((b� �h)u

0)0k2�1)

� C (h2(r+1) + "21 + h2 "22) + h2 (ku� uh(�h)k
2
1 + kb� �hk

2
0)

� C (h2(r+1) + "21 + h2"22) :

(2.25)

Since t was �xed, (2.20) - (2.25) hold for all t 2 [0; T ]: Therefore, exactly
as in (5.49), we get

kwh � ukC0(L2) � C (hr+1 + "1 + h "2) ;

kDt(wh � u)k
C0( eH�1)

� C (hr + h�1 "1 + "2) ;

kDtwh � (bh w
0
h)
0
� fk

C0( eH�1)
� C (hr + h�1 "1 + "2) : (2.26)

Hence, the result follows from (2.23) and (2.26) with the inverse inequality.

Remark 2.1 It is clear that the most stringent requirement in our theory
is to have a C1 �nite element space for discretizing u: Of course, this is
not a problem in 1d or in the case when a tensor product basis can be
used for d = 2; 3: However, there might be a possibility to overcome this
problem by introducing a new, vector-valued variable � for the ux aru;
i.e., by using a mixed formulation of the original problem (1.1) (see, e.g.,

9
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[15], Chapter 7). For elliptic identi�cation problems, an approach using
the mixed formulation is introduced and analyzed in [16].

Moreover, from the proof of Theorem (2.2) we notice that if wh does
not satisfy the Neumann boundary conditions exactly, a boundary term to
evaluate will appear in (2.20). Using the trace theorem for Sobolev spaces,
this suggests that in this case the error estimate of Theorem (2.2) should be

multiplied by h�
1
2 : Of course, this is also valid for our discrete estimate in

the next section as well. However, our numerical computations in section
4 do not indicate such phenomenon. Therefore, to prove an improved
estimate using only C0 discretization remains as a future challenge.

Remark 2.2 Why not pure output least squares method? As we can
see from our theorems, their proofs are based on the fact that we can
write an error equation between the true and the computed parameter in a
strong form ((2.16), (2.20)). The additional error equation term in the cost
functionals enables to use this kind of technique (in fact, this is exactly the
reason why we included these terms to the cost functionals at �rst place).
With output least squares method we can not do this, because only the
equation which is satis�ed for bh and uh(bh) is the weak Galerkin form
(2.4) with only discrete functions.

To get a strong equation which can be used in the error analysis, the �rst
idea, of course, is to de�ne a strong solution u(bh) of the original equation
(1.1) with the discrete parameter bh: But then the di�culty is the following:
for an error estimate between b and bh we must have estimates between
u(bh) and uh(bh): But, as we know very well, these estimates depend on the
regularity of u(bh) which depends on the regularity of the discrete parame-
ter bh: So the higher order estimates we want to have the higher regularity
we must assume for bh: Computationally this is very restrictive, because
we need discrete spaces which are subspaces of high order Sobolev Spaces
(H2(
) or more). Moreover, the boundedness of the discrete parameter
(and its time derivatives) in these spaces is a nonlinear constraint which
must be taken into account in the optimization. From our results we see
that higher order estimates are obtained without any change in the set M
of admissible parameters and the regularity of the discrete parameter bh:

3 Estimates for the Fully Discrete Scheme

First we �x some notations. Let 1 � m 2 N be a positive integer and
set �t = T

m
: We divide the time-axis [0; T ] into subintervals [tj ; tj+1]; j =

0; :::;m� 1; where tj = j�t: In the sequel, we use the following notations

10
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for functions  ; ~ ; which are de�ned on [0; T ] or on its division:

 j =  (tj); @t j =
 j+1 �  j

�t
;  j+ 1

2
=
 j+1 +  j

2
;

� j+ 1
2

=  (tj+ 1
2
); ( ~ )j+ 1

2
=  j+ 1

2

~ j+ 1
2
: (3.1)

Concerning the smoothness of the functions we assume

u 2 C0( eH1
\W 2;1

\Hr+1); Dtu 2 L
2(Hr�1); Dtttu 2 L

2( eH�1);

Dttu 2 L
2(H1); b 2 C0(W 1;1

\Hr) ; f 2 C0(Hr�1) (3.2)

for r � 2: If we compare these regularity assumptions to those in (2.9) we
notice some di�erences. The main reason for these changes is naturally
the discretization in time. Especially, this brings some new assumptions
concerning higher order time-derivatives of u (see the Appendix).

In order to get a totally discrete formulation, we use the well-known
Crank-Nicolson scheme. We compute the discrete solution U = Uj(b);
which corresponds to a given parameter b; with the recursive formula(

(@tUj ; vh) + ((�brU)j+ 1
2
;rvh) = ( �fj+ 1

2
; vh) 8vh 2 Uh ;

U0 = u0;h ; (3.3)

for j = 0; :::;m � 1: Throughout this section, we use the following �nite
element spaces

Uh = S
r;0
h;2; Bh = Sr�1h;1 ; Zh = S

r;0
h;1; Fh = Sr�2h;0 : (3.4)

We consider �rst a totally discrete cost functional

J(bh) =

m�1X
j=0

k(Û � zh)j+ 1
2
k
2
1 + h2

�
k@tÛj � ��h;j+ 1

2
k
2
0

+k@tÛj �r � (e�bhrÛ)j+ 1
2
� �fh;j+ 1

2
k
2
0

�
;

(3.5)

where Û = Ûj(~bh) is calculated from (3.3) with parameter ~bh; and �fh;j+ 1
2

is the interpolant of �fj+ 1
2
in Fh:

The identi�cation problem in this totally discrete setting can be de�ned
as:

�nd bh 2Mh : J(bh) � J(~bh) 8 ~bh 2Mh ; (3.6)

where

M =
ne�b j 8 0 � j � m� 1 : 0 < �1 �

e�bj+ 1
2
� �2 <1 a.e. in 
 ;

kr
e�bj+ 1

2
k0 � � <1

o
(3.7)

11
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is the set for admissible parameters andMh =M \Bh: From the de�nition
ofMh we see that the discrete parameter is de�ned as a �nite element func-
tion with respect to the space variables at time levels tj+ 1

2
; j = 0; :::;m�1:

In the sequel, let bh be a minimizer in (3:6) (existence follows as before)
and W = Uj(bh) the solution of (3.3) with this parameter.

Again, we introduce �rst a few lemmas. Proofs for these results are
included in the Appendix.

Lemma 3.1 Between the true solution u = u(b) of (1.1) and the discrete
solution U = Uj(b) of (3.3) we have an estimate

�t

m�1X
j=0

�
k(U � �u)j+ 1

2
k
2
1 + k@tUj �Dt�uj+ 1

2
k
2
�1

�
� C T (h2r + (�t)4) :

(3.8)

Moreover, if in addition to (3.2) we assume

Dtttu 2 L
2(L2); Dttu 2 L

2(H2) ; (3.9)

we have an estimate

�t

m�1X
j=0

�
k(U � �u)j+ 1

2
k
2
2 + k@tUj �Dt�uj+ 1

2
k
2
0

�
� C T h�2(h2r + (�t)4) :

(3.10)

Lemma 3.2 Assume that the true parameter b satis�es (2.15). Let �h
be the L2-projection of b into Bh for all t 2 [0; T ]; and eU = eUj(�h) the
corresponding discrete solution of (3.3). Then, for h small enough, �h 2

Mh; and the following estimate between eU and u holds

�t

m�1X
j=0

�
k(eU � �u)j+ 1

2
k
2
1 + k@t eUj �Dt�uj+ 1

2
k
2
�1

�
� C T (h2r + (�t)4) :

If assumption (3.9) is valid, we get an estimate

�t

m�1X
j=0

�
k(eU � �u)j+ 1

2
k
2
2 + k@t eUj �Dt�uj+ 1

2
k
2
0

�
� C T h�2 (h2r + (�t)4) :

Lemma 3.3 Assume that b satis�es (2.15) and that (2.11) is valid. With
the smoothness assumptions (3.2) and (3.9) the following estimate between
b; u and bh;W is, for h small enough, valid

�t

m�1X
j=0

�
k(W � �u)j+ 1

2
k
2
2 + k@tWj �Dt�uj+ 1

2
k
2
0

+k@tWj �r � (�bhrW )j+ 1
2
� �fj+ 1

2
k
2
0

�
� C T (h2(r�1) + h�2 (�t)4 + h�4 "21 + "22) :

12
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Theorem 3.1 Let the assumptions of Lemma 3.3 be valid. Then, for h
su�ciently small, there exists a constant C > 0 independent of h; such
that an estimate0

@�t m�1X
j=0

�Z



j(�b� �bh)j+ 1
2
j jr�uj+ 1

2
j
2 dx

�2

1
A

1
2

� CT
�
hr�1 + h�1 (�t)2 + h�2 "1 + "2

�
between a solution bh of (3.6) and the true parameter b holds.

Proof: From (1.1) we know that in L2(
) an equation

�r � ((�b� �bh)r�u)j+ 1
2
= �Dt�uj+ 1

2
+ �fj+ 1

2
+r � (�bhr�u)j+ 1

2

(3.11)

is valid for all 0 � j � m � 1: Now, adding and subtracting @tWj and
r � (�bhrW )j+ 1

2
to (3.11) we get, with the same technique as in Theorem

2.1, (2.18)Z



j(�b� �bh)j+ 1
2
j jr�uj+ 1

2
j
2 dx � C

�
k@tWj �Dt�uj+ 1

2
k0

+k(W � �u)j+ 1
2
k2 + k@tWj �r � (�bhrW )j+ 1

2
� �fj+ 1

2
k0

�
(3.12)

for all 0 � j � m�1: Hence, taking square in both sides of (3.12), summing
from j = 0; :::;m� 1; and multiplying with �t we have

�t

m�1X
j=0

�Z



j(�b� �bh)j+ 1
2
j jr�uj+ 1

2
j
2 dx

�2

� C�t

m�1X
j=0

�
k@tWj �Dt�uj+ 1

2
k
2
0 + k(W � �u)j+ 1

2
k
2
2

+k@tWj �r � (�bhrW )j+ 1
2
� �fj+ 1

2
k
2
0

�
:

(3.13)

Results from Lemma 3.3 prove the theorem.
As in the previous section, we have a better estimate for d = 1 with

the same restrictions concerning the boundary conditions and the solution
method as before. For this purpose, we de�ne a cost functional as

J(bh) =

m�1X
j=0

k(Û � zh)j+ 1
2
k
2
1 + k@tÛj � ��j+ 1

2
k
2
�1

+k@tÛj � (�bh Û
0)0
j+ 1

2

� �fj+ 1
2
k
2
�1 :

(3.14)

13



T. K�ARKK�AINEN

Theorem 3.2 Assume that only smoothness conditions (3.2) and (2.15),
(2.11) are valid. Then, for h su�ciently small, there exists a constant
C > 0 independent of h; such that0

@�t m�1X
j=0

k((�b� �bh) �u
0)j+ 1

2
k
2
0

1
A

1
2

� CT
�
hr + (�t)2 + h�1 "1 + "2

�
;

where bh is a minimizer of (3.14).

Proof: With the same technique as in Theorem 2.2, (2.23), and in (3.11),
(3.12) we get

k((�b� �bh)�u
0)j+ 1

2
k0 � C

�
k@tWj �Dt�uj+ 1

2
k�1 + k(W � �u)0

j+ 1
2

k0

+k@tWj � (�bhW
0)0
j+ 1

2

� �fj+ 1
2
k�1

�
(3.15)

for all 0 � j � m� 1: As in the previous theorem, it follows from (3.15)

�t

m�1X
j=0

k((�b� �bh)�u
0)j+ 1

2
k
2
0

� C�t

m�1X
j=0

�
k@tWj �Dt�uj+ 1

2
k
2
�1 + k(W � �u)j+ 1

2
k
2
1

+ k@tWj � (�bhW
0)0
j+ 1

2

� �fj+ 1
2
k
2
�1

�
:

(3.16)

As in the proof of Lemma 3.3 when using again the results from Lemma
3.2, we can show that the cost functional (3.14) satis�es an estimate

�t

m�1X
j=0

k(W � zh)j+ 1
2
k
2
1 + k@tWj �

��h;j+ 1
2
k
2
�1

+k@tWj � (�bhW
0)0
j+ 1

2

� �fj+ 1
2
k
2
�1

� CT (h2r + (�t)4 + h�2 "21 + "22) :

(3.17)

As before, the result follows from (3.17).

Remark 3.1 It is clear that in the semidiscrete case we can not remove
the assumption about the existence of an observation for Dtu: However,
because we assumed that the observation of u is of the form zj = z(tj); one
(simplest) possibility is to approximate ��h;j+ 1

2
with @tzh;j ; j = 0; :::;m�1:

A similar analysis as before shows that for a cost functional

J(bh) =

m�1X
j=0

k(Û � zh)j+ 1
2
k
2
1 + (�t)2 k@tÛj � @tzh;jk

2
0

+h2k@tÛj �r � (e�bhrÛ)j+ 1
2
� �fh;j+ 1

2
k
2
0 ;

(3.18)

14
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the result of Theorem 3.1 is replaced with an estimate

0
@�t m�1X

j=0

�Z



j(�b� �bh)j+ 1
2
j jr�uj+ 1

2
j
2 dx

�2

1
A

1
2

� CT
�
hr�1 + (�t)�1hr + h�1 (�t)2 +�t+ h�1(h�1 + (�t)�1) "1

�
:

(3.19)

For d = 1; a minimization of a cost functional

J(bh) =

m�1X
j=0

k(Û � zh)j+ 1
2
k
2
1 + (�t)2k@tÛj � @tzh;jk

2
�1

+k@tÛj � (�bh Û
0)0
j+ 1

2

� �fj+ 1
2
k
2
�1

(3.20)

gives an estimate

0
@�t m�1X

j=0

k((�b� �bh) �u
0)j+ 1

2
k
2
0

1
A

1
2

� CT
�
(�t)�1hr +�t+ (h�1 + (�t)�1) "1

� (3.21)

as a replacement of Theorem 3.2. Notice that we can also replace �fh;j+ 1
2

with fh;j+ 1
2
; if Dttf 2 L2(L2) with the �rst cost functional (3.18), or

Dttf 2 L
2( eH�1) with the cost functional (3.20).

Remark 3.2 If m(�0) > 0; we can replace k(Û � �zh)j+ 1
2
k
2
1 with kr(Û �

�zh)j+ 1
2
k
2
0 in all cost functionals. This follows from the Poincare inequality.

Lemma 3.4 Calculation of the dual norm. Suppose that we need to com-
pute the eH�1-norm of a given function g (notice that with the proposed
methods this calculation needs to be done only on �xed time levels). Then
kgk�1 is equal to k'k1 where ' is the weak Galerkin solution of the problem8><

>:
��'+ ' = g in 
 ;

'j�0 =
@'

@n

����
�1

= 0 :
(3.22)

Proof: A direct calculation using the de�nition of the dual norm and (2.8),
(5.2).

Remark 3.3 In Lemma 3.4 we can replace ��'+' = g with ��' = g; if
m(�0) > 0: Then we have an equivalence between kr'k0 and kgk�1: This
follows again from the Poincare inequality.

15
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4 Numerical Experiments

Since we gave improved estimates for the 1d case in the previous section,
this is the result we will investigate. Moreover, even if this is not along
with our theory, these results are computed using only a C0 �nite element
space in Uh: In this way, there are fewer degrees of freedom to optimize
with respect to u: Moreover, in practical applications this is surely a more
exible choice, and it is also very interesting to see what will happen and
is there a possibility to improve the theoretical results in this respect. We
will see that the answer to this last question is yes.

As we mentioned in the introduction, all error estimates given remain
valid when we treat b and u as separate variables in the cost functional.
Moreover, computationally this is much easier, since the gradients with
respect to the variables can be calculated directly without solving any ad-
joint equations. Therefore, for (t; x) 2 (0; 1) � (0; 1); we minimize a cost
functional

J(uh; bh) =

m�1X
j=0

k(uh � zh)
0

j+ 1
2

k
2
0 + k@tuh;j � ��j+ 1

2
k
2
�1

+k@tuh;j � (�bh u
0
h)
0

j+ 1
2

� �fj+ 1
2
k
2
�1

(4.1)

over Uh �Mh: Here, Uh � eH1 = fv 2 H1
j v(0) = 0g; and the set of

admissible parameters is of the form

Mh =
n
�bh 2 (Bh)

m
j 8 0 � j � m� 1 : 0 < �1 � �bh;j+ 1

2
� �2 <1 ;

k�b0
h;j+ 1

2

k0 � � <1

o
: (4.2)

Throughout this section, we choose Uh = S2
h;1 and Bh = S1

h;1; i.e., we use a
piecewise quadratic Lagrange basis in Uh and a corresponding linear basis

in Bh:
The minimization of (4.1) was made using the following sequential split-

ting algorithm (compare to the augmented Lagrangian algorithm in [13]):

Sequential splitting algorithm

1. Initialize k = 0; u0 = uh;0 = zh:

2. For given uk;

min
bk2Mh

J(bk) =

m�1X
j=0

k@tuk;j � (�bk u
0
k)
0

j+ 1
2

� �fj+ 1
2
k
2
�1:

(4.3)

16
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3. For given bk;

min
uk+1

J(uk+1) =

m�1X
j=0

k(uk+1 � zh)
0

j+ 1
2

k
2
0 + k@tuk+1;j �

��j+ 1
2
k
2
-1

+k@tuk+1;j � (�bk u
0
k+1)

0

j+ 1
2

� �fj+ 1
2
k
2
�1:

(4.4)

4. Test the convergence. Stop or set k = k + 1 and goto 2 .

In the actual computations, each subproblem in the algorithm was
solved using the E04UCF optimization routine from the NAG-library. In
all examples, b(t; x) = exp(t) exp(x) and u(t; x) = exp(�t) sin(�x)2:

Example 4.1 First we study the relation between �t and h:We �x �t = 1
6

and vary h: Observations are assumed to be exact in this example.

1
h

error iterations

3 5:047�10-2 19
4 2:836�10-2 20
5 1:883�10-2 6
6 1:570�10-2 3
7 1:465�10-2 2
8 1:417�10-2 2
9 1:392�10-2 2
10 1:378�10-2 2
11 1:369�10-2 2
12 1:364�10-2 3
18 1:354�10-2 3

Table 1: Calculated results in Example 4.1 with di�erent values of h.

Since after h = 1
6
the magnitude of error decreasing gets clearly smaller,

and after h = 1
10

the error remains practically the same, �t � h (up to a
constant) seems to be the best choice. Moreover, the number of iterations
taken by the algorithm indicates the same balance.

Example 4.2 Same as the �rst example, but we take �t = h and test the
order of convergence.

17
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1
h

error error/h2

3 7:793�10-2 0.701
4 4:084�10-2 0.653
5 2:406�10-2 0.602
6 1:570�10-2 0.565
7 1:120�10-2 0.549
8 8:419�10-3 0.538
9 6:573�10-3 0.532
10 5:277�10-3 0.528
11 4:334�10-3 0.524
12 3:624�10-3 0.522

Table 2: Calculated results in Example 4.2 with di�erent values of h.

Table 2 con�rms the O(h2 +�t2) rate of convergence.

Example 4.3 As Example 4.2, but with an observation error zh(xi) =
u(xi)+ "(xi) in the discretization points xi for all t: Here "1 = ku� zhk0 =
0:001 and

"(x) =

8<
: �"1; 0 � x <

1

4
;
1

2
� x <

3

4
;

"1; elsewhere:
(4.5)

We expect an error of the form C1h
2 +C2

"1
h
: We can get C1h

2 -term from
Table 2, since it represents the error with perfect observation. Therefore,
in the third column of the next table, we have calculated C2 =

h
"1
(error�

C1h
2):

1
h

error C2

3 7:657�10-2 -
4 4:705�10-2 1.552
5 2:751�10-2 0.689
6 2:818�10-2 2.079
7 2:762�10-2 2.345
8 3:061�10-2 2.774
9 3:077�10-2 2.689
10 3:502�10-2 2.974
11 3:336�10-2 2.639
12 3:825�10-2 2.886

Table 3: Calculated results in Example 4.3 with di�erent values of h.

18
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The constant C2 seems to get stabilized. The \zig-zag" phenomena in
this and the previous tables is due to the location of the di�cult points
u0 = 0 with respect to the element division of the interval (0; 1): The
most important information in Table 3 is clearly the fact that with the
observation error, decreasing h increases the error for h small enough. This
is a very important matter in practice, where one should be able to improve
the observation and not just make h smaller to get better results.

Remark 4.1 We computed the given examples with homogenous Dirichlet
boundary conditions as well. The obtained results were exactly of the same
form as for the mixed problem. Therefore, it should be possible to prove
corresponding error estimates as well. However, at the moment this is
theoretically still an open question.
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5 Appendix

In fact, many of the results included in this Appendix can be proved using
standard techniques (see, for example, [1] and articles therein). However,
to use standard methods here is not the best way from the point of view
of parameter identi�cation. Since the parameter function b(t; x) in the
original equation (1.1) is usually not the main issue, it is assumed to be
\smooth enough", which in parameter identi�cation is not the case. One
important aspect is the regularity of di�erent parameters appearing in the
equation. This is the reason, why we have tried to establish the following
results under minimal assumptions for the parameters, and therefore, some
parts are not standard.

For completeness, let us recall the interpolation properties of the spaces
Srh;l (see, e.g., [1]): for all v 2 Wm;p(
) � Cl�1(�
) there exists an inter-
polant Ihv 2 S

r
h;l such that

kv � Ihvkk;p � Chm�kkvkm;p for 0 � k � l; m � r + 1; 1 � p � 1 :

(5.1)

In many places, we make use of the following inequality:

Let a; b 2 R : Then, for � > 0;

a b �
1

4�
a2 + �b2 : (5.2)
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5.1 Proofs of lemmas in section 2

Proof of Lemma 2.1: Because Uh � eH1; subtracting (2.4) from (2.2)
leads to a formula

(Dt(uh � u); vh) + (br(uh � u);rvh) = 0 8vh 2 Uh : (5.3)

Let �uh be an arbitrary element in Uh: Then, (5.3) can be also written as

(Dt(uh � �uh); vh) + (br(uh � �uh);rvh)

= (Dt(u� �uh); vh) + (br(u� �uh);rvh) 8vh 2 Uh : (5.4)

Let Phw be the H1-projection of w into Uh; i.e.,

(w � Phw; vh) + (r(w � Phw);rvh) = 0 8vh 2 Uh : (5.5)

By the de�nition, Phw is stable in H1

kPhwk1 � kwk1 8w 2 H1 : (5.6)

Let  2 eH1 be given, and de�ne ' as the solution of the problem8<
:

��'+ ' =  in 
;

@'

@n

����
@


= 0:
(5.7)

By standard regularity results we have k'k3 � C k k1; which by Sobolev
imbedding theorem means that ' 2 C1(�
) for d � 3: Then, using (5.7),
(5.5), and (5.1) we have

(w � Phw; ) = (w � Phw;') + (r(w � Phw);r')

= (w � Phw;'� Ih') + (r(w � Phw);r(' � Ih'))

� C kw � Phwk1 h
2
k'k3 � C kw � Phwk1 h

2
k k1: (5.8)

Hence, this gives

kw � Phwk�1 = sup
 2 eH1

j(w � Phw; )j

k k1
� C h2 kw � Phwk1 � C h2 kwk1 ;

(5.9)

and so

kw � Phwk
2
0 � kw � Phwk�1 kw � Phwk1 � C h2kw � Phwk

2
1

� C h2 kwk21 : (5.10)
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For �xed t 2 [0; T ]; let �uh(t) be the L
2-projection of u(t) into Uh; i.e.,

(u(t)� �uh(t); vh) = 0 8vh 2 Uh : (5.11)

Again, it follows that this projection is stable in L2

k�uh(t)k0 � ku(t)k0 8u(t) 2 L2 ; (5.12)

and that we have an abstract approximation result

ku(t)� �uh(t)k0 = inf
�2Uh

ku(t)� �k0 : (5.13)

From (5.1) we obtain for all u 2 Hm(
) � C1(�
) (m > 1 + d
2
)

ku(t)� �uh(t)k0 � C hs ku(t)ks; m � s � r + 2 : (5.14)

But, from (5.10) and (5.13) it follows that also

ku(t)� �uh(t)k0 � C h kuk1 : (5.15)

Hence, by interpolation (see, e.g., [10], Lemma 7) we get

ku(t)� �uh(t)k0 � C hs ku(t)ks; 1 � s � r + 2 : (5.16)

Moreover, using the standard inverse inequalities one obtains from (5.16)
error estimates with respect to higher order norms. Finally, using (5.11)
and (5.10)

(u(t)� �uh(t);  ) =

(u(t)� �uh(t);  � Ph ) � C ku(t)� �uh(t)k0 h k k1

8 2 eH1 : (5.17)

This improves the order of convergence with respect to the dual norm k�k�1

by one. Notice here that another way of deriving the estimates needed is to
apply directly Theorem 12.4.2 in [4] (where it is taken from [5]) to (5.13).

By di�erentiating (5.11) with respect to t we �nd

d

dt
(u(t)� �uh(t); vh) = (Dt(u(t)� �uh(t)); vh) = 0 8vh 2 Uh ;

(5.18)

which means that the L2-projection commutes with time di�erentiation.
This implies as before that estimates

kDt(u(t)� �uh(t))kk � C hr�1�k kDtu(t)kr�1; �1 � k � 1 ;
(5.19)
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are also valid.
For simplicity, we denote from now on all functions without t: Taking

into account (5.18) in (5.4) leads to a formula

(Dt(uh � �uh); vh) + (br(uh � �uh);rvh) = (br(u� �uh);rvh) 8vh 2 Uh :

(5.20)

Now we choose vh = uh � �uh in (5.20). Using (2.15) and (5.2) it follows

1

2

d

dt
kuh � �uhk

2
0 + �1kr(uh � �uh)k

2
0

�
1

4�
�22 kr(u� �uh)k

2
0 + �kr(uh � �uh)k

2
0 : (5.21)

An integration over (0; t) for 0 < t � T and the choice � < �1 gives

kuh � �uhk
2
0 +

Z t

0

kuh � �uhk
2
1 ds

� ku0;h � �u0;hk
2
0 + C

Z t

0

kr(u� �uh)k
2
0 ds+

Z t

0

kuh � �uhk
2
0 ds

� ku0;h � �u0;hk
2
0 + C h2(r+1)

kuk2L2(Hr+2) +

Z t

0

kuh � �uhk
2
0 ds ;

(5.22)

where
R t
0
kuh � �uhk

2
0 ds was added to both sides. For the �rst term on the

right-hand side we have

ku0;h � �u0;hk0 � ku0;h � u0k0 + ku0 � �u0;hk0 � C hr+1
ku0kr+1 :

(5.23)

Thus, (5.16), (5.22), (5.23), and an application of Gronwall's inequality
give

ku� uhkC0(L2) � ku� �uhkC0(L2) + k�uh � uhkC0(L2)

� C hr+1 (ku0kr+1 + kukC0(Hr+1) + kukL2(Hr+2))

� C hr+1 (kukC0(Hr+1) + kukL2(Hr+2)) ; (5.24)

which proves the L2-estimate. Similarly, from the second term in (5.22) we
�nd that estimate

ku� uhkL2(H1) � C hr+1 (kukC0(Hr+1) + kukL2(Hr+2))
(5.25)

is also correct. Moreover, using the inverse inequality

k�k1 � Ch�1k�k0 8� 2 Uh;
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it follows from (5.24)

ku� uhkC0(H1) � ku� IhukC0(H1) + C h�1 kIhu� uhkC0(L2)

� C hr kukC0(Hr+1) + C h�1 (kIhu� ukC0(L2)

+ku� uhkC0(L2))

� C hr (kukC0(Hr+1) + kukL2(Hr+2)) :
(5.26)

Let  h 2 Uh be the L2-projection of a given  2 eH1: Then, using the
inverse inequality again, (5.10), and (5.16) we can show that

k hk1 � C k k1 : (5.27)

Therefore, by the de�nition of the L2-projection and using (5.20) we get

kDt(uh � �uh)k�1 =

sup
 2 eH1

j(Dt(uh � �uh);  )j

k k1
= sup

 2 eH1

j(Dt(uh � �uh);  h)j

k k1

� sup
 2 eH1

j(br(uh � �uh);r h)j+ j(br(u� �uh);r h)j

k k1

� C (kr(uh � �uh)k0 + kr(u� �uh)k0)

� C hr (kukC0(Hr+1) + kukL2(Hr+2)) 8t 2 [0; T ] : (5.28)

This and (5.19) prove the third estimate. With the duality technique a
similar calculation as in (5.28), when using again the inverse inequality,
(5.12), and the fact  h 2 Uh � H1; shows

kDt(uh � �uh)k0 =

sup
 2L2

j(Dt(uh � �uh);  )j

k k0
= sup
 2L2

j(Dt(uh � �uh);  h)j

k k0

� sup
 2L2

(kbr(uh � �uh)k0 + kbr(u� �uh)k0)C h
�1
k hk0

k k0

� C h�1 (kr(uh � �uh)k0 + kr(u� �uh)k0)

� C hr�1 (kukC0(Hr+1) + kukL2(Hr+2)) 8t 2 [0; T ] : (5.29)

Hence, (5.29) combined with (5.19) proves the last result in the lemma.

Proof of Lemma 2.2: Between b = b(t) and �h = �h(t) we have, 8t 2
[0; T ]; the following estimates which can be shown as in Lemma 2.1

kb� �hkk � C hs�k kbks; 0 � k � 1; k � s � r + 1 ;

kb� �hkk;1 � C h1�k kbk1;1; 0 � k � 1 : (5.30)
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(2.15) means that there exists a positive constant � > 0 such that 8t 2
[0; T ] :

�1 + � � b � �2 � � a.e in 
 ;

krbk0 � �� � :
(5.31)

Hence, it follows from (5.30) and (5.31)

kr�hk0 � kr(�h � b)k0 + krbk0 � C h kbk2 + �� � � �

(5.32)

for h small enough. Similarly we see that, for h small enough, �h satis�es

�1 � �h � �2 a.e. in 
 ;

kr�hk0 � � ;

k�hk1;1 � C kbk1;1 � C

(5.33)

8t 2 [0; T ]; so �h 2Mh for h small enough.
From (2.4) we know that uh(�h) is the solution of

(Dtuh(�h); vh) + (�hruh(�h);rvh) = (f; vh) 8vh 2 Uh ;

uh(�h)(0; x) = u0;h in 
 : (5.34)

Subtracting (2.4) from (5.34) gives8>>>>>>>>><
>>>>>>>>>:

(Dt(uh(�h)� uh); vh) + (�hr(uh(�h)� uh);rvh)

= (f; vh)� (Dtuh; vh)� (�hruh;rvh)

= (Dtuh; vh) + (bruh;rvh)� (Dtuh; vh)� (�hruh;rvh)

= ((b� �h)ruh;rvh)

= ((b� �h)r(uh � u);rvh) + ((b� �h)ru;rvh) 8vh 2 Uh ;

[uh(�h)� uh]j�0 = 0 ;

u0;h(�h)� u0;h = 0 :

(5.35)

In the sequel, we denote by gh = uh(�h) � uh: Let us �rst choose vh = gh
in (5.35). As in (5.21) we get, using (5.33), (5.2), and (5.30)

1

2

d

dt
kghk

2
0 + �1krghk

2
0 � C (kr(uh � u)k20 + kb� �hk

2
0) + � krghk

2
0 :

(5.36)

Take � < �1: Since gh = 0 for t = 0; it follows from (5.36), Lemma 2.1,
and (5.30)

kghk
2
0 +

Z t

0

krghk
2
0 ds � C (kuh � uk2L2(H1) + kb� �hk

2
L2(L2))

� C h2(r+1) : (5.37)
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Thus, using Lemma 2.1 once more we obtain

kuh(�h)� ukC0(L2) � kghkC0(L2) + kuh � ukC0(L2) � C hr+1 :

(5.38)

Exactly as in (5.26) it follows from (5.38)

kuh(�h)� ukC0(H1) � C hr ; (5.39)

which proves the �rst part of the lemma.
Using the equation (5.35) we deduce as in (5.28)

kDtghk�1 = sup
 2 eH1

j(Dtgh;  )j

k k1
= sup
 2 eH1

j(Dtgh;  h)j

k k1

= sup
 2 eH1

j(��hrgh + (b� �h)r(uh � u) + (b� �h)ru;r h)j

k k1

� C (krghk0 + kr(uh � u)k0 + kb� �hk0)

� C hr 8t 2 [0; T ] ;

(5.40)

where the �nal estimate follows from (5.39), Lemma 2.1, and (5.30). More-
over, like in (5.29), we can show that the estimate O(hr�1) is valid for Dtgh
in L2

8t 2 [0; T ]: This ends the proof.

Proof of Lemma 2.3: Because bh is a minimizer of (2:12) and because,
for h small enough, also �h 2Mh; we have 8t 2 [0; T ] :

kwh � zhk
2
0 + h

4
�
kDtwh � �hk

2
0 + kDtwh �r � (bhrwh)� fhk

2
0

�
� kuh(�h)� zhk

2
0

+h4
�
kDtuh(�h)� �hk

2
0 + kDtuh(�h)�r � (�hruh(�h))� fhk

2
0

�
= I1 + h

4 (I2 + I3) ;
(5.41)

where we have denoted

I1 = kuh(�h)� zhk
2
0 ;

I2 = kDtuh(�h)� �hk
2
0 ;

I3 = kDtuh(�h)�r � (�hruh(�h))� fhk
2
0 :

(5.42)

For I1 we have, by (2.11) and Lemma 2.2

I1 � 2 (kuh(�h)� uk20 + ku� zhk
2
0) � C (h2(r+1) + "21) :

(5.43)

Similarly, for I2

I2 � 2 (kDt(uh(�h)� u)k20 + kDtu� �hk
2
0) � C (h2(r�1) + "22) :

(5.44)
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Using the regularity of f and u, (1.1), and (5.33) it follows

I3 � 2 (kDtuh(�h)�r � (�hruh(�h))� fk
2
0 + kf � fhk

2
0)

� 2 (kDtuh(�h)�r � (�hruh(�h))�Dtu+r � (bru)k
2
0) + C h

2(r�1)

� C (kDt(uh(�h)� u)k
2
0 + kr � ((b� �h)ru)k

2
0

+kr � (�hr(u� uh(�h))k
2
0 + h

2(r�1)
)

� C (kDt(uh(�h)� u)k
2
0 + k�h � bk

2
1 + kuh(�h)� uk

2
2 + h

2(r�1)
) :

(5.45)

Lemma 2.2 bounds the �rst term and (5.30) the second term with
O(h2(r�1)): Using the inverse inequality, (5.1), and again Lemma 2.2 we
get

kuh(�h)� uk2 � C h�2 kuh(�h)� Ihuk0 + kIhu� uk2

� C h�2 kuh(�h)� uk0 + C hr�1

� C hr�1 : (5.46)

A combination of (5.41) - (5.46) leads to

kwh � zhk
2
0 + h4

�
kDtwh � �hk

2
0 + kDtwh �r � (bhrwh)� fhk

2
0

�
� C (h2(r+1) + "21 + h4 "22) 8t 2 [0; T ] : (5.47)

Thus, from (5.47) we obtain estimates

kwh � zhkC0(L2) � C (hr+1 + "1 + h2 "2) ;

kDtwh � �hkC0(L2) � C (hr�1 + h�2 "1 + "2) ;

kDtwh �r � (bhrwh)� fhkC0(L2) � C (hr�1 + h�2"1 + "2) : (5.48)

From these estimates we deduce, exactly as in the analysis of I1 � I3;

kwh � ukC0(L2) � C (hr+1 + "1 + h2 "2) ;

kDt(wh � u)kC0(L2) � C (hr�1 + h�2 "1 + "2) ;

kDtwh �r � (bhrwh)� fkC0(L2) � C (hr�1 + h�2"1 + "2) : (5.49)

As in (5.46) we can show, starting from the �rst estimate in (5.49) that
between wh and u the estimates in C0(H1) and C0(H2) are correct. This
ends the proof.

5.2 Proofs of lemmas in section 3

Proof of Lemma 3.1: From (2.4) and Uh � eH1 it follows that

(Dt�uj+ 1
2
; vh) + ((�br�u)j+ 1

2
;rvh) = ( �fj+ 1

2
; vh) 8vh 2 Uh :

(5.50)
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Hence, subtracting (5.50) from (3.3) gives

(@tUj �Dt�uj+ 1
2
; vh) + ((�br(U � �u))j+ 1

2
;rvh) = 0 8vh 2 Uh :

(5.51)

Let � be an arbitrary element in Uh: By adding and subtracting some terms
to (5.51) we obtain

(@t(U � �)j ; vh) + ((�br(U � �))j+ 1
2
;rvh)

= (@t(u� �)j ; vh) + ((�br(u� �))j+ 1
2
;rvh)

+(Dt�uj+ 1
2
� @tuj ; vh) + ((�br(�u� u))j+ 1

2
;rvh) 8vh 2 Uh:

(5.52)

Now we can choose vh = (U � �)j+ 1
2
: From (5.52) and inequalities (2.8)

and (5.2) it follows

1

2�t
(k(U � �)j+1k

2
0 � k(U � �)jk

2
0) + �1k(U � �)j+ 1

2
k
2
1

� C
�
k@t(u� �)jk

2
�1 + �22kr(u� �)j+ 1

2
k
2
0 + kDt�uj+ 1

2
� @tujk

2
�1

+�22kr(�u� u)j+ 1
2
k
2
0 + �1k(U � �)j+ 1

2
k
2
0

�
+ �k(U � �)j+ 1

2
k
2
1 ;

(5.53)

where we added �1k(U ��)j+ 1
2
k
2
0 to both sides. Here we used the formula

(@t(U � �)j ; (U � �)j+ 1
2
) =

1

2�t
(k(U � �)j+1k

2
0 � k(U � �)jk

2
0) :
(5.54)

For (5.53) we need the result (see, e. g., [3], p. 152):

�t

m�1X
j=0

kDt�uj+ 1
2
� @tujk

2
�1 � C(�t)4kDtttuk

2

L2( eH�1)
:

(5.55)

Using similar technique it can be proved that

�t

m�1X
j=0

k(�u� u)j+ 1
2
k
2
1 � C(�t)4 kDttuk

2
L2(H1) : (5.56)

Moreover, it is straight forward to show that

�t

m�1X
j=0

k@t(u� �)jk
2
�1 �

Z tm

0

kDt(u� �)k2�1 ds � kDt(u� �)k2
L2( eH�1)

;

(5.57)

and

�t

m�1X
j=0

k(u� �)j+ 1
2
k
2
1 � C T ku� �k2C0(H1) : (5.58)
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Finally, by an easy calculation

m�1X
j=0

1

2�t

�
k(U � �)j+1k

2
0 � k(U � �)jk

2
0

�

=
1

2�t

�
k(U � �)m+1k

2
0 � kU0 � �0k

2
0

�
:

(5.59)

Then, by summing (5.53) for j = 0; :::;m � 1; choosing � < �1; and
using (5.55) - (5.59) we obtain

k(U � �)mk
2
0 +�t

m�1X
j=0

k(U � �)j+ 1
2
k
2
1

� C�t

m�1X
j=0

(k@t(u� �)jk
2
�1 + kr(u� �)j+ 1

2
k
2
0 + kDt�uj+ 1

2
� @tujk

2
�1

+kr(�u� u)j+ 1
2
k
2
0 + k(U � �)j+ 1

2
k
2
0) + k(U � �)0k

2
0

� C T
�
kDt(u� �)k2

L2( eH�1)
+ kr(u� �)k2C0(L2) + ku0;h � u0k

2
0

+ku0 � �0k
2
0

�
+ C(�t)4(kDtttuk

2

L2( eH�1)
+ kDttuk

2
L2(H1))

+C�t

m�1X
j=0

k(U � �)jk
2
0

� C T h2r(kDtuk
2
L2(Hr�1) + kuk2C0(Hr+1) + ku0k

2
r)

+C(�t)4(kDtttuk
2

L2( eH�1)
+ kDttuk

2
L2(H1)) + C�t

mX
j=0

k(U � �)jk
2
0

� C T (h2r + (�t)4) + C�t

mX
j=0

k(U � �)jk
2
0 :

(5.60)

Here we took � as the L2-projection of u and used results from the proof
of Lemma 2.1. Using the discrete analogue of Gronwall's inequality, we
deduce for �t su�ciently small

�t

m�1X
j=0

k(U � �)j+ 1
2
k
2
1 � C T (h2r + (�t)4) : (5.61)

From this it follows, using (5.58) and (5.56)

�t

m�1X
j=0

k(U � �u)j+ 1
2
k
2
1

� �t

m�1X
j=0

�
k(U � �)j+ 1

2
k
2
1 + k(�� u)j+ 1

2
k
2
1 + k(u� �u)j+ 1

2
k
2
1

� C T (h
2r

+ (�t)
4
) :

(5.62)
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Let  h 2 Uh be the L
2-projection of a given  2 eH1: Using the equation

(5.52), (5.27), and the de�nition of the eH�1-norm we get, like in (5.28)

k@t(U � �)jk�1 = sup
 2 eH1

(@t(U � �)j ;  )

k k1
= sup
 2 eH1

(@t(U � �)j ;  h)

k k1

� C
�
kr(U � �)j+ 1

2
k0 + k@t(u� �)jk�1

+kr(u� �)j+ 1
2
k0 + kDt�uj+ 1

2
� @tujk�1 + kr(�u� u)j+ 1

2
k0

� (5.63)

80 � j � m�1: This together with (5.61), (5.57), (5.58), (5.55), and (5.56)
shows

�t

m�1X
j=0

k@tUj �Dt�uj+ 1
2
k
2
�1 � C T (h2r + (�t)4) ; (5.64)

which proves the �rst result.
If we assume that (3.9) is valid, we can show, exactly as in (5.55) that

�t

m�1X
j=0

kDt�uj+ 1
2
� @tujk

2
0 � C(�t)4kDtttuk

2
L2(L2) :

(5.65)

Also, with (3.9) we have, like in (5.56)

�t

m�1X
j=0

k(�u� u)j+ 1
2
k
2
2 � C (�t)4 kDttuk

2
L2(H2) : (5.66)

Moreover, from (5.61) we deduce, using the inverse inequality and the fact
Uh � H2

�t

m�1X
j=0

k(U � �)j+ 1
2
k
2
2 � C�t

m�1X
j=0

h�2 k(U � �)j+ 1
2
k
2
1

� C T h�2 (h2r + (�t)4) :
(5.67)

Therefore, as in (5.58) we have

�t

m�1X
j=0

k(u� �)j+ 1
2
k
2
2 � C T ku� �k2C0(H2) � C T h2(r�1) kuk2C0(Hr+1) :

(5.68)

A combination of (5.66) - (5.68) proves, as in (5.62)

�t

m�1X
j=0

k(U � �u)j+ 1
2
k
2
2 � C T h�2 (h2r + (�t)4) : (5.69)
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Finally, as in (5.63) and (5.29),

k@t(U � �)jk0 = sup
 2L2

(@t(U � �)j ;  )

k k0

� Ch
�2
�
kr(U � �)j+ 1

2
k0 + kr(u� �)j+ 1

2
k0 + kr(�u� u)j+ 1

2
k0

�
+k@t(u� �)jk0 + kDt�uj+ 1

2
� @tujk0

(5.70)

80 � j � m� 1: Hence, the estimate in L2 between @tUj �Dt�uj+ 1
2
follows

from (5.65) - (5.70) as in (5.64), when using (5.19) and (5.57) for bounding
k@t(u� �)jk0: This proves the second result.

Proof of Lemma 3.2: As we showed in Lemma 2.2, for h small enough,

�1 � �h � �2 a.e. in 
 ;

kr�hk0 � � ;

k�hk1;1 � C

(5.71)

8t 2 [0; T ]; so ��h 2Mh:eU satis�es an equation

(@t eUj ; vh) + ((��hreU)j+ 1
2
;rvh) = ( �fj+ 1

2
; vh) 8vh 2 Uh :

(5.72)

Hence, subtracting (3.3) from (5.72) gives

(@t(eU � U)j ; vh) + ((��hr(eU � U))j+ 1
2
;rvh)

= (((�b� ��h)rU)j+ 1
2
;rvh)

= (((�b� ��h)r(U � �u)j+ 1
2
;rvh) + (((�b� ��h)r�u)j+ 1

2
;rvh)

8vh 2 Uh :
(5.73)

As before we choose vh = (eU � U)j+ 1
2
: From (5.73) it follows, as in (5.53)

1

2�t
(k(eU � U)j+1k

2
0 � k(eU � U)jk

2
0) + �1kr(eU � U)j+ 1

2
k
2
0

� C
�
kr(U � �u)j+ 1

2
k
2
0 + k(�b� ��h)j+ 1

2
k
2
0

�
+ �kr(eU � U)j+ 1

2
k
2
0 : (5.74)

Thus, we take again � < �1 and sum (5.74) from 0 to m � 1 with the
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additional term �t
Pm�1

j=0 k(eU � U)j+ 1
2
k
2
0

k(eU � U)mk
2
0 +�t

m�1X
j=0

k(eU � U)j+ 1
2
k
2
1

� C�t

m�1X
j=0

(kr(U � �u)j+ 1
2
k
2
0 + k(�b� ��h)j+ 1

2
k
2
0)

+�t

m�1X
j=0

k(eU � U)j+ 1
2
k
2
0

� C T (h
2r

+ (�t)
4
+ kb� �hk

2
C0(L2)) +�t

m�1X
j=0

k(eU � U)j+1k
2
0

� C T (h
2r

+ (�t)
4
+ h

2r
kbk

2
C0(Hr)) + �t

m�1X
j=0

k(eU � U)j+1k
2
0

� C T (h
2r

+ (�t)
4
) + �t

m�1X
j=0

k(eU � U)j+1k
2
0 ;

(5.75)

where we used the results from (5.30) and Lemma 3.1. Again, as in Lemma
3.1, it follows from (5.75) that

�t

m�1X
j=0

k(eU � �u)j+ 1
2
k
2
1 � C T (h2r + (�t)4) : (5.76)

The estimate in eH�1 follows exactly as in (5.63) - (5.64) combined
with (5.73). The second estimate of the lemma follows also with the same
technique as in (5.65) - (5.70). This ends the proof.

Proof of Lemma 3.3: Because bh is a minimizer of (3.5), we have, for h
small enough, �t J(bh) � �t J(�h): This means

�t

m�1X
j=0

�
k(W � zh)j+ 1

2
k
2
1 + h2 (k@tWj �

��h;j+ 1
2
k
2
0

+k@tWj �r � (�bhrW )j+ 1
2
� �fh;j+ 1

2
k
2
0)
�

� �t

m�1X
j=0

�
k(eU � zh)j+ 1

2
k
2
1 + h2 (k@t eUj � ��h;j+ 1

2
k
2
0

+k@t eUj �r � (��hreU)j+ 1
2
� �fh;j+ 1

2
k
2
0)
�

= I1 + I2 + I3 :

(5.77)
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Using the assumption (2.11), the inverse inequality, and (5.1) we get

ku� zhk1 � ku� Ihuk1 + C h�1 kIhu� zhk0

� C hr + C h�1 (kIhu� uk0 + ku� zhk0)

� C (hr + h�1 "1) 8t 2 [0; T ] : (5.78)

Thus, using (5.78) and the results of Lemmas 3.1 and 3.2, we proceed with
estimates

I1 � �t

m�1X
j=0

3 (k(eU � �u)j+ 1
2
k
2
1 + k(�u� u)j+ 1

2
12 + k(u� zh)j+ 1

2
k
2
1)

� C T (h2r + (�t)4 + h�2 "21) ;
(5.79)

I2 � h2�t

m�1X
j=0

2 (k@t eUj �Dt�uj+ 1
2
k
2
0 + k(Dt�u� ��h)j+ 1

2
k
2
0)

� C T (h2r + (�t)4 + h2 "22) ;
(5.80)

I3 � h
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k(�b� ��h)j+ 1
2
k21)
�

+ C T h
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� C T (h
2r

+ (�t)
4
) :

(5.81)

Hence, from (5.77) - (5.81) we conclude

�t

m�1X
j=0

�
k(W � zh)j+ 1
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(5.82)

With the previous results we then get
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k(W � �u)j+ 1
2
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where it follows with the inverse inequality, for � = Ihu

�t

m�1X
j=0

k(W � �u)j+ 1
2
k
2
2 � C�t

m�1X
j=0

�
h
�2

k(W � ��)j+ 1
2
k
2
1 + k(��� �u)j+ 1

2
k
2
2

� C T (h
2(r�1)

+ h
�2

(�t)
4
+ h

�4
"
2
1 + "

2
2) ;

(5.84)

The other two results can be proved similarly starting from (5.82).
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