
Journal of Mathematical Systems, Estimation, and Control c
 1997 Birkh�auser-Boston

Vol. 7, No. 3, 1997, pp. 371{374

SUMMARY

Robust and Risk-Sensitive Output Feedback

Control for Finite State Machines and Hidden

Markov Models�
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z

Abstract

The purpose of this paper is to develop a framework for designing

controllers for �nite state systems which are robust with respect to

uncertainties. A deterministic model for uncertainties is introduced,

leading to a dynamic game formulation of the robust control problem.

This problem is solved using an appropriate information state. A

risk-sensitive stochastic control problem is formulated and solved for

Hidden Markov Models, corresponding to situations where the model

for the uncertainties is stochastic. The two problems are related

using small noise limits.

A �nite state machine (FSM) is a discrete{time system de�ned by the
model 8<

:
xk+1 = f(xk; uk);

yk+1 = g(xk); k = 0; 1; : : : ;M;

where the state xk evolves in a �nite set X, and the control uk and output
yk take values in �nite sets U and Y, respectively. These sets have n, m,
and p elements, respectively. The behavior of the FSM is described by a
state transition map f : X�U! X and an output map g : X! Y.

FSM models, together with accompanying optimal control problems,
have been used widely in applications. However, it is typically the case that
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deterministic treatments of such problems do not speci�cally deal with dis-

turbances, e.g., as arising from modelling errors, sensor noise, etc. In this
paper we propose and solve a general robust control problem for FSMs,
paralleling the framework that has been developed for linear systems. The
approach we adopt is motivated by the information state methods devel-
oped by James-Baras-Elliott (1994), James-Baras (1995). We thus develop
a general framework for robust output feedback control of FSMs which
speci�cally incorporates a deterministic model for disturbances and their
e�ects.

Hidden Markov Models (HMM) are a di�erent but closely related class
of models, and numerous �ltering, estimation, and control problems for
them have been proposed and employed in applications. These models
use a probabilistic description of disturbances. However, the majority of
applications to date use a risk-neutral stochastic optimal control formu-
lation. It is clear from the work of Jacobson (1973), Whittle (1981) and
others that a controller more conservative than the risk-neutral one can
be very useful. Indeed, it is well known that risk-sensitive controllers are
very closely related to robust controllers. Here, we formulate and solve
such a risk-sensitive stochastic optimal control problem for HMMs. Our
solution, which is interesting in itself, leads us to the solution of the robust
control problem for FSMs mentioned above. This is achieved by using a
HMM which is designed to be a small random perturbation of the FSM,
and employing large deviation limits. It is possible to solve the robust
control problem directly using an appropriate information state, once it is
known, as in James-Baras (1995) (the large deviation limit identi�es an
information state).

The FSM model predicts that if the current state is x and a control input
u is applied, the next state will be x0 = f(x; u). However, a disturbance may
a�ect the actual system and result in a transfer to a state x00 6= x0 instead.
Similarly, the model predicts the next output to be y0 = g(x), whereas a
disturbance may cause an output y00 6= y0 to be observed. Additionally, the
initial state x0 may be unknown, and consequently we shall regard it as a
disturbance.

We model the in
uence of disturbances as follows. Consider the follow-
ing FSM model with two additional (disturbance) inputs w and v:8<

:
xk+1 = b(xk; uk; wk);

yk+1 = h(xk; vk); k = 0; 1; : : : ;M;

where, wk and vk take values in �nite setsW and V respectively, xk 2 X,
yk 2 Y, uk 2 U. Thus x00 = b(x; u; w) for some w 2W, and y00 = h(x; v)
for some v 2 V. The functions b : X �U�W ! X and h : X �V ! Y

are required to satisfy consistency conditions involving null inputs w; and
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v;, so that when no disturbances are present (i.e. wk � w;, and vk � v;),
the behavior of the FSM with null disturbance inputs is the same as the
original FSM. Cost functions �w :W�X�U! R, and �v : V�X! R,
� : X! R, are de�ned to quantify the e�ect of the disturbances. As part
of the problem speci�cation, one de�nes an additional output quantity

zk+1 = `(xk; uk); (1)

where zk takes values in a �nite set Z, and ` : X�U! Z. A cost function
�z for this output is also speci�ed.

The state variable xk is not measured directly, and so the controller
must make use of information available in the output signal y0;k; i.e., the
controller must be an output feedback controller. We denote by Ok;l the
set of non{anticipating control policies de�ned on the interval [k; l]; i.e.,
those controls for which there exist functions �uj : Y

j�k+1 ! U such that
uj = �uj(yk+1;j) for each j 2 [k; l].

The output feedback robust control problem we wish to solve is the fol-
lowing: given 
 > 0 and a �nite time interval [0;M ] �nd an output feedback
controller u 2 O0;M�1 such that

M�1X
k=0

�z(zk+1) � �(x0) + 


M�1X
k=0

(�w(wk ;xk; uk) + �v(vk;xk))

for all (w; v) 2WM �VM , x0 2 X.
This problem is solved by converting it into an output feedback dynamic

game problem, which in turn is solved by reducing it to an equivalent state
feedback problem in terms of an information state. The information state
is de�ned by the recursion8<

:
p



k
= �
 �(uk�1; yk)p




k�1

p



0 = ��;

where
�
 �(uk�1; yk)p(x

00) = max
x2X

f�
(u; y00)x;x00 + p(x)g :

The value function satis�es the dynamic programming equation8<
:

W 
(p; k) = min
u2U

max
y2Y

fW 
(�
 �(u; y)p; k + 1)g

W 
(p;M) = (p; 0) ;

where (p; q)
4

= max
x2X fp(x) + q(x)g is called the \sup-pairing,"and is

analogous to the familiar L2 inner product.
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The information state together with the dynamic programming equa-
tion characterize the solution to the robust control problem, as the following
theorem shows.
Theorem (Necessity) Assume that there exists an output feedback con-

troller uo 2 O0;M�1 solving the output feedback robust control problem.

Then there exists a solution W 
(p; k) of the dynamic programming equation

such that W 
(��; 0) = 0. (Su�ciency) Assume that there exits a solution

W 
(p; k) of the dynamic programming equation such that W 
(��; 0) = 0,
and let �u�

k
(p) be a control value achieving the minimum in the dynamic pro-

gramming equation. Then �u�
k
(p


k
(� ; y1;k)) is an output feedback controller

which solves the output feedback robust control problem.

It is important to note that the information state is related to a modi�-
cation of the conditional distribution for a risk-sensitive stochastic control
problem. Indeed, we obtain the solution to the robust control problem just
described via the risk-sensitive control problem. To explain this, a HMM is
constructed from the FSM by a random perturbation with a perturbation
parameter " > 0. A modi�ed conditional distribution �
;"

k
is an information

state for a risk-sensitive problem with cost

J
;"(u) = E
u

"
exp

1


"

M�1X
l=0

�z (`(x
"

l
; ul))

#
:

The value function is a function S
;"(�; k). The stochastic control and
deterministic game problems are related by the small noise limits

lim
"!0


" log�
;"
k

(x) = p



k
(x);

and
W 
(p; k) = lim

"!0

" logS
;"(e

1


"
p; k):

The results for the risk-sensitive stochastic control problem are of indepen-
dent interest.
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