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Abstract

In this paper the di�erential equations describing the minimal

length curves satisfying the integral constraining relations of a gen-

eral type are obtained. Moreover, an additional necessary condition

supplementing Pontryagin maximum principle for the generalized

isoperimetric problem is established. All results are illustrated by

the analysis of generalized Dido's problem.
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1 Introduction

The problems of sub-Riemannian geometry and/or Carnot - Caratheodory

metrics have attracted much attention. It appears to be that both geomet-

ric phases in physics [16] and nonholonomic motion planning in robotics

[3], [10] can be treated from the uni�ed point of view of sub-Riemannian

geometry. On the other hand, the classical isoperimetric problems [1] and

their generalizations [2], [6] not only occupy a very important place in the

sub-Riemannian geometry but also, under certain conditions, admit com-

plete mathematical characterization of all their extrema. At the same time,

calculation of sub-Riemannian geodesics arisen in the generalized isoperi-

metric problems is a challengeable problem for the modern geometrical

control theory, since even for \simple examples" the calculation of length

minimizers is not a trivial exercise [1], [2], [6].

The state of the art in the �eld of sub-Riemannian geometry until 1985

is outlined in the paper [17]. More recent information about this subject

can be found in [9], [22].

�Received July 10, 1995; received in �nal form September 11, 1995. Summary pub-

lished in Volume 7, Number 3, 1997.
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Many interesting and important results on the sub-Riemannian geodesics

are already proved [12], [13], [18], [22]. In this paper we will derive neces-

sary conditions for a geodesic to be the length minimizer in the generalized

isoperimetric problem.

Though all our results are proved for isoperimetric problems de�ned in

R
n, they can be easily reformulated for the case where Rn is replaced by

a smooth paracompact manifold.

The main theorems presented in this paper are illustrated with the

analysis of generalized Dido's problem.

2 Necessary Conditions of Extremum

The generalized isoperimetric problem is stated as follows.Z 1

0

j u(�) j2 d� ! inf; (2.1)

i.e., �nd the minima of the functionalZ 1

0

j u(�) j2 d�;

where u(�) : [0; 1]! R
m is subject to the additional constraining relations,

i.e.,

_x = u(t);

_y = B(x)u(t); (2.2)

x(0) = �x; x(1) = x̂;

y(0) = �y; y(1) = ŷ

with x 2 R
m; y 2 R

n; B(x) = fb1(x); : : : ; bm(x)g:
The points (�x; �y); (x̂; ŷ) 2 R

m+n are assumed to be �xed beforehand.

The minimum of (2.1) is said to be a sub-Riemannian distance between

(�x; �y) and (x̂; ŷ): We address it also as a sub-Riemannian length.

The vector �elds

B(x) = fb1(x); b2(x); : : : ; bm(x)g

are assumed to be C1-vector-�elds such that the Lie algebra generated by

f
@

@xj
+
X
i

bji(x)
@

@yi
gmj=1

has the full rank at any point x 2 R
m: We will call such family of vector

�elds controllable [14] and also refer to B(x) as controllable family of vector

�elds.
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Introduce the matrix

G(x(t))p=

��
@

@xi
bj(x) �

@

@xj
bi (x) ; p

��m
j;i=1

; (2.3)

where j and i enumerate rows and columns, respectively.

Theorem 1 Let B(x) be a controllable family of vector �elds. Then for

any (�x; �y); (x̂:ŷ) 2 R
m+n one can �nd a sub-Riemannian length minimizer

(x(t); y(t)) which measures the sub-Riemannian distance between (�x; �y) and

(x̂; ŷ): Moreover, (x(t); y(t)) is a solution of the following boundary value

problem

�
p0 � �x = (G(x(t))p) _x;

_y = B(x) _x;
(2.4)

x(0) = �x; x(1) = x̂;

y(0) = �y; y(1) = ŷ

where (p0;p) 2 R
1+n n 0 is a real vector.

Proof: The Pontryagin maximum principle [15] yields that for all t 2
[0; 1] u(t) satis�es the equation

@

@u
H(x; y; u; q; p) = 0 (2.5)

where

H(x; y; u; q; p) = �
p0

2
� juj

2
+ hq; ui+ hp;B(x)ui

and (p0; p) 2 R
1+n n 0;

_q = �
@

@x
H(x; y; u; q; p):

It follows from (2.5) that

p0 � _x = q +BT (x)p; (2.6)

where BT (x) is transpose of B(x): Di�erentiation of (2.6) implies the �rst

line in (2.4) and the assertion of Theorem 1 follows. Q.E.D

The real constant p0 in (2.4) can not be omitted by taking it simply

equal to 1; since it might happen [7], [12], [13] that the sub-Riemannian

distance can be measured only by an abnormal geodesic with p0 = 0: In
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[18] it was established that p0 can be taken equal to 1 if B(x) satis�es

strong bracket-generating condition.

Theorem 1 gives us a family of extremals. It might happen that there

are several geodesics satisfying the same boundary value problem (2.4). In

order to sort out local strong minimizers of the sub-Riemannian length we

can use results from [24], [25] which imply that a regular sub-Riemannian

geodesic without conjugate points is a local strong minimizer.

However, in general, the complete characterization of the global ex-

tremum seems to be a hopeless problem. Therefore any additional neces-

sary condition which supplements (2.4) is important. We propose a nec-

essary condition of extremum when B(x) being �-uniform, i.e., de�ned as

follows.

De�nition The family of vector �elds B(x) is said to be �-uniform if

there exists a linear operator� : Rn ! R
n such that

X
�

x� �
@

@x�

�
@

@xi
bj(x)�

@

@xj
bi (x)

�
= �

�
@

@xi
bj(x) �

@

@xj
bi (x)

�

8x 2 R
m and 8 1 � i; j � m:

Q.E.D.

Notice that a family of vector �elds B(x) is �� �uniform if, for each

1 � i � n; 1 � j � m; bij(x) is a uniform polynomial of degree deg(bij)

and this degree does not depend on 1 � j � m. It is easy to see that under

these assumptions � has a diagonal matrix.

Theorem 2 Let B(x) be a controllable family of vector �elds. Suppose

further that B(x) is � -uniform. Then for any (�x; �y); (x̂:ŷ) 2 R
m+n one

can �nd a sub-Riemannian length minimizer (x(t); y(t)) which measures the

sub-Riemannian distance between (�x; �y) and (x̂; ŷ): Moreover, (x(t); y(t)) is

a solution of the boundary value problem (2.4), where for (p0; p) 2 R
1+n n0

the following condition holds

p0 � j _x(t)j
2
= p0 � (hx̂; _x(1)i � h�x; _x(0)i)

+

�
(I +

1

2
� �)T p; �y � ŷ �

Z 1

0

B(x̂+ (�x� x̂)�)(�x � x̂)d�

�

+

Z 1

0

h(G(x̂ + (�x� x̂)�)p)(�x � x̂); x̂+ (�x� x̂)�i d�; 8t 2 [0; 1];

where G(x)p is de�ned in (2.3).

Proof: Integration by parts implies
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GENERALIZED ISOPERIMETRIC PROBLEM

p0 �

Z 1

0

j _x(�)j2 d� = p0 � (hx̂; _x(1)i � h�x; _x(0)i)�I


hx; (G(x)p) dxi + (2.7)

Z 1

0

h(G(x̂ + (�x� x̂)�)p)(�x � x̂); x̂+ (�x � x̂)�i d�;

where the closed curve  � R
m
x is composed out of the extremal

f(x(t); y(t)) ; 0 � t � 1g

and the segment of the straight line connecting the points �x and x̂: On the

other hand,

ŷ � �y =

I


B(x)dx �

Z 1

0

B(x̂+ (�x� x̂)�)(�x � x̂)d� =

X
i;j

Z Z
}

�
@

@xi
bj(x)�

@

@xj
bi (x)

�
dxi ^ dxj � (2.8)

Z 1

0

B(x̂ + (�x� x̂)�)(�x � x̂)d�;

where dxi ^ dxj is the wedge or exterior product of dxi and dxj ; } is the

set enclosed by the curve : Making use of Stokes' theorem we obtainI


hx; (G(x)p) dxi =
X
i;j

Z Z
}

�
@

@xi
bj(x) �

@

@xj
bi (x) ; p

�
dxj ^ dxi +

(2.9)

1

2

Z Z
}

X
i;j;�

xj �
@

@xj

�
@

@x�
bi(x) �

@

@xi
b� (x) ; p

�
dxi ^ dx� :

The family of vector �elds B(x) is �-uniform. Therefore Eq. (2.9) can

be represented as followsI


hx; (G(x)p) dxi =

X
i;j

Z Z
}

�
@

@xi
bj(x) �

@

@xj
bi (x) ; (I +

1

2
� �)T p

�
dxj ^ dxi

(2.10)

where I is the identity matrix and (I + 1
2
� �)T denotes the transpose of

(I + 1
2
� �):

5



A.J. KRENER AND S. NIKITIN

It follows from (2.8) and (2.10) thatI


hx; (G(x)p) dxi =

�
(I +

1

2
� �)T p; ŷ � �y +

Z 1

0

B(x̂+ (�x� x̂)�)(�x � x̂)d�

�
: (2.11)

Combining (2.7) with (2.11) yields the assertion of Theorem 2. Q.E.D.

Suppose B(x) is a controllable � � �uniform family of vector �elds.

Then it immediately follows from Theorems 1 and 2 that all regular geodesics

can be represented in the form

(� � x(
t

�
); � � y(

t

�
));

where � 2 R n 0 and (x(t); y(t)) is a solution of the following initial value

problem

_x = e
(t)�;

_
 = G(x(t))p;

_y = B(x) _x;

x(0) = �x;

y(0) = �y;

with � 2 R
m satisfying the following condition

j�j
2

= (hx̂; _x(1)i � h�x; _x(0)i) +�
(I +

1

2
� �)T p; �y � ŷ �

Z 1

0

B(x̂ + (�x� x̂)�)(�x � x̂)d�

�
+

Z 1

0

h(G(x̂ + (�x� x̂)�)p)(�x � x̂); x̂+ (�x� x̂)�i d�:

Notice that 
(t) = �
T (t):

3 Generalized Dido's Problem

Let us begin with the plot of the legend as it is narrated in \The Aeneid"

by the Roman poet P. Virgilius Maro:

Mercatigue solum, facti de nomine Byrsam Taurino quan-

tum possent circumdare tergo...

\They bought a space of ground, which (Byrsa called, from

the bull's hide) they �rst enclosed..." translated by J. Dryden

(p.144, [23]).
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GENERALIZED ISOPERIMETRIC PROBLEM

The Phoenician princess Dido ed from her brother, the

tyrant Pygmalion. Dido and her companions chose a good place

on the north coast of Africa (at present the shore of the Gulf

of Tunis) and wanted to found a settlement there. Among the

natives there was not much enthusiasm for this idea. However,

Dido managed to persuade their chieftain Hiarabas to give her

as much land as she could enclose with the hide of a bull. Only

later did the simple hearted Hiarabas understand how cunning

and artful Dido was: she then cut the bull's hide into thin

strips, tied them together to form an extremely long thong,

and surrounded with it a large extent of territory and founded

the city of Carthage there. In commemoration of this event the

citadel of Carthage was called Byrsa. According to the legend,

all these events occurred in 825 (or 814) B.C.1

The situation described in the legend can be stated as the following

optimization problem:

- �nd the optimal form of a lot of land of the maximum area S for a

given perimeter L.

Clearly, its solution is circle. Several other possibilities of stating opti-

mization Dido's problems are described in [20].

3.1 N-th order generalized Dido's problem

In this section we will illustrate the application of Theorems 1 and 2 by the

analysis of generalized Dido's problem of the N -th order. This problem is

formulated as follows:

Z 1

0

j _x(�) j2 d� ! inf; (3.12)

where x(�) : [0; 1]! R
2 is subject to the additional constraining relations,

i.e.,

_yi = ai � x
i � (x1 � _x2 � x2 � _x1); 0 � jij � N; (3.13)

x(0) = �x; x(1) = x̂; y(0) = �y; y(1) = ŷ;

where ai 2 R n0; i = (i1; i2) is multi-index, jij = i1 + i2 and xi = xi11 �
xi22 : (�x; �y), (x̂; ŷ) are chosen beforehand. It is easy to verify that the family

1The description of the legend is taken from [20].
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of vector �elds

@

@x1
�
X
i

ai � x
i � x2

@

@yi
;

@

@x2
+
X
i

ai � x
i � x1

@

@yi

is controllable and is �-uniform with � being such that

(�y)i = jij � yi 8 0 � jij � N:

Therefore we can use Theorem 2 established in the previous section.

By Theorem 2 the extremals of the generalized Dido's problem are the

solutions of the following boundary value problem

p0�x1 = �

 X
i

(2 + jij) � ai � pi � x
i

!
_x2; (3.14)

p0�x2 =

 X
i

(2 + jij) � ai � pi � x
i

!
_x1;

_yi = ai � x
i � (x1 � _x2 � x2 � _x1); 0 � jij � N;

x(0) = �x; x(1) = x̂; y(0) = �y; y(1) = ŷ;

where (p0;p) 2 R
1+n n 0 is a constant vector satisfying

p0 �

Z 1

0

j _x(�)j
2
d� = p0 � (hx̂; _x(1)i � h�x; _x(0)i) + (3.15)X

i

(2 + jij) � pi � (�yi � ŷi)�

2 �
X
i

(2 + jij) � ai � pi �

Z 1

0

(x̂ + (�x� x̂)�)i � (x̂1 � �x2 � x̂2 � �x1)d�:

Considering the regular geodesics one can always put p0 = 1: Assume

that x̂ = 0; �x = 0: Then due to (3.14), (3.15)

j _x(t)j
2
=
X
j

(2 + jjj) � pj � (�yj � ŷj) 8 t 2 [0; 1]

and

d

dt
(x1 + i � x2) =

sX
j

(2 + jjj) � pj � (�yj � ŷj) � e
i�$;
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_$ =
X
j

(2 + jjj) � aj � pj � x
j ; (3.16)

_yj = aj � x
j � (x1 � _x2 � x2 � _x1); 0 � jjj � N;

x(0) = 0; x(1) = 0; y(0) = �y; y(1) = ŷ;

where i2 = �1: Thus all regular geodesics of generalized Dido's problem

are solutions of (3.16).

If p0 = 0; then we are dealing with abnormal geodesics which are either

points or curves satisfyingX
j

(2 + jjj) � aj � pj � x
j = 0;

_yj = aj � x
j � (x1 � _x2 � x2 � _x1); 0 � jjj � N; (3.17)

x(0) = 0; x(1) = 0; y(0) = �y; y(1) = ŷ:

3.2 Generalized Dido's problem of the �rst order

For N = 0 generalized Dido's problem coincides with the problem solved

by princess Dido, according to the legend, in 825 (or 814) B.C.

Consider generalized Dido's problem of the �rst order with aj = 1 8 0 �
jjj � 1. Let us begin with x(0) = 0; x(1) = 0; y(0) = 0: Then it follows

from (3.17) that all abnormal geodesics are either points or straight lines

corresponding to y = 0: Therefore all abnormal geodesics are extrema of

generalized Dido's problem of the �rst order.

Now turn our attention to regular geodesics:Without loss of generality

we can assume that p0 = 1: Therefore all regular geodesics are solutions of

the following problem

d

dt
(x1 + i � x2) =

p
2 � p00 � ŷ00 + 3 � p10 � ŷ10 + 3 � p01 � ŷ01 � e

i�$;

_$ = �(2 � p00 + 3 � p10 � x1 + 3 � p01 � x2);

_y00 = x1 � _x2 � x2 � _x1; (3.18)

_y10 = x1 � (x1 � _x2 � x2 � _x1);

_y01 = x2 � (x1 � _x2 � x2 � _x1);

x(0) = 0; x(1) = 0; y(0) = 0; y(1) = ŷ:

Those regular geodesics for which the function

'(p) = 2 � p00 � ŷ00 + 3 � p10 � ŷ10 + 3 � p01 � ŷ01

attains its minimal value under the constraints given by (3.18) are extrema

of generalized Dido's problem of the �rst order.
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If

(x1 (t) + i � x2 (t) ; y00(t); y10(t) + i � y01(t))

is a regular geodesic, then for any � 2 C-the �eld of complex numbers-

(� � (x1 (t) + i � x2 (t)) ; j�j
2
y00(t); j�j

2
� � � (y10(t) + i � y01(t)))

is also a regular geodesic. Therefore the set of regular geodesics consists

of orbits of the group isomorphic to C-complex numbers. Taking this fact

into account we can considerably simplify the analysis of (3.18) by putting

ŷ10 = 0; ŷ00 = 1 and $(0) = 0: This simpli�cation and the fact that the

di�erential equation de�ned by the �rst two lines in (3.18) is completely

integrable in elliptic functions allow us to calculate numerically (see [6])

those p 2 R
3 for which the function

'(p) = 2 � p00 + 3 � p01 � ŷ01

attains its minimal values under the constraints given by (3.18) with ŷ10 =

0; ŷ00 = 1 and $(0) = 0. That gives us all the closed curves which are

length minimizers of generalized Dido's problem of the �rst order. The

relationship between C = (ŷ01)
2 and the shape of the length minimizer is

depicted in Fig.1.

Now we consider the nonholonomic unit wave front corresponding to

the sub-Riemannian structure generated by generalized Dido's problem of

the �rst order. More precisely we are interested in the set of endpoints

of length 1 geodesics, '(p) = 1: Moreover the geodesics corresponding to

'(p) = 1 are invariant with respect to the actions de�ned by

(��

�
x1

�
t

j�j

�
+ i � x2

�
t

j�j

��
; j�j

2
y00(

t

j�j
); j�j

2
���(y10(

t

j�j
)+i�y01(

t

j�j
)))

for any � 2 C and

(x1 (t)� i � x2 (t) ;�y00(t);�y10(t) + i � y01(t)): (3.19)

Therefore we need only to solve the following system of di�erential equa-

tions

d

dt
(x1 + i � x2) = ei�$;

_$ = �(r + x1 � cos( ) + x2 � sin( ));

_y00 = x1 � _x2 � x2 � _x1; (3.20)

_y10 = x1 � (x1 � _x2 � x2 � _x1);

_y01 = x2 � (x1 � _x2 � x2 � _x1);

x(0) = 0; y(0) = 0; $(0) = 0;
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Figure 1: Length minimizers for di�erent values of C:
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Figure 2: The projection of =+
0 (1) in (x1; x2; y00)-space.

where r � 0 and 0 �  < 2� are real numbers.

The unit wave front = can be represented as follows

= = [�>0 [
2�
 =0 (=

�

 (�) [ =
+
 (�));

with

=� (�) = f(� � ei�� � (x1(
1

�
; r;  )� i � x2(

1

�
; r;  ));��2y00(

1

�
; r;  );

�3 � ei�� � (�y10(
1

�
; r;  ) + i � y01(

1

�
; r;  ))); r � 0; 0 � � < 2 � �g;

where (x(t; r;  ); y(t; r;  )) is the solution of the initial value problem (3.20).

A part of the projection of =+
0 (1) in (x1; x2; y00)-space is depicted in Fig-

ure 2 and Figure 3. The set =�0 (1) is easy to visualize due to the fact that

=�0 (1) is obtained from =+
0 (1) by the reection (3.19). The singularities of

=+
0 (1) occur in the points of y00-axes corresponding to the closed curves.

Some of these closed curves are shown in Figure 1. It is easy to see that

there are in�nitely many such singular points and they are all located on

y00�axes and they accumulate towards the origin. The origin corresponds

to \�gure eight" minimizer shown in Figure 1.
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Figure 3: Another view of the projection of the nonholonomic unit wave

front.

References

[1] R. Brockett. Control theory and singular Riemannian geometry, in

New Directions in Applied Mathematics, (P. Hilton and G. Young,

ed.). Heidleberg: Springer-Verlag, 1990, pp.11-27.

[2] R. Brockett and L. Dai. Non-holonomic kinematics and the role of

elliptic functions in constructive controllability, in Nonholonomic Mo-

tion Planning, (Z.X. Li and J.Canny, ed.). Amsterdam: Kluwer, 1992.

[3] C. Fernandes, L. Gurvits and Z. Li. Near-optimal nonholonomic mo-

tion planning for a system of coupled rigid bodies, IEEE Trans. on

Aut. Contr., 39 (1994), 450-463.

[4] I.M. Gelfand, S.V. Fomin. Calculus of Variations. New Jersey:

Prentice-Hall, 1963.

[5] A. Koranyi. Geometric properties of Heisenberg-type groups, Advances

in Math., 56 (1985), 28-38.

[6] A. Krener and S. Nikitin. Dido's problem with a �xed center of mass,

in Proc. of symposium on Nonlinear Control System Design, 26-28

June,1995, Tahoe City, California, USA.

13



A.J. KRENER AND S. NIKITIN

[7] I. Kupka. Abnormal extremals, preprint,1992.

[8] S. Nikitin. Global Controllability and Stabilization of Nonlinear Sys-

tems. Hong Kong: World Scienti�c,1994.

[9] J. Laumond. Singularities and topological aspects in nonholonomic

motion planning, in Nonholonomic Motion Planning, (Z.X. Li and J.

Canny, ed.). Amsterdam: Kluwer, 1992.

[10] Z. Li and J. Canny. Motion of two rigid bodies with rolling constraint,

IEEE Trans. Robot. and Automat., RA2-06 (1990), 62-72.

[11] S. Lang. Analysis II. New York: Addison-Wesley Pub. Co., 1969.

[12] W. Liu and H.J. Sussmann. Abnormal sub-Riemannian minimizers,

preprint, 1992.

[13] R. Montgomery. Geodesics which do not satisfy the geodesic equations,

preprint, 1991.

[14] S. Nikitin. Global Controllability and Stabilization of Nonlinear Sys-

tems. Hong Kong: World Scienti�c, 1994.

[15] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mis-

chenko. The Mathematical Theory of Optimal Processes. New York:

Wiley and Sons, 1962.

[16] A. Shapere and F. Wilczek. Geometric Phases in Physics. Hong Kong:

World Scienti�c, 1989.

[17] R. Strichartz. Sub-Riemannian geometry, J. Di�erential Geometry, 24

(1986), 221-263.

[18] R.Strichartz. Correction to 'Sub-Riemannian Geometry', J. Di�.

Geom., 30 (1989), 595-596.

[19] S.L.Sobolev. Some Applications of Functional Analysis in Mathemat-

ical Physics, third edition. Translations of Mathematical Monographs.

Providence, RI: American Mathematical Society, 1991.

[20] V.M. Alekseev, V.M. Tikhomirov, S.V. Fomin, Optimal Control,

transl. from Russian. New York: Consultants Bureau,1987.

[21] M. Van Dyke. Perturbation Method in Fluid Mechanics. New York:

Academic Press, 1964.

[22] A.M. Vershik, V.Ya. Gershkovich. Nonholonomic Dynamical Systems,

Geometry of Distributions and Variational Problems, in Dynami-

cal Systems VII, Vol.I. (Arnol'd and S.P.Novikov, ed.). New York:

Springer-Verlag, 1994, pp. 4-79.

14



GENERALIZED ISOPERIMETRIC PROBLEM

[23] The works of Virgil. Oxford: Oxford University Press, 1961.

[24] V. Zeidan and P. Zezza. The conjugate point condition for smooth

control sets, J. Math. Anal. Appl. 132 (1988), 572-589.

[25] J. Warga. Second-order necessary conditions in optimization, SIAM

J. Control Opt., 22 (1984), 524-528.

Department of Mathematics, University of California Davis,

Davis, CA 95616-8633

Department of Mathematics, Arizona State University, Tempe,

AZ 85287

Communicated by Clyde F. Martin

15


