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Abstract

The formal extension of the conventional theory of dynamic pro-

gramming to control problems with slow growth and a state con-

straint x 2 � encounters two major drawbacks: on one hand the

formal Hamiltonian may happen to be discontinuous; on the other

hand, just as in the case of bounded controls, the imposition of a

state constraint possibly gives rise to a discontinuous value function.

On the contrary we provide conditions on the vectogram (at the

points of @�) which, whenever the L1 norms of the controls are

bounded, guarantee the continuity of the value function. Subse-

quently, we are able to establish a dynamic programming di�erential

equation involving a continuous Hamiltonian and enjoying unique-

ness properties.

Key words: unbounded controls, slow growth, state constraints, dynamic pro-

gramming
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1 Introduction

We shall be concerned with an optimal control problem of the form

8<
:

minimize 	
�
x(T ); u(T )

�
_x = f(t; x; u; v; _u); (x; u)(�t) = (�x; �u);

x(t) 2 �;
R T
�t
j _u(t)j dt � K � �k;

where the triple (u; v; _u) represents the control exerted on the system; �
is the closure of an open set; K is the maximal bound for the integral of
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j _uj (the total variation of u); and �k is an initial datum less than or equal
to K. More precisely, v is an ordinary control which takes values in a
compact subset V �Rq , u is an absolutely continuous map, bounded in
the W 1;1([�t; T ];Rm) norm and taking values in a closed set U �Rm, and
the derivative _u is constrained in a closed cone C �Rm. It is clear that an
equivalent control system governed by the control pair (v; w) 2 V �C can
be obtained by adding the state variables �i = ui, i = 1; : : : ;m and the
equations _�i = wi. The vector �eld f is sublinear in the variable _u, which
can be considered as the unbounded component of the control policy. We
refer to [3, 4, 5, 6, 7], [17], [19], [22], [24, 25] [28, 29, 30, 31], [33, 34, 35],
[37], [39, 40, 41, 42, 43], [45, 46], [48, 49] for some examples where this
sublinearity condition is ful�lled.

We recall that the theory of dynamic programming for optimal control
problems of the form

minimize 	(T; x(T ))
_x = h(t; x; a) x(�t) = �x

is usually formulated within one of the following conditions: i) for every
(t; x) the map a ! h(t; x; a) takes values in a bounded set as the control
a ranges on its domain A; ii) a coercivity assumption, commonly stated in
terms of a superlinearity hypothesis on the maps a! h(t; x; a), allows one
to reduce{(a posteriori){the problem to an equivalent one satisfying i). For
example the so-called linear quadratic problems agree with condition ii).
In fact, under either i) or ii) the Hamiltonian

K(t; x; p)
:
= min

a2A

�
p � h(t; x; a)	

turns out to be continuous at each (t; x; p). On the contrary, because of
the unboundedness of _u and of the sublinearity of f , the problem above
disagrees with both hypothesis i) and hypothesis ii). Hence dynamic pro-
gramming cannot be developed as a formal extension of the classical theory,
in that this would yield a Hamiltonian function which possibly takes the
value �1 at some point.

Referring to a reparametrization technique introduced in [35] (see also
[31]) we overcome these drawbacks by embedding our problem into a new
problem whose de�nition involves the recession function of f (see (2.3)).
This auxiliary problem enjoys two main properties: �rst, it has the same
value function as the original one; secondly, the associated Hamiltonian is
continuous.

The di�culty related to the slow growth of f overlaps the one caused
by the imposition of the state constraint x(t) 2 �. Indeed, just as in
the case of bounded controls, such a state constraint possibly gives rise to
a discontinuous value function. We recall that, starting with H.M. Soner
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[47], conditions concerning the directions of the vectogram on the boundary
@� were established which guarantee the continuity of the value function.
However the boundedness of the vectogram plays an essential role in Soner's
result. On the contrary we neither have this boundedness hypothesis nor
can we deduce it by a superlinearity condition.

We prove that under conditions (H1) and (H2) below the value function
V (�t; �x; �u; �k) of the considered control problem is continuous. These condi-
tions still concern the directions of the vectogram at the boundary of the
constraint set. Hence they are of the same nature as Soner's. Nevertheless
the latter are no longer su�cient as soon as one allows unbounded controls
_u (see Examples 3.1, 3.2). We also remark that (H1) and (H2) allow for
a dense embedding of the trajectories graphs of the original problem into
the set of trajectories of the auxiliary problem (see [35]). As a consequence
they guarantee that the value function V (�t; �x; �u; �k) of the original prob-
lem coincides with the value function V (�t; �x; �u; �k) of the extended problem.
Finally, let us observe that the problem of the interaction between state
constraints and unbounded controls already arises|in a simpli�ed form|
in any (state-constrained) problem of the Calculus of Variations with slow
growth. For instance, this is the case for the classical problem of the min-
imal surface of revolution.

The last part of the paper is devoted to proving that the value function
is the unique continuous (viscosity) solution of a boundary value problem
involving the Hamilton{Jacobi{Bellman equation de�ned by the (contin-
uous) Hamiltonian H . This extends a result of [34], which concerned the
case with no constraint and a vector �eld a�ne in the derivative _u.

We conclude by remarking that several applications motivate the study
of slow growth control problems. For instance, let us mention [8, 9] [10]
[38], as applications in Lagrangian mechanics, [15] [18] [44], which concern
subjects from economics, and [21] [27] [36] in the �eld of space{navigation.
Furthermore, a numerical approach to an advertising problem modeled
by a slow growth control system has been proposed in [12], while in [11]
approximations are studied for the general problem with impulses.

2 The Control Problem and Its Space{Time Extension

We consider the control system

_x = f(t; x(t); u(t); v(t); _u(t))
(x; u)(�t) = (�x; �u);

(2.1)

on the time interval [�t; T ]. Here the control v is a Borel measurable map
from [�t; T ] into a compact subset V �Rq , the control u is an absolutely
continuous map from [�t; T ] into a closed subset U �Rm, and the derivative
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_u is constrained in a closed cone C �Rm. We posit an integral bound of
the form Z T

�t

j _u(t)j dt � a;

a � 0, while no restrictions are assumed on the magnitude of _u. Hence _u
has to be regarded as the unbounded component of the control policy.

We subject the state variable to the relation

x(t) 2 �;

where � is an open subset of Rn and � denotes its closure. Observe that
the dependence of f on u could be neglected by simply adding the equations
_xn+� = _u� (and the initial conditions xn+�(�t) = �u�). Hence the variable u
can be thought both as a state parameter and as a control parameter, and
the condition u 2 U can be regarded as a further (trivial) state constraint.
In particular the actual control policy is represented by the pair (v; _u), and
there is not loss of generality in considering the derivative _u in place of an
unbounded control w taking values in C.

Hypothesis (H0) below, which concerns the Lipschitz continuity and
the sublinear growth of the map f , will be assumed throughout the paper.

(H0) i) The function f is continuous on D :
= [0; T ]�Rn�U �V �C.

Moreover, there exists a constant L > 0 such that

jf(t0; x0; u0; v; w)� f(t; x; u; v; w)j � L(1 + jwj)j(t0; x0; u0)� (t; x; u)j
8(t0; x0; u0; v; w); (t; x; u; v; w) 2 D:

(2.2)
ii) There is a continuous map f1, called the recession function of f ,

such that
lim

r!+1
r�1f(t; x; u; v; rw) = f1(t; x; u; v; w) (2.3)

uniformly on compact subsets of D. Observe that the recession function
satis�es the homogeneity condition, f1(t; x; u; v; rw) = rf1(t; x; u; v; w)
8r � 0.

Let us �x a � 0 and let us consider the set of controls

Wa(�t; �u)
:
=

�
(v; u) 2 B([�t; T ]; V )�W 1;1([�t; T ]; U) : u(�t) = �u;R T

�t
j _uj dt � a; _u 2 C a.e. in [�t; T ]

�
;

where B([�t; T ]; V ) denotes the set of Borel measurable maps from [�t; T ] into
V and W 1;1([�t; T ]; U) is the (Sobolev) space of absolutely continuous maps
from [�t; T ] into U . Under condition i) in (H0) (which, of course, can be
weakened), for every control (v; u) 2 Wa(�t; �u) there exists a unique global
solution to (2.1), which will be denoted by x[�t; �x; �u; v; u](�). Whenever the
initial condition is understood from the context we adopt the notation
x[v; u](�) instead of x[�t; �x; �u; v; u](�).
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Given an initial condition (�t; �x; �u) a control (v; u) 2 Wa(�t; �u) will be
called admissible if the corresponding solution of (2.1) satis�es the state{
constraint x[�t; �x; �u; v; u](t) 2 � 8t 2 [�t; T ] . The set of admissible con-
trols corresponding to the initial condition (�t; �x; �u) will be denoted by
W c
a (�t; �x; �u).

Remark 2.1 It is obvious that under hypothesis (H1) below the set
W c
K��k

(�t; �x; �u) is not empty for any initial condition (�t; �x; �u) 2 [0; T )���U
and any �k 2 [0;K].

Let 	 :Rn�U !R be a bounded continuous map. For any (�t; �x; �u; �k) 2
[0; T )��� U � [0;K] we consider the following optimal control problem
of Mayer type:

minimize
n
	
�
x[�t; �x; �u; v; u](T ); u(T )

�
: (v; u) 2W c

K��k
(�t; �x; �u)

o
(P):

Remark 2.2 Actually the boundedness assumption on 	 is not restric-
tive. Indeed a problem equivalent to (P) and satisfying this hypothesis is
promptly obtained by replacing 	 with the map ~	

:
= arctan �	.

Correspondingly, let us de�ne the value function V : [0; T )� �� U �
[0;K]!R by setting

V (�t; �x; �u; �k)
:
= inf

(v;u)2W c

K��k
(�t;�x;�u)

	
�
x[�t; �x; �u; v; u](T ); u(T )

�
:

By Remark 2.1, the function V turns out to be well de�ned as soon as one
assumes hypothesis (H1) below.

We shall not pursue a formal extension of the dynamic programming
approach, for, as pointed out in the introduction, the lack of any coer-
civity hypothesis and the unboundedness of the control _u would yield a
discontinuous Hamiltonian. Instead, aiming to avoid this drawback, we
embed (see [31] [35]) the problem into a new one which has the same value
function and involves only bounded controls (see also [2], where an idea of
reparametrization is also involved).

De�nition 2.1 Let f be a vector �eld satisfying hypothesis (H0). For

every (t; x; u; v; w0; w) 2 De :
= [0; T ]�Rn � U � V � [0;+1)� C we set

f(t; x; u; v; w0; w)
:
=

�
f(t; x; u; v; w=w0)w0 if w0 6= 0
f1(t; x; u; v; w) if w0 = 0,

where f1 is the recession function de�ned by (2:3). The vector �eld f will

be called the space-time extension of f .
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Let us introduce the space-time system relative to (2.1),

8>><
>>:

t0 = w0(s)

x0 = f(t(s); x(s); u(s); v(s); w0(s); w(s))
u0 = w(s)
(t; x; u)(0) = (�t; �x; �u)

s 2 [0; 1]; (2.4)

where the state and the control are identi�ed with the the triples (t; x; u)
and (v; w0; w), respectively, and the prime denotes di�erentiation with re-
spect to s.

For instance, in [34] we considered the dynamics

f(t; x; u; v; _u) = g0(t; x; u; v) +

mX
i=1

gi(t; x; u; v) _ui;

whose corresponding space{time system has the form

8>><
>>:

t0 = w0(s)
x0 = g0(t; x; u; v)(s)w0(s) +

Pm

i=1 gi(t; x; u; v)(s)wi(s)
u0 = w(s)
(t; x; u)(0) = (�t; �x; �u)

s 2 [0; 1]:

For z 2Rp and r � 0 let us denote by z+Bp[r]
:
= f� 2Rp : j��zj � rg

the closed ball of center z and radius r.

De�nition 2.2 A space{time control for the initial condition (�t; �x; �u; �k) 2
[0; T ]�Rn � U � [0;K] is a Borel measurable map (v; w0; w) : [0; 1] !
V � [0;K + T ]� �C \ Bm[K + T ]

�
which satis�es

�t+

Z 1

0

w0(�) d� = T;

�u+

Z s

0

w(�) d� 2 U 8s 2 [0; 1];

Z 1

0

jw(�)j d� � K � �k:

The set of space{time controls for the initial condition (�t; �x; �u; �k) will be

denoted by �K��k(�t; �u).

It is well known that for every initial condition (�t; �x; �u; �k) 2 [0; T ]�Rn�
U� [0;K] and every space{time control (v; w0; w) 2 �K��k(�t; �u) there exists
a unique solution (t; x; u)[�t; �x; �u; v; w0; w] of the Cauchy problem (2:4) de-
�ned on the whole interval [0; 1]. Such solutions will be called space{time

trajectories.
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De�nition 2.3 Given an initial condition (�t; �x; �u; �k), a space{time con-

trol is called admissible if the corresponding solution of (2:4) satis�es the

relation

x[�t; �x; �u; v; w0; w](s) 2 �

for every s 2 [0; 1]. If this is the case, also the corresponding space{time

trajectory x[�t; �x; �u; v; w0; w] is called admissible. The subset of admissible

space{time controls of �K��k(�t; �u) will be denoted by �c
K��k

(�t; �x; �u).

Correspondingly to the space{time control system (2.4) we consider the
optimal control problem

minimize
�
	
�
x[�t; �x; �u; v; w0; w](1); u(1)

�
: (v; w0; w) 2 �c

K�
�
k
(�t; �x; �u)

	
(Pe)

which can be considered as an extension of problem (P). The value func-
tion associated with (Pe) is de�ned by

V(�t; �x; �u; �k) :
= inf

(v;w0;w)2�
c

K��k
(�t;�x;�u)

	
�
x[�t; �x; �u; v; w0; w](1); u(1)

�
:

Note that the extended problem above is an ordinary control problem
(with state constraints), i.e. it involves only controls taking values in a
given compact set. As a particular case of Corollary 2.1 below, in the case
with no state constraints, the value function of the original problem coin-
cides with the value function of the extended problem. Hence the dynamic
programming for the unbounded control problem (P) can be studied by
means of the equivalent ordinary problem (Pe). Actually the utility of
(Pe) goes beyond this goal, for (in the unconstrained case) the (graphs
of the) trajectories of (P) are dense in the set of trajectories of (Pe) (see
Theorem 2.1 below). In other words, (Pe) is a proper extension of (P).

However the situation becomes much more involved as soon as one
tackles the problem involving an actual constraint of the form x 2 �,
� 6=Rn, for which in general the above density result is false (see [35]).
On the other hand, in [35] we established conditions (H1), (H2) below|
involving the directions of the �eld f at the points of @(� � U)|which
ensure that (Pe) is a proper extension of (P). To state this density result let
us recall the notion of regular space{time trajectory, which loosely speaking,
is a reparametrization of the graph of a trajectory of the original system.

De�nition 2.4 Given an initial condition (�t; �x; �u; �k) 2 [0; T ) � � � U �
[0;K] a space{time trajectory (t; x; u)(�) starting at (�t; �x; �u) 2 [0; T )���U
is called regular if there is a control (~v; ~u) 2WK��k(�t; �u) so that

(t; x; u)(s) = (t(s); ~x � t(s); ~u � t(s))

for every s 2 [0; 1], where ~x � x[�t; �x; �u; ~v; ~u].
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We now recall conditions (H1), (H2) from [35]:
(H1) there exist a function �1 2 UC

�
[0; T )� � � U ;V

�
and positive

constants q1, r1 such that for any �y
:
= (�t; �x; �u) 2 [0; T )��� U one has

�x+ hf(�y; �1(�y); 0) +Bn[hr1] � � 8h 2 (0; q1];

where UC(E;F ) denotes the space of uniformly continuous maps from a

metric space E to a metric space F ;
(H2) there exist a function (�2; !) 2 UC

�
[0; T ]���U ;V �(Bm[1]\C)

�
and positive constants q2, r2 such that for any �y

:
= (�t; �x; �u) 2 [0; T ]���U

and any �w0 2 [0; 1] one has

�
�x+hf(�y; �2(�y); �w0; !(�y)); �u+h!(�y)

�
+Bn+m[hr2] � �� �

U 8h 2 (0; q2];

where
�

U denotes the interior of U .

Remark 2.3 If we consider the conventional control problem obtained by
taking _u � 0, condition (H1) is nothing but a slight generalization of
Soner's one [47]. Actually, the generalization consists in the consideration
of time dependent �elds f and in weakening (see also [20]) the assumptions
on @� (so that, in particular, condition (H1) could not be formulated in
terms of the normal vector to @�).

Theorem 2.1 [35] Assume (H1), (H2), and let (�t; �x; �u; �k) 2 [0; T )���
U � [0;K]. Then for any " > 0 and any admissible space{time trajectory

(t; x; u) there is an admissible regular trajectory (�t; �x; �u) such that

k(�t; �x; �u)(�)� (t; x; u)(�)k1 < ";

Z 1

0

j _�u(s)j ds �
Z 1

0

j _uj ds: (2.5)

As an easy consequence of Theorem 2.1 we have

Corollary 2.1 Under hypotheses (H1) and (H2) one has

V(�t; �x; �u; �k) = V (�t; �x; �u; �k)

for every (�t; �x; �u; �k) 2 [0; T )��� U � [0;K].

3 The Continuity of the Value Function

As soon as hypotheses (H1) and (H2) are satis�ed, Corollary 2.1 allows
us to replace V with the value function V of the bounded control problem
(Pe). Actually we will demonstrate that, under the same hypotheses, V is
continuous. Hence V is nothing but the continuous extension of V to the
closed domain [0; T ]��� U � [0;K].
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Theorem 3.1 Under hypotheses (H1), (H2) the value function V is con-

tinuous.

Before proving Theorem 3.1 let us make some comments upon hypothe-
ses (H1) and (H2). The continuity of the value function of a problem
with state constraints and bounded controls has been originally studied by
H.M.Soner [47] and successively by other authors |see e.g. [13] [14] [20]
[26] [32]. In particular, Soner has shown that the value function of an in�-
nite horizon problem is continuous provided the vectogram of the boundary
points of � contains a vector uniformly pointing inwards. We begin by ob-
serving that Soner's original hypothesis is formulated in connection with an
in�nite horizon problem. Hence, as a minor byproduct, Theorem 3.1 pro-
vides an analogue of Soner's result for a (possibly time{dependent) �nite
horizon problem. Moreover we wish to get rid of the idea that by simply
stating Soner's condition for the (x; u){variables in the extended problem
(Pe)|which is a problem with bounded controls|one could obtain a suf-
�cient condition for the continuity of V . In fact, on one hand, this is false
as shown by the two examples below. On the other hand, if one takes the
variable k into consideration as well, Soner's condition will prescribe that
the k{component of the vectogram points towards the negative direction of
the k{variable. This is always untrue at the boundary points where k = K,
for we have

_k = jwj:
The following two examples show that it is hard to weaken hypotheses

(H1), (H2). Actually, in each of these examples, a (x; u){component of
the dynamics at a boundary point can be selected which points inwards.
In particular in the �rst example |which enlightens the special role of
the t{variable in connection with the possible occurrence of impulses|
condition (H2) holds true, while (H1) is ful�lled except for the requirement
of uniform continuity. In the second example, where the particular role of
the variable k is put in evidence, the opposite situation occurs, (H1) being
valid and (H2) being violated at only one point.
Example 3.1 Let us set

�
:
= R2 n

��
(x1; x2) 2 R2 : x21 + x22 � 4; x2 � 0

	[]�1; 0]� [0; 2]

�
;

T
:
= �; U

:
= R2; K = 1;

and consider the problem of minimizing 	(x(1)) = j2 � x2(1)j over all
terminal points of the constrained control system

�
_x = g0(v) + g1(x) _u1 + g2(x) _u2; 8t 2 [�t; �];

(x; u)(�t) = (�x; �u);
R �
�t
j _u(t)j dt � 1� �k; x(t) 2 �;

9
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where

g0(v)
:
=

�
� sin v

cos v

�
; v 2 [0; 3�=4]; g1(x)

:
=

�
2

0

�
; g2(x)

:
=

�
0

2

�
:

No directional constraints are imposed on _u. Observe that hypothesis
(H2) is easily satis�ed. Indeed it is su�cient to set v = �2(x) = 3�=4,
(w1; w2)(x) = (

p
3=2;�1=2) at each point (x1; x2) 2 @� with x2 = 0, and

to extend continuously the map (�2; w0; w1) over the closed set �. On
the contrary, (H1), does not hold true, for each �1 satisfying the relation
involved in (H1) would be discontinuous at x = (2; 0). Actually if one
starts at (�t; �x; �u; �k) = (0; 0; 0; 0; 0; 0), the space{time control

(v; w0; w1; w2)(s)
:
=

�
(0; 0; 2; 0) 8s 2 [0; 1=2]
(�(s� 1=2); 2�; 0; 0) 8s 2]1=2; 1]

turns out to be optimal for the corresponding space{time trajectory
(t; x1; x2; u1; u2)|which coincides with (0; 4s; 0; 2s; 0) if s 2 [0; 1=2] and
with (2�(s � 1=2); 2 cos�(s � 1=2); 2 sin�(s � 1=2); 1; 0) if s 2]1=2; 1]|
reaches the point (x1(1); x2(1)) = (0; 2) where 	 has a minimum. Actually,
in order to steer the state (x1; x2) from (0; 0) to (2; 0) one spends the whole
variation K = 1 available for u. Hence, since the vector �eld g0 has a non-
positive x1{component, as soon as the initial value �k is greater than 0 |i.e.
as soon as one has the constant 1� �k < 1|, for any choice of the control
(v; w0; w1; w2) the terminal value x2(1) turns out to be nonpositive. Since
the value function has a strict minimum at x2 = 2 this implies that the
map k 7! V(0; 0; 0; 0; 0; k) is discontinuous at k = 0.

Example 3.2 LetK = � and 	, �, U , and T be as in the previous example
and let us consider the constrained trajectories of the control system

_x = g0(v1) + g1(v2) _u1 + g2(x) _u2 t 2 [�t; �]; (x; u)(�t) = (�x; �u)

where

f g0(v1)
:
=

�
2
�
cos v1

2
�
sin v1

�
; g1(v2)

:
=

� � sin v2
cos v2

�
;

g2(x)
:
=

� �(2� x1)
0

�
;

v1 2 [0; 2�]; v2 2 [0; 3�=4]; C = [0;+1[�[0;+1[:

In this case hypothesis (H1) is trivially satis�ed, while (H2) does not hold,
in that the involved map �2 cannot be continuous at (2; 0). The space{time
control

(v1; v2; w0; w1; w2)(s)
:
=

�
(0; 0; 2�; 0; 0) 8s 2 [0; 1=2]
(0; �(s� 1=2); 0; 2�; 0) 8s 2]1=2; 1]

10
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turns out to be optimal for the initial data (�t; �x; �u; �k) = (0; 0; 0; 0; 0; 0).
Indeed the corresponding trajectory

(t; x; u)(s) =�
(2�s; 4s; 0; 0; 0) 8s 2 [0; 1=2]
(�; 2 cos�(s� 1=2); 2 sin�(s� 1=2); 2�(s� 1=2); 0) 8s 2]1=2; 1]

steers (0,0) to (0,2). However, as soon as the initial time �t is greater than 0,
x1 cannot reach the value 2 and the terminal value x2(1) is non positive. It
follows that the value function V is discontinuous at (�t; �x1; �x2; �u1; �u2; �k) =
(0; 0; 0; 0; 0; 0).

We shall exploit the following result concerning reparametrizations of
space{time controls and trajectories.

Proposition 3.1 [35] Let (v; w0; w) be any space{time control and de�ne

the map � by setting

�(s)
:
=

R s
0
j(w0; w)j ds0R 1

0
j(w0; w)j ds0

:

Then there exists, uniquely de�ned almost everywhere, a space{time control

(vc; wc0; w
c), called the canonical representative of (v; w0; w), such that

i) j(wc0; wc)j(s) =
R 1
0
j(w0; w)j(�) d�0 for a.e. s 2 [0; 1];

ii) for any s 2 [0; 1] one has

(vc � �(s); (wc0 � �(s))
d�

ds
(s); (wc � �(s))d�

ds
(s)) = (v(s); w0(s); w(s));

iii) for any � 2 [0; 1] one has

(t; x; u)[�t; �x; �u; v; w0; w](�
�1(�)) = (t; x; u)[�t; �x; �u; vc; wc0; w

c](�):

Proof of Theorem 3.1: Let (�t; �x; �u; �k) be a point in [0; T ]���U�[0;K]
and �x "; �0 > 0. For any pair (t1; x1; u1; k1), (t2; x2; u2; k2) 2 [0; T ]���
U � [0;K] satisfying
� j(t1; x1; u1; k1)� (�t; �x; �u; �k)j � �0; j(t2; x2; u2; k2)� (�t; �x; �u; �k)j � �0;
V(t2; x2; u2; k2)� V(t1; x1; u1; k1) � 0;

choose an admissible space{time control (v; w0; w) 2 �cK�k1(t1; x1; u1)
whose corresponding trajectory (t; x; u) satis�es the inequality

V(t1; x1; u1; k1) � 	[x(1); u(1)]� ": (3.6)

Thanks to Proposition 3.1 it is not restrictive to assume that (v; w0; w)
coincides with its canonical representative. Let us consider the space{time
control (v; ~w0; ~w) de�ned as follows.

11
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If t1 < t2, set

~w0(s)
:
=

�
0 s 2 [0; �s]
w0(s) s 2 (�s; 1]

;

where �s
:
= min

�
s 2 [0; 1] : t1 +

Z s

0

w0 d� = t2

�
;

if t1 � t2, set
~w0(s)

:
= w0(s) + (t1 � t2):

Now set

~w(s)
:
=

�
w(s) s 2 [0; ��s]
0 s 2 (��s; 1]

;

where ��s
:
= max

�
s 2 [0; 1] :

Z s

0

jwj d� � K � k2

�
;

which in the event k2 � k1, implies ~w = w on [0; 1]. Setting (~t; ~x; ~u)
:
=

(t; x; u) [t2; x2; u2; v; ~w0; ~w] one has

~t(1) = T; j~t(s)�t(s)j � jt2�t1j; j~u(s)�u(s)j � ju2�u1j+jk2�k1j (3.7)

and the space{time control (v; ~w0; ~w) belongs to �K�k2(t2; u2). In order
to estimate the quantity ~x � x we need Lemma 3.1 below. Let us observe
that (see Corollary 2.1 in [35]) all space{time trajectories whose initial
points belong to (�t; �x; �u) + B1+n+m[�

0] remain inside a compact subset
Q0 � [0; T ]�Rn�U , and let us consider the maps �0 : [0;K+T ]! [0;+1[,
� : Bm(C)

:
= Bm[K + T ] \C ! [0;+1[ de�ned by

�0(w0)
:
=

max
�
jf(y; v; w0; w)� f(y; v; 0; w)j : (y; v; w) 2 Q

0

� V �Bm(C)
	
;

�(w)
:
=

max
�
jf(y; v; w0; w)� f(y; v; w0; 0)j : (y; v; w0) 2 Q

0

� V � [0; K + T ]
	
:

Lemma 3.1 If w0 2 L1([0; 1]; [0;K + T ]), w 2 L1([0; 1]; Bm[K + T ] \ C)
then �0 � w0, � � w 2 L1([0; 1];R). Moreover for any " > 0 there exists a

� > 0 such that

i)
R 1
0
�0(w0(s)) ds � " if

R 1
0
w0(s) ds � �;

ii)
R 1
0
�(w(s)) ds � " if

R 1
0
jw(s)j ds � �:

The proof of ii) can be found in [35], and with the same arguments one can
prove i) as well.

12
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Let us write y and ~y in place of (t; x; u), (~t; ~x; ~u), respectively. In the
event t1 < t2 by exploiting the homogeneity and the Lipschitzianity of f
one obtains:

j~x(s)� x(s)j � jx2 � x1j+
��Rminf�s;��sg

0

�
f(~y; v; 0; w)(s0)�

�f(y; v; w0; w)(s
0)
�
ds0+

+
Rmaxf�s;��sg

minf�s;��sg

�
f(~y; v; ~w0; ~w)(s

0)� f(y; v; w0; w)(s
0)
�
ds0+

+
R s
maxf�s;��sg

�
f(~y; v; w0; 0)(s

0)� f(y; v; w0; w)(s
0)
�
ds0
�� �

� jx2 � x1j+
��Rminf�s;��sg

0

�
f(~y; v; 0; w)(s0)� f(~y; v; w0; w)(s

0)
�
ds0+

+
Rmaxf�s;��sg

minf�s;��sg

�
f(~y; v; ~w0; ~w)(s

0)� f(~y; v; w0; w)(s
0)
�
ds0+

+
R s
maxf�s;��sg

�
f(~y; v; w0; 0)(s

0)� f(~y; v; w0; w)(s
0)
�
ds0+

+
R s
0

�
f(~y; v; w0; w)(s

0)� f(y; v; w0; w)(s
0)
�
ds0
�� �

� jx2 � x1j+
R �s

0
�0(w0(s

0)) ds0 +max
�
0;M

R �s
��s
( ~w0(s

0) + jw(s0)j) ds	+
+
R 1
��s
�(w(s0)) ds0 + L

R s
0
(w0(s

0) + jw(s0)j)j~y(s0)� y(s0)j ds0;
(3.8)

where M
:
= maxQ0�V�[0;1]�(Bm[1]\C) jf j. If t1 � t2 , we have

j~x(s)� x(s)j � jx2 � x1j+
��R ��s
0

�
f(~y; v; ~w0; w)(s) � f(y; v; w0; w)(s)

�
ds+

+
R s
��s

�
f(~y; v; ~w0; 0)(s)� f(y; v; w0; w)(s)

�
ds
�� � jx2 � x1j+

+L
R s
0
( ~w0(s) + jw(s)j)j~y(s)� y(s)j ds+ R s

0

��f(y; v; ~w0; w)(s)

�f(y; v; w0; w)(s)
�� ds+ R 1��s �(w(s)) ds:

(3.9)

Observe that from the de�nitions of �s and ��s one has
R �s

0
w0(s) ds � jt2 �

t1j and
R 1
��s
jw(s)j ds � jk2 � k1j. In view of (3.2){(3.4) and Lemma 3.1,

Gronwall's Lemma implies that for any � > 0 there exists some � < �0 such
that

d((~x(s); ~u(s)); � � U) � j(~t; ~x; ~u)(s) � (t; x; u)(s)j � � 8s 2 [0; 1]

provided (t1; x1; u1; k1), (t2; x2; u2; k2) 2 (�t; �x; �u; �k) +B(�).
By Theorem 2.1 there is an admissible control

(�v; �w0; �w) 2 �cK�k2(t2; x2; u2)

whose corresponding trajectory �y satis�es

j�y(s)� y(s)j � j�y(s)� ~y(s)j+ j~y(s)� y(s)j � �(�) + �;

where � is in�nitesimal as � tends to 0. By

0 � V(t2; x2; u2; k2)� V(t1; x1; u1; k1) � 	(�y(1))�	(y(1)) + " (3.10)

and by the uniform continuity of 	 on the compact set Q0, it follows that

0 � V(t2; x2; u2; k2)� V(t1; x1; u1; k1) � 2"

provided � is chosen su�ciently small. 2

13
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4 Dynamic Programming Principle and Dynamic

Programming Equation

In this section we show that the value function is the unique solution of
a boundary value problem involving a suitable Hamilton{Jacobi{Bellman
equation. The Hamiltonian we shall consider does not enjoy the usual
nondegeneracy condition in the coe�cient of the t{partial derivative, which
yields the uniqueness of the solution in standard problems. However the
uniqueness of the solution is recovered by a more subtle nondegeneracy
property which involves both the t{partial derivative coe�cient and the
k{partial derivative's one.

Let us de�ne the Hamiltonian H : [0; T ]�Rn � U�R1+n+m+1 !R by
setting

H(t; x; u; pt; px; pu; pk)
:
= min

v2V

(w0;w)2S
m

+

H(t; x; u; pt; px; pu; pk; v; w0; w); (4.11)

where H denotes the unminimized Hamiltonian

H(t; x; u; pt; px; pu; pk; v; w0; w)
:
=��

ptw0 + px � f(t; x; u; v; w0; w) + pu � w + pkjwj
�
; (4.12)

while Sm =
�
(w0; w)R

1+m : j(w0; w)j = 1
	
, Sm+

:
= Sm \ �[0;+1[�C�.

Furthermore, let us introduce the domain



:
= [0; T )��� �

U �[0;K);

and the boundary's subsets

@T

:
= fTg��� U � [0;K];

@0

:
= @
 n @T
; (4.13)

where @
 denotes the boundary of 
. Let us recall the de�nitions of
viscosity subsolution and supersolution (see e.g. [23], [16]).

De�nition 4.1 Let E be any subset of RN . A function V 2 C0(E) is

a viscosity subsolution [supersolution] at (t; x; u; k) 2 E of the Dynamic

Programming Equation

�H�t; x; u;rV� = 0;

if for any � 2 C1(RN ) such that (t; x; u; k) is a local maximum [minimum]

point of V � � on E one has

�H�t; x; u;r�(t; x; u; k)� � 0 [�H�t; x; u;r�(t; x; u; k)� � 0];

14
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where r� denotes the gradient of �. V 2 C0(E) is a viscosity solution
of (DPE) at (t; x; u; k) if it is both a viscosity subsolution and a viscosity

supersolution.

Theorem 4.1 (Dynamic Programming Equation and Boundary

Conditions) Assume hypotheses (H1) and (H2). Then

a) V is a viscosity solution on 
 of the dynamic programming equation

(DPE);

b) V satis�es

V(T; x; u; k) � 	(x; u) 8(T; x; u; k) 2 @T
; (4.14)

c) V is a viscosity supersolution of (DPE) on @0
 and at any point

(T; x; u; k) 2 @T


where

V(T; x; u; k) < 	(x; u):

The proof of Theorem 4.1 is based on the following dynamic programming
principle.

Proposition 4.1 (Dynamic Programming Principle) The value func-

tion V enjoys the following properties:

i) for an initial condition

(�t; �x; �u; �k) 2 [0; T ]��� U � [0;K]

and an admissible control

(v; w0; w) 2 �c
K��k

(�t; �x; �u);

let

(t; x; u)
:
= (t; x; u)[�t; �x; �u; v; w0; w]

be the corresponding trajectory of the extended system (2:4). Then

the map

s 7! V�t(s); x(s); u(s); �k +
Z s

0

jw(�)j d�� (4.15)

is nondecreasing;

ii) if in i) the control (v; w0; w) is optimal, then the map in (4:5) is con-
stant.

15
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Proof: Since for each (�t; �x; �u; �k) 2 
 the set �c
K��k

(�t; �x; �u) is not empty,
the proof of Proposition 4.1 can be straightforwardly obtained from the
proof of Proposition 4.1 in [34]. 2

Minor changes to the proof of Theorem 4.1 in [34] are su�cient to
obtain the proof of Theorem 4.1. These modi�cations are related to the
presence of the state constraint x 2 � and to the augmented generality of
the dynamics, which here is no longer linear in _u.
Proof of Theorem 4.1: Let us begin by replacing the set 
 in [34]
with the set 
 introduced above and let us recall that by Corollary 2.1
in [35] for any (�t; �x; �u; �k) 2 
 the set of admissible space{time trajectories
is not empty and locally bounded. Then the proof that V is a viscosity
subsolution of (DPE) on 
 can be deduced by obvious modi�cations of the
�rst part of the proof of Theorem 4.1 in [34]. Secondly, in order to prove
that V is a viscosity supersolution of (DPE) on 
 [ @0
 and at any point
(T; �x; �u; �k) 2 @T
 where V(T; �x; �u; �k) < 	(�x; �u), it is su�cient to replace
the trajectories yn(�) and the functions H and H in the second part of the
proof of Theorem 4.1 in [34] with admissible trajectories of (2.4) and the
functions H and H de�ned here, respectively. What makes the proof work
after these changes is the homogeneity property

H(t; x; u; p; v; w0; w) = H(t; x; u; p; v; w0

j(w0; w)j
;

w

j(w0; w)j
)j(w0; w)j;

which in turn is a consequence of the positive homogeneity of f in (w0; w).
2

For the reader's convenience we state below an uniqueness theorem and
a veri�cation theorem which are corollaries of the subsequent comparison
theorem. These theorems are straighforward generalizations of analogous
results (see [34]) concerning the unconstrained case with f = f0(t; x; u; v)+Pm

i=1 fi(t; x; u; v) _ui.

Theorem 4.2 (Uniqueness) Assume hypotheses (H1) and (H2). Then

the value function V is the unique bounded continuous viscosity solution of

(DPE) on 
 which satis�es the boundary conditions b) and c) of Theorem

4.1.

Theorem 4.3 (Veri�cation) Let Z 2 C(
) be a bounded viscosity sub-

solution of (DPE) on 
 which satis�es the condition Z � 	 on @T
. Then

Z � V on 
.

Moreover, if for a given (�t; �x; �u; �k) 2 
 there exists a space{time control

(v; w0; w) 2 �c
K��k

(�t; �x; �u) such that

	
�
x[�t; �x; �u; v; w0; w](1); u(1)

� � Z(�t; �x; �u; �k);

16
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then the space{time control (v; w0; w) is optimal and

Z(�t; �x; �u; �k) = V(�t; �x; �u; �k):

Theorem 4.4 (Comparison) Assume hypotheses (H1) and (H2). Let

V1 be a bounded continuous viscosity subsolution of (DPE) on 
 which

satis�es

V1(T; x; u; k) � 	(x; u) 8(T; x; u; k) 2 @T
:

Let V2 be a bounded continuous viscosity supersolution of (DPE) on 
[@0

such that for any (T; x; u; k) 2 @T
 either V2 satis�es the inequality

V2(t; x; u; k) � 	(x; u)

or it is a viscosity supersolution of (DPE).

Then

V1 � V2 on 
.

Remark 4.1 In the particular case investigated in [34]|where

f = g0(t; x; u; v) +

mX
i=1

gi(t; x; u; v) _ui

and no space constraints acted on x|hypothesis (H1) is trivially satis�ed.
We recall that the value function corresponding to this case was proved to
be continuous under one of the two following hypotheses:

(H2)C The set U coincides with the whole Rm.
(H2)U the cone C coincides with the whole Rm; moreover for any

" > 0 and u1 2 U there exists a � > 0 such that for each u2 2 U \B(u1; �),
there is a path 
13 2 W 1;1([0; 1]; U) satisfying 
13(0) = u1, 
13(1) = u2,
and Z 1

0

j
013(s)j ds � ":

It is not di�cult to check that if C =Rn hypothesis (H2), assumed here
in Theorems 3.1 and 4.1, is stronger than (H2)U . However, on one hand,
(H2) yields the continuity of the value function in the constrained sublinear
case and in the presence of an actual cone constraint on the directions
of _u; and on the other hand (H2) coincides with condition (H3) of [34]
which was essential to prove the uniqueness of the solution of the dynamic
programming equation. As a consequence we have that the uniqueness
and veri�cation results which in [34] had been obtained under assumptions
(H2)C , (H3) or (H2)U , (H3) remain still valid if one assumes the sole
hypothesis (H3).

17
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Remark 4.2 In [34] we extended the Pontryagin maximum principle to
optimal space{time trajectories in the special case where f = g0+

Pm

i=1 gi _ui,
� =Rn and U =Rm. Moreover we showed that for those kind of problems
a version of the known relationship between value function and adjoint
variables is still valid. All these results can be generalized by simply re-
placing g0w0 +

Pm

i=1 giwi with the more general vector �eld f considered
in this paper.

References

[1] J.P. Aubin and A. Cellina. Di�erential Inclusion. New York: Springer{
Verlag, 1984. (1984)

[2] G. Barles. An approach of deterministic control problems with un-
bounded data, Ann. Ist. Henri Poincar�e, 7(4) (1993), 235{258.

[3] E.N. Barron, R. Jensen and J.L. Menaldi. Optimal control and di�er-
ential games with measures, Nonlinear Analysis T.M.A., 21 (1993),
241{268.

[4] Alberto Bressan. On di�erential systems with impulsive controls,
Rend. Sem. Mat. Univ. Padova, 78 (1987), 227{236.

[5] Alberto Bressan and F. Rampazzo. On di�erential systems with
vector{valued impulsive controls, Boll. Un. Mat.Ital., (7) 2{B (1988),
641{656.

[6] Alberto Bressan and F. Rampazzo. Impulsive control systems with
commutative vector �elds, Journal of Optimization Theory and Appli-

cations, 71 (1991), 67{83.

[7] Alberto Bressan and F. Rampazzo. Impulsive control systems with-
out commutativity assumption, Journal of Optimization Theory and

Applications, 81 (1994), 435{457.

[8] Aldo Bressan. Hyperimpulsive motions and controllizable coordinates
for Lagrangian systems, Atti Accad. Naz. Lincei, Mem.Cl. Sc. Fis.
Mat. Natur., 19, (1991), 195-246.

[9] Aldo Bressan. On some control problem concerning the ski and the
swing, Atti Accad. Naz. Lincei, Mem. Cl. Sc. Fis. Mat. Natur., Series
IX, 1 (1991), 149{196.

[10] Aldo Bressan and M. Motta. Some optimization problems with a
monotone impulsive character. Approximation by means of struc-
tural discontinuities, Atti Accad. Naz. Lincei, Mem. Cl. Sc. Fis. Mat.

Natur., Series IX, 2 (1994), 31{52.

18



SLOW GROWTH CONTROL PROBLEM

[11] F. Camilli and M. Falcone. Approximation of control problems involv-
ing ordinary and impulsive controls, preprint (1995).

[12] F. Camilli and M. Falcone. Approximation of optimal control prob-
lems with state constraints: estimates and applications, to appear
in Nonsmooth Analysis and Geometric Methods in Deterministic Op-

timal Control, IMA Volumes in Applied Math., (V. Jurdievic, B.S.
Mordukhovic, R.T. Rockafellar and H.J. Sussmann, eds.). New York:
Springer{Verlag, 1996.

[13] P.M. Cannarsa, F. Gozzi and H.M. Soner, A boundary value problem
for Hamilton{Jacobi equations in Hilbert spaces, Appl. Math. Optim.,
24 (1991), 197{220.

[14] I. Capuzzo{Dolcetta and P.L. Lions. Hamilton{Jacobi equations and
state constrained problems, Trans. Amer. Math. Soc., 318 (1990),
643{668.

[15] C.W. Clark, F.H. Clarke and G.R. Munro. The optimal exploitation
of renewable resource stocks, Econometrica, 48 (1979), 25{47.

[16] M.G. Crandall, L.C. Evans and P.L. Lions. Some properties of viscosity
solutions of Hamilton{Jacobi equations, Trans. Amer. Math. Soc., 282
(1984), 487-502,

[17] G. Dal Maso and F. Rampazzo. On systems of ordinary di�erential
equations with measures as controls, Di�erential and Integral Equa-

tions, 4{4 (1991), 739{765.

[18] J.R. Dorroh and G. Ferreyra. A multi{state, multi{control problem
with unbounded controls, SIAM J. Control and Optimization, 32

(1994), 1322{1331.

[19] V.A. Dykhta. Impulse Trajectory Extension of Degenerated Optimal

Control Problems, The Liapunov Functions Methods and Applications,
(P. Borne and V. Matrosov, eds.). Basel: J.C. Baltzer AG, Scienti�c
Publishing Co., 1990, pp. 103{109.

[20] H. Ishii and S. Koike. A new formulation of state constraints problems
for �rst order PDEs, SIAM J. Control and Optimization, 36 (1996),
554{571.

[21] D.F. Lawden. Optimal Trajectories for Space Navigation. London:
Butterworth, 1963.

[22] E.B. Lee and L. Markus.. Foundations of Optimal Control Theory.

SIAM series in Applied Mathematics. New York: John Wiley & Sons,
1977.

19



M. MOTTO AND F. RAMPAZZO

[23] P.L. Lions. Generalized Solutions of Hamilton{Jacobi Equations. Lon-
don: Pitman, 1982.

[24] W.S. Liu and H.J. Sussmann. Limit of hight oscillatory controls and
the approximation of general paths by admissible trajectories, Proc.
IEEE CDC-91.

[25] W.S. Liu and H.J. Sussmann. A characterization of continuous de-
pendence of trajectories with respect to the input for control{a�ne
systems, Preprint

[26] P. Loreti. Some properties of constrained viscosity solutions of
Hamilton{Jacobi{Bellman equations, SIAM J.Control and Optimiza-

tion, 25, (1987)

[27] J.P. Marec. Optimal Space Trajectories. Amsterdam: Elsevier, 1979.

[28] B.M. Miller. Optimization of dynamic systems with a generalized con-
trol, Automation and Remote Control, 50 (1989), 733-742.

[29] B.M. Miller. Conditions for the optimality in problems of generalized
control. I. Necessary conditions for optimality, Automation and Re-

mote Control, 53 (1992), 362-370.

[30] B.M. Miller. The generalized solutions of ordinary di�erential equa-
tions in the impulse control problems, Journal of Mathematical Sys-

tems, Estimation and Control, 4 (1994), 385{388.

[31] B.M. Miller. The generalized solutions of nonlinear optimization prob-
lems with impulse control, SIAM J. Control and Optimization, 34
(1996), 1420{1440.

[32] M. Motta. On nonlinear optimal control problems with state con-
straints, SIAM J. Control and Optimization, 33 (1995), 1411{1424.

[33] M. Motta and F.Rampazzo. Space{time trajectories of nonlinear sys-
tems driven by ordinary and impulsive controls, Di�erential and Inte-

gral Equations, 8{2 (1995), 269{288.

[34] M. Motta and F.Rampazzo. Dynamic programming for nonlinear sys-
tems driven by ordinary and impulsive controls, SIAM J. Control and

Optimization, 34 (1996), 199{225.

[35] M. Motta and F.Rampazzo. Nonlinear systems with unbounded con-
trols and state constraints: a problem of proper extension, NoDEA {

Nonlinear Di�erential Equations and Applications, 3 (1996), 191{216.

20



SLOW GROWTH CONTROL PROBLEM

[36] L.W. Neustadt. A general theory of minimum{fuel trajectories, J. Soc.
Indust. Appl. Math., Ser. A Control, 3 (1965), 317-356.

[37] F. Rampazzo. Optimal impulsive controls with a constraint on the
total variation, Progress in Systems and Control Theory, New trends

in systems theory, (G. Conte, A.M. Perdon, and B.F. Wyman, eds.).
Boston: Birkh�auser Boston Inc., 1990, 606{613.

[38] F. Rampazzo. On the Riemannian structure of a Lagrangian system
and the problem of adding time{dependent constraints as controls,
Eur. J. Mech., A/Solids, 10 (1991), 405{431.

[39] R.W. Rishel. An extended Pontryagin principle for control systems
whose control laws contain measures, SIAM J. Control, 3 (1965), 191{
205.

[40] A.V. Sarychev, Nonlinear systems with impulsive and generalized
function controls, Nonlinear Synthesis (Sopron, 1989), 244-257, Progr.
Systems Control Theory, 9. Boston: Birkh�auser Boston, 1991.

[41] W.W. Schmaedeke. Optimal control theory for nonlinear di�erential
equations containing measures, SIAM J. Control, 3 (1965), 231{279.

[42] A.N. Sesekin. Nonlinear di�erential equations in the class of functions
of bounded variation, in Russian Di�erentsial ney Uraveniya 25(11)

(1989), 1925-1932, 2020-2021. Translation in Di�erential Equations

25(11) (1990), 1356-1361.

[43] A.N. Sesekin. Impulse extension in the problem of the optimization
of the energy functional, Automation and Remote Control, 53 (1993),
1174-1182.

[44] S.P. Sethi. Dynamic optimal control problems in advertising: a survey,
SIAM Review, 19 (1977), 685{725.

[45] G.N. Silva and R.B. Vinter. Measure driven di�erential inclusions,
Preprint

[46] G.N. Silva and R.B. Vinter. Necessary conditions for optimal impulsive
control problems, Preprint

[47] H.M. Soner. Optimal control with state{space constraints, SIAM J.

Control and Optimization, 24 (1986), 552{561.

[48] H.J. Sussmann. On the gap between deterministic and stochastic or-
dinary di�erential equations, Ann. of Probability, 6 (1978), 17{41.

21



M. MOTTO AND F. RAMPAZZO

[49] R.B. Vinter and M.F.L. Pereira. A maximum principle for optimal
processes with discontinuous trajectories, SIAM J. Control and Opti-

mization, 26(1) (1988), 205{229.

Dipartimento di Matematica Pura ed Applicata, Via Belzoni 7

- 35131 Padova, Italy

Dipartimento di Matematica Pura ed Applicata, Via Belzoni 7

- 35131 Padova, Italy

Communicated by H�el�ene Frankowska

22


