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Abstract

We consider an optimal control problem with inde�nite cost for an

abstract model which covers in particular hyperbolic and hyperbolic-like

systems in a general bounded domain. Necessary and su�cient conditions

are given for the synthesis of the optimal control, which is given in terms

of the Riccati operator arising from a nonstandard Riccati equation. The

theory also extends a �nite-dimensional frequency theorem to the in�nite-

dimensional setting. Applications include the damped wave equation with

Dirichlet control, damped Euler-Bernoulli and Kircho� equations with

control in various boundary conditions, and the damped Schr�odinger equa-

tion with Dirichlet control.

AMS Subject Classi�cations: primary 47A, secondary 35B

Key words: Riccati equations, boundary control problems

1 Introduction

1.1 Problem setting

Let X (state) and U (control) be separable Hilbert spaces. Consider the follow-

ing abstract dynamical system

_x = Ax+Bu 2 [D(A�)]0; x(0) = � 2 X (1.1.1)

where u 2 L2(0;1;U) is a control function. The problem that we wish to

consider is: �nd

inf
u2L2(0;1;U)

J(x; u) > �1 (1.1.2)
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where

J(x; u) =

Z 1

0

F (x; u)dt (1.1.3a)

F (x; u) = (F1x; x)X + 2Re(F2x; u)U + (F3u; u)U

� �(kxk2X + kuk2U); � 2 R : (1.1.3b)

The dynamics (1.1.1) { (1.1.3) is subject to the following assumptions which

shall be maintained throughout the paper:

(H.1) A is the generator of a s.c. stable semigroup on X with margin of stability

keAtkX �Me�!0t; M � 1; !0 > 0: (1.1.4)

(H.2) B : continuous U �! [D(A�)]0, or equivalently, A�1B 2 L(U ;X), where

[D(A�)] denotes the dual of D(A) with respect to the X-topology, and A�

is the X-adjoint of A (without loss of generality, we take A�1 2 L(X)).

(H.3) The following abstract trace regularity holds (see [L-T.3, class (H.2)]): the

(closable) operator B�eA
�t admits a continuous extension, denoted by the

same symbol, from X �! L2(0; T ;U):Z T

0

kB�eA
�txk2Udt � cT kxk

2
X 8T <1; x 2 X (1.1.5)

where B� is the dual of B, and B� 2 L(D(A);U) after identifying [D(A)]00

with D(A).

(H.4) F1 2 L(X), F2 2 L(X;U), and F3 2 L(U):

The solution to the state equation (1.1.1) is given explicitly by

x(t) = x(t; 0;�) = eAt�+ (Lu)(t) (1.1.6)

where, we have de�ned

(Lu)(t) �

Z t

0

eA(t��)Bu(�)d� (1.1.7a)

: continuous L2(0;1;U) �! C([0;1);X) (1.1.7b)

(continuity of L follows from (H.3) [Theorem in section 3 and Remark 3.3. in

L-T.3])

Remark 1.1.1 Assumption (H.3) is an abstract trace theory property. It has

been shown to hold true for many classes of partial di�erential equations by

purely PDEmethods (energy methods in either di�erential or pseudo-di�erential

form) including: second order hyperbolic equations; Euler-Bernoulli and Kir-

cho� equations; Schr�odinger equations, and �rst order hyperbolic systems, all

in arbitrary space dimensions and on explicitly identi�ed spaces (see [L-T.3,

class (H.2)]).
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1.2 Statement of main results

We �rst de�ne the space of admissible control functions and state variables

by M� � f(x; u) 2 L2(0;1; X) � L2(0;1;U) : (x; u) satisfying _x = Ax +

Bu; x(0) = �; u(0) 2 U; g. (Clearly,M� is nonempty for A stable as u � 0 �!

x 2 L2(0;1;X) for any � 2 X .)

We now state the main results of the paper.

Theorem 1.2.1 Assume hypotheses (H.1) { (H.4).

1. If � > 0, then there exists a unique optimal response fx0; u0g of (1.1.2)

which depends continuously on the initial state � 2 X. The optimal value

of the minimum V 0(�) � infx;u J(x; u) is a quadratic form on X, i.e.,

there exists a positive self-adjoint operator, P 2 L(X) such that

V 0(�) � (P�; �)X (1.2.1)

for � 2 X.

2. Let � > 0. Then,

(a) the optimal response guaranteed by (i) satis�es the following Hamil-

tonian system of equations:

dx0

dt
= Ax0 +Bu0 2 [D(A�)]0; x0(0) = � 2 X (1.2.2)

d 0

dt
= �A� 0 + F1x

0 + F �2 u
0
2 [D(A�)]0;

�0(T ) = 0; T > 0 (1.2.3)

F2x
0(t;�) + F3u

0(t;�) +B� 0(t;�) = 0 (1.2.4)

8� 2 X; a:e: in t > 0. where  0 is the solution to the adjoint

problem (1.2.3), and the quantity B� 0(t;�) is well-de�ned in U (see

Proposition 3.2.1);

(b) the operator P guaranteed by Eq. (1.2.1) is expressed by P� =

 0(0;�) for all � 2 X;

3. If � < 0 then infx;u J(x; u) = �1. 2

Theorem 1.2.2 Frequency Theorem for the Nonsingular Case Assume

hypotheses (H.1) { (H.4). Let � > 0. Then,

1. there exists a unique bounded, positive self-adjoint operator, P = P � 2

L(X), (see Eq. (3.1.6)) which satis�es the following Algebraic Riccati

Equation, (ARE) for all x; z 2 D(A); or else for all x; z 2 D(AF ), AF
de�ned in (1.2.12) below:

(PAx; z)X + (Px;Az)X � ([(PB + F �2 )F
�1
3 (B�P + F2)� F1]x; z)X = 0

(1.2.5)
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(see Theorem 3.1) with the property (see Lemmas 3.4.1 and 3.5.1 below)

B�P 2 L(D(A);X) \L(D(AF );X); (1.2.6)

2. there exists a unique pair of operators P = P � 2 L(X) and h, de�ned in

Eq. (1.2.9) below, such that

2Re(Ax+Bu; Px) + F (x; u) = kF
1=2
3 (u� hx)k2U ; (x; u) 2 D(A) � U

(1.2.7)

with the properties

B�P 2 L(D(A);X) \L(D(AF );X); (1.2.8)

where

h = �F�13 (B�P + F2) (1.2.9)

(see Theorem 4.1 below)

3. there exists an operator P = P � 2 L(X) such that

2Re(Ax+Bu; Px) + F (x; u) � �(kuk2U + kxk2X); (x; u) 2 D(A)� U

(1.2.10)

for some � > 0 (see Theorem 4.1 below);

4. the optimal control u0(� ;�) is given by (see Eq. (3.3.7))

u0(t;�) = �F�13 (B�P + F2)x
0(t;�) 2 L2(0;1;U); (1.2.11)

where P is the unique solution to the Algebraic Riccati Equation (1.2.5)

(see Corollary 3.3.2 below);

5. de�ne the operator (F stands for \feedback") (see Lemma 3.4.2 below)

AF � A�BF�13 (B�P + F2) (1.2.12)

with maximal domain, where P is the unique solution to the Algebraic

Riccati Equation (1.2.5). Then, AF is the generator of a s.c. semigroup

on X and, in fact, for � 2 X (see Eq. (3.4.8c) below):

y0(t;�) = eAF t� = e(A�BF
�1

3
(B�P+F2))t�

2 L2(0;1;X) \ C([0;1];X); t � 0: (1.2.13)

Moreover, the semigroup, eAF t is uniformly (exponentially) stable on X:

there exist constants CF � 1 and �F > 0 such that (see Corollary 3.4.1

below)

keAF tk
L(X)

� CF e
��F t; t � 0; (1.2.14)
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6. for � 2 X (see Lemma 3.1.1 below)

(P�; �) = J0(�) = J(u0(� ;�); x0(� ;�)) = inf
u
J(u; x); (1.2.15)

7. for the existence of operators P and h satisfying Eq. (1.2.7), the condition

� � 0 is necessary. 2

Theorem 1.2.3 Frequency Theorem for the singular case Assume hy-

potheses (H.1) { (H.4).

1. Let J(x; u) > �1. Then, there exists a bounded operator P 2 L(X)

satisfying the Linear Operator Inequality (LOI)

(Ax+Bu; Px)X + F (x; u) � 0 8(x; u) 2 D(A) � U (1.2.16)

in a suitably weak sense (see Theorem 5.2.1 below).

2. Conversely, let P be a self-adjoint operator which satis�es the LOI (1.2.16)

for (x; u) 2 X � U . Then J(x; u) > �1. 2

Remark 1.2.2 There is no claim that P is a strong solution of the LOI (1.2.16).

The lack of (proof of) the regularity properties of B�P , in particular, if it is

densely de�ned, prevents us from justifying the formal steps needed to give the

desired conclusion that P satis�es the LOI (1.2.16) even for, say, x 2 D(A).

Thus, Theorem 1.2.3 gives the solution of (1.2.16) in a suitably weaker sense.

1.3 Literature

In this paper, we consider the existence of solutions to an optimal control prob-

lem with inde�nite cost functional for an abstract PDE model in a general

bounded domain, 
 � Rn. The model covers, in particular, the use of bound-

ary controls for hyperbolic and hyperbolic-like systems, e.g. the wave equation

with Dirichlet control, Euler-Bernoulli and Kircho� plate equations with control

acting in the displacement or Neumann boundary conditions, or as a bending

moment.

We show that there exists an optimal control u to the minimization problem

if and only if the cost functional is nonnegative. Moreover, when there does

exist an optimal control, we distinguish between two cases: in the �rst case,

the cost functional is coercive in the control, u; in the second, we only assume

that the cost functional is nonnegative. In the coercive case, necessary and

su�cient conditions are given for the synthesis of an optimal control in terms

of the solution to a nonstandard Riccati equation. However, when the cost is

nonnegative (and not necessarily coercive in u), there is no explicit synthesis

of the optimal control. Instead, the optimal cost is given in terms of a weak

solution to an (operator) dissipativity inequality.
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For a �nite-dimensional history of this type of optimal control problem, we

refer the reader to [19]. The minimization problem was also extended to in�nite-

dimensional systems in [19], wherein a general dynamical system on a bounded

domain, with the control function acting as a forcing function in the interior of

the domain was considered. However, to do this problem, strong assumptions

on the regularity of the solutions to the dynamical system were made. These

assumptions were later removed in [18], again for the case where the control

function acts in the interior of the domain. Extensions to dynamical systems

with control acting on the boundary of the domain were later made in [24],

wherein the Pritchard-Salamon class of problems was considered. However, this

latter class of problems does not include many PDEs of interest, as the control

operator is essentially bounded on the space of interest. In particular, it does

not include the examples which we are presently considering, as in these exam-

ples the control operator is allowed to be as badly unbounded as the dynamics

operator A, but the input-output solution map is continuous. To consider these

problems of interest, we follow closely the ideas of [18]. However, new added

technical di�culties arise since the control operator is badly unbounded, and

these regularity questions must be handled di�erently than was the case in [18].

2 Preliminary Results

Following [1], [5], we now de�ne the space of admissible control operators F �

fK 2 L(D(A);U) : AK = A + BK generates an exponentially stable s.c.

semigroup on X; D(AK) � D(K); KeAKt 2 L(X ;L2(0;1;U))g. The set F

is nonempty as K = �B�PH 2 F , where PH satis�es the standard algebraic

Riccati equation

(Ax; PHz) + (PHx;Az)� (B�PHx;B
�PHz) + (x; z) = 0; (2.1)

8x; z 2 D(A) or x; z 2 D(AK), with the property that the (unclosable) operator

B�PK 2 L(D(A);U) \L(D(AK);U) (see [5] for details).

Lemma 2.1 Assume hypotheses (H.1) { (H.4). If

inf
u
fJ(x; u) : (x; u) 2M�g > �1 8� 2 X; (2.2)

then F3 � 0 and

F (x; u) � 0 8(!; x; u) 2 R �X � U with i!x = Ax+Bu: (2.3)

Proof: (by contradiction). We follow closely the ideas of [L-W.1], taking into

consideration the lower regularity of the state variable. Let K 2 F . Then

AK � A+BK is exponentially stable onX . Suppose that there exists (~!; ~a; ~u) 2

R �X � U with

i~!~a = A~a+B~u and F (~a; ~u) < 0: (2.4)
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For each T > 0 de�ne the control function uT (� ) by

uT (t) �

�
ei~!t~u if t 2 [0; T ]

ei~!TKeAK(t�T )~a if t > T:
(2.5)

Then, the solution of the Cauchy problem

_x = AxT +BuT ; xT (0) = ~a (2.6)

on R
+
is

xT (t) �

�
ei~!t~a if t 2 [0; T ]

ei~!T eAK(t�T )~a if t > T:
(2.7)

So, for each T > 0,

J(xT ; uT ) =

Z T

0

F (xT ; uT )dt+

Z 1

T

F (xT ; uT )dt

=

Z T

0

F (~a; ~u)dt+

Z 1

T

F (ei!T eAK(t�T )~a; ei!TKeAK(t�T )~a)dt

= TF (~a; ~u) +

Z 1

0

F (eAK�~a;KeAK�~a)d�:

Since, by assumption, F (~a; ~u) < 0, J(xT ; uT ) �! �1 as T �! +1, which

is a contradiction. Hence F (x; u) � 0 8(!; x; u) 2 R � X � U satisfying

i!x = Ax +Bu.

To show that F3 � 0, we �rst suppose that there exists a ~u such that F3 < 0,

i.e., (F3~u; ~u) < 0.

For such ~u, de�ne

v(t) =

�
0 t 6= N

~u t = N

for some N 2 R. Then, let a(t) satisfy _a = Aa + Bv; a(0) = 0, i.e., a(t) =R t
0
eA(t��)Bv(�)d� , so that its corresponding Laplace transform satis�es i!â =

Aâ + Bv̂, where ^(� ) denotes the Laplace transform of (� ). Then, for such v,

a(t) � 0 8t 2 R. But,

F (a(N); v(N)) = (F1a(N); a(N))X + 2Re(F2a(N); u(N))U

+(F3u(N); u(N))U

= F (0; u) = F3(u; u) < 0

which is a contradiction, as F (a; v) � 0 for all pairs (a; v) such that i!a =

Av + Bv, or equivalently that their corresponding inverse Laplace transforms

satisfy _̂a = Aâ+Bv̂.

Hence F3 � 0. 2
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Lemma 2.2 Assume hypotheses (H.1) { (H.4) and let � > 0. Then, for

each � 2 X, there exists a unique point (x0(� ;�); u0(� ;�)) 2 L2(0;1;X) �

L2(0;1;U) minimizing J . Moreover, there exists a positive constant � > 0 such

that F3 � �I.

Proof: If � > 0, then the �rst claim follows by convexity of the cost functional

J(x; u). To prove that F3 > 0, we repeat the proof of Lemma 2.1 with the

Hermitian form replaced by

F1(x; u) = F (x; u)�
1

2
�kukU > 0 (2.8)

as F (x; u) � �(kxk2X + kuk2U) to get that F3 � 1=2� � 0, and hence F3 > 0.

Details are omitted. 2

3 Feedback Relationship Between the Optimal

Control Function u
0 and the Corresponding

State Variable x
0

The main result of this section is the following.

Theorem 3.1 Assume that � > 0 so that the operator F3 is coercive, Then,

1. the map � �! (x0(� ;�); u0(� ;�)) from X �! L2(0;1;X) �L2(0;1;U)

is linear and continuous. Thus, the optimal cost

J0(x0(� ;�); u0(� ;�)) � V 0(�) (3.1)

is a continuous Hermitian form on X (see above Eq. (3.1.6);

2. the self-adjoint operator P 2 L(X) de�ned by (P�; �) � V 0(�) for all

� 2 X, is a solution of the algebraic Riccati equation (ARE)

(Ax; Py) + (Px;Ay)� ([(PB + F �2 )F
�1
3 (B�P + F2)� F1]x; y) = 0 (3.2)

8x; y 2 D(A), (see Theorem 3.5.1), and the s.c. semigroup generated by

AF � A � BF�13 (B�P + F2) is exponentially stable on X (see Corollary

3.4.1);

3. for each � 2 X, the optimal control u0(� ;�) admits the feedback form

u0(� ;�) = �F�13 (B�P + F2)x
0(� ;�) 2 L2(0;1;U) (3.3)

where the optimal state x0(� ;�) satis�es (1.1.1) and so

x0(� ;�) = eAF t� 2 L2(0;1;X) \ C(0;1;X) (3.4)

(see Corollary 3.3.2 and Lemma 3.4.2);

4. the (unclosable) operator B�P 2 L(D(A);X)\L(D(AF );X) (see Lemma

3.5.1).
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3.1 Regularity of the value function

Lemma 3.1.1 the map � �! (x0(� ;�); u0(� ;�)) from X �! L2(0;1;X) �

L2(0;1;U) is linear and continuous. Thus, the optimal cost

J0(x0(� ;�); u0(� ;�)) � V 0(�)

is a continuous Hermitian form on X (see above Eq. (3.1.6). Thus, there exists

a nonnegative self-adjoint operator P 2 L(X) such that

V 0(�) = (P�; �)X ; 8� 2 X:

Proof: (See [9] for an analogous proof in a setting di�erent from ours.) We

return to the dynamics (1.1.1) { (1.1.3): Using the regularity of F , the maps

� �! F1x; � �! F2x (3.1.1)

are continuous X �! X and X �! U respectively. Thus, for each � 2 X ,

the functional J(xu; u) is quadratic, continuous : L2(0;1;U) �! R . By as-

sumption, for each � 2 X , there exists a unique optimal solution u0(� ; �; 0) 2

L2(0;1;U). By (1.1.6) and (1.1.7), the corresponding optimal trajectory

x0(� ; �; 0) 2 L2(0;1;X) \ C(0;1;X) (3.1.2)

Now, for each (�; u) 2 X � U; J(x�; u) is well-de�ned and by assumption, J0

achieves its minimum at the point u0(t). By (H.4), we infer that the map

� �! (F1x
0; F2x

0; F3u) (3.1.3)

is linear and continuous

X �! L2(0;1;X)� [L2(0;1;U)]2 (3.1.4)

Hence, in particular, the map

� �! J0(�) � J(x0(� ; �; 0); u0(� ; �; 0))

= inf
u2L2(0;1;U)

J(x(� ; �; 0); u(� ; �; 0)) (3.1.5)

is a continuous quadratic form on X . Therefore, there exists a self-adjoint

operator, P 2 L(X); P � 0 such that

J0(�) = (�; P�)X ; � 2 X (3.1.6)

2
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3.2 The adjoint problem

Lemma 3.2.1 Assume hypotheses (H.1) { (H.4). Let � > 0. Then, for each

� 2 X, there exists an optimal solution denoted by fx0(� ;�);u0(� ;�)g 2

L2(0;1;X � U) to the minimization problem (1.1.2). Moreover, the optimal

control and trajectory are related by the following:

u0(t;�) = �F�13 (F2x
0(t;�) + L�(F1x

0(� ;�) + F �2 u
0(� ;�))) 2 L2(0;1;U)

(3.2.1)

Proof: Since � > 0, the cost functional is strictly convex and hence there exists

a unique minimum. We introduce the following Lagrangian, with (�; x; u) 2

L2(0;1;X �X � U) as free parameters:

L(�; x; u) = 1=2f(F1x; x)X +2Re(F2x; u)U +(F3u; u)Ug+(�; x� eA� ��Lu)X
(3.2.2)

Using the optimality conditions

Lx = 0 =) F1x
0 + F �2 u

0 + �0 = 0 (3.2.3)

Lu = 0 =) F2x
0 + F3u

0
� L��0 = 0: (3.2.4)

Combining (3.2.3) and (3.2.4) yields that

u0(� ;�) = �F�13 [F2(x
0(� ;�) + L�(x0(� ;�) + u0(� ;�))] (3.2.5)

x paper where the inverse in (3.2.5) is well-de�ned by Lemma 2.2. 2

We now introduce the \adjoint" state equation as follows:

d 0

d�
= �A� 0 + F �1 x

0 + F �2 u
0; � > 0 (3.2.6)

Then,

 0(t) =

Z 1

t

eA
�(��t)(F �1 x

0(�) + F �2 u
0(�))d� (3.2.7a)

()  0(t) =

Z 1

t

eA
�(��t)(F �1 x

0(�) + F �2 u
0(�))d�: (3.2.7b)

The following technical result is important. Its proof is based on the regularity

of the output operator L in (1.1.7).

Proposition 3.2.1 Assume (H.1) { (H.4). With reference to  0(t;�) given by

Eq. (3.2.6), we have for �xed T > 0

B� 0(t;�) 2 L2(0;1;U) 8t > 0: (3.2.8)
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Proof: It is a corollary of the regularity of the operator L de�ned in (1.1.7),

applied to F1x
0(t;�)+F �2 u

0(t;�) and hypothesis (H.2). Recalling the de�nition

(1.1.7) of L, we have that

B� 0(t;�) = B�
Z 1

t

eA
�(��t)[F1x

0(� ;�) + F2u
0(� ;�)]d�

= fL�[F1x
0 + F �2 u

0]g(t)

= I: (3.2.9)

But I 2 L2(0;1;U) by the continuity (1.1.7) of L applied to (F1x
0 + F �2 u

0) 2

L2(0;1;X), and the result is proved. 2

Lemma 3.2.2 For all � 2 X, we have the following identity:

P� �  0(0; �) (3.2.10)

where P is the nonnegative self-adjoint operator de�ned in Lemma 3.1.1.

Proof: Consider the cost functional

J(u0; x0) =

Z 1

0

F (x0(t); u0(t))dt (3.2.11)

=

Z 1

0

[(F1x
0; x0) + 2Re(F2x

0; u0) + (F3u
0; u0)]dt

=

Z 1

0

[(x0; F �1 x
0 + F �2 u

0) + (u0; F2x
0) + (F3u

0; u0)]dt)

=

Z 1

0

[(eAt + Lu; F �1 x
0 + F �2 u

0) + (u0; F2x
0 + F �3 u

0)]dt

=

Z 1

0

[(eAt�; F �1 x
0 + F �2 u

0) + (u0; L�(F �1 x
0 + F �2 u

0))

+(u0; F2x
0 + F �3 u

0)]dt

=

Z 1

0

[(eAt�; F �1 x
0 + F �2 u

0) + (u0; B�( 0(t))

+(u0; F2x
0 + F �3 u

0)]dt

= (�;

Z 1

0

eAt(F �1 x
0 + F �2 u

0)dt)

+

Z 1

0

(u0; B�( 0(t)� F2x
0 + F �3 u

0)dt)

= (�;  0(0; �)) +

Z 1

0

(u0; F2x
0 + F �3 u

0 + B� 0)dt (3.2.12)

by (3.2.7). Now,

J0(x0; u0) = (�; P�)

11
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= (�;  0(0; �)) +

Z 1

0

(u0; F2x
0 + F �3 u

0
�B� 0)dt

= (�;  0(0; �)) +

Z 1

0

(u0; F2x
0 + F �3 u

0 + L�(F1x
0 + F �2 u

0))dt; (3.2.13)

t > 0. But,

F2x
0 + F �3 u

0 + L�(F1x
0 + F �2 u

0) = 0 2 L2(0;1;U) (3.2.14)

=) F2x
0 + F �3 u

0 +B� 0 = 0 2 L2(0;1;U) (3.2.15)

=) u0(� ;�) = �F�13 (B� (� ;�) + F2x
0(� ;�) 2 L2(0;1;U) (3.2.16)

by Lemma 3.2.1, (3.2.7), and (1.1.7). Thus,

(P�; �)X = J0(x0; u0) = J0(x0(� ;�); u0(� ;�) = (�;  0(0 ;�))X : (3.2.17)

Hence, P� �  0(0; �). 2

3.3 Semigroup properties for the optimal solution

fx
0(t;�); u0(t;�)g

We �rst state the following lemma.

Lemma 3.3.1 Assume hypotheses (H.1) { (H.4). De�ne the cost function

Jt0(x; u) �

Z 1

t0

F (x(t); u(t))dt: (3.3.1)

Then, the optimal control and the corresponding solution for the minimization

of the cost functional (3.3.1) where u = u(t) 2 L2(t0;1;U) and x(t) is the

solution of

_x = Ax+Bu 2 [D(A�)]0; x(t0) = � 2 X (3.3.2)

can be expressed by

u0(t� t0;�); x0(t� t0;�): (3.3.3)

Proof: The proof is analogous to that in [25, pg. 468]. Details are omitted.

2

We are now ready to state the main result of this subsection.

Lemma 3.3.2 Assume hypotheses (H.1) { (H.4). Then, the optimal solution

fx0(t;�);u0(t;�)g satis�es the following semigroup property in X and U respec-

tively:

x0(t+�;�) = x0(t;x0(�;�)); u0(t+�;�) = u0(t;x0(�;�)); � 2 X: (3.3.4)

Proof: The proof is analogous to [25, proof of Lemma 6]. Details are omitted.

2

12
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Corollary 3.3.1 Assume hypotheses (H.1) { (H.4). Then,  0(t;�), de�ned in

Eq. (3.2.6) satis�es the following semigroup property.

 0(t+ �;�) =  0(t;x0(�;�)); � 2 X: (3.3.5)

Proof: We use Eq. (3.2.7) for  0(t;�), together with Lemma 3.3.2. Thus, we

have that

 0(t+ �;�) =

Z 1

t+�

eA
�� [F �1 x

0(� ;�) + F �2 u
0(� ;�)]d�

(r = � � �) =

Z 1

t

eA
�r[F �1 x

0(r + �;�) + F �2 u
0(r + �;�)]d�

(by Lemma 3:3:2) =

Z 1

t

eA
�r[F �1 x

0(r;x0(�;�)) + F �2 u
0(r;x0(�;�))]d�

=  0(t;x0(�;�)): (3.3.6)

2

Corollary 3.3.2 Assume hypotheses (H.1) { (H.4). In addition, assume that

the constant � (Eq. 1.1.3(b)) is positive, so that there exists a positive constant,

�, such that the operator, F3 > �I. Then,

u0(t;�) = �F�13 [B�P + F �2 ]x
0(t;�); a:e: in t: (3.3.7)

Proof: We use Corollary 3.3.1 in Eq. (3.2.16) for u0(t;�). 2

3.4 De�nition of AF and Its Properties

De�ne the semigroup �(t) guaranteed by Lemma 3.3.2 as follows:

�(t)� = x0(t;�); 8 � 2 X: (3.4.1)

Then, we have the following results:

Lemma 3.4.1 Assume (H.1) { (H.4) and that u0(0) 2 U . Moreover, assume

that there exists a positive constant, � such that F3 � �I. Then,

X � D(B�P ) � D(AF ): (3.4.2)

Thus, D(B�P ) is dense in X.

Proof: Following [5, proof of Lemma 4.5], we use the implicit representation

for  0(t;�), (3.2.10). Thus, for � 2 D(AF ),

B�P� = B� 0(0;�) = B�A��1
Z t0

0

A�eA
�� [F �1 x

0(� ;�) + F �2 u
0(� ;�)]d�

13
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+B�eA
�t0Px0(t0;�)

= B�A��1feA
�t0 [F �1 x

0(t0;�) + F �2 u
0(t0;�)]

�[F �1 x
0(0;�) + F �2 u

0(0;�)]g

+

Z t0

0

eA
�� d

d�
[(F �1 � F �2 F

�1
3 (B�P + F2))�(�)�]d�g

+B�eA
�t0Px0(t0;�)

= B�A��1feA
�t0 [F �1 x

0(t0;�) + F �2 u
0(t0;�)]

�[F �1 �+ F �2 u
0(0;�)]

+

Z t0

0

eA
�� [F �1 � F �2 F

�1
3 (B�P + F2)]�(�)AF�d�g

+B�eA
�t0Px0(t0;�) (3.4.3)

2 U (3.4.4)

where, by assumption (H.2), B�A��1 2 L(X ;U), and where

B�eA
�tP�(t)x 2 L2(0; T ;U); x 2 D(AF ) 8T <1; t < T: (3.4.5)

by the trace assumption (H.3) and Proposition 3.2.1, so that t0 in (3.4.3) can

be chosen (depending on �) such that u0(t0) and the last term in (3.4.3) are

well-de�ned in U (this can be done as the measure of all such t00s contained in

[0; t1] is equal to t1). 2

De�ne the operator F0 � �BF
�1
3 (B�P + F2).

Lemma 3.4.2 Assume (H.1) { (H.4) and that there exists a positive constant,

�, such that the operator F3 � �I. Then, for x 2 X,

d�(t)x

dt
= [A� F0]�(t)x 2 [D(A�)]0 a:e: in t � 0: (3.4.6)

Thus,

[A� F0]�(t)x = AF�(t)x = �(t)AFx 2 X; x 2 D(AF ); t � 0 (3.4.7a)

[A� F0]x = AFx = �(t)AFx 2 X; x 2 D(AF ); (3.4.7b)

�(t)x = eAF tx 2 X; x 2 X: (3.4.7c)

Proof: We follow closely [5, proof of Lemma 4.6]. Recalling (3.3.7) and (1.1.6)

for the optimal dynamics, we get

�(t)� = x0(t;�) = eAt��

Z t

0

eA(t��)BF�13 (B�P + F �2 )�(�)�d�; � 2 X

(3.4.8)

14
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Thus, di�erentiating (3.4.8) with � 2 X and � 2 D(A�),

(
�(t)�
dt

; z) = (eAt�;A��)� (BF�13 [B�P + F �2 ]�(t)�; �)

�(

Z t

0

eA(t��)BF�13 (B�P + F �2 )�(�)�d�;A
��)

= (�(t)�;A��)� (BF�13 ([B�P + F �2 ]�(t)�; �) (3.4.9)

where the last term in (3.4.9) is well-de�ned a.e. in t as A�1BF�13 ([B�P +

F �2 ]�(t)�;A
��) is well-de�ned a.e. in t by (H.2) and Lemma 3.4.1. (3.4.9)

yields (3.4.6) 2

Corollary 3.4.1 Assume (H.1) { (H.4) and that there exists a positive con-

stant, �, such that the operator F3 � �I. Then, the semigroup, �(t), de�ned

by (3.4.1) is exponentially stable on X, i.e., there exists constants M � 1 and

� > 0 such that

k�(t)k
L(X)

�Me��t; t > 0: (3.4.10)

.

Proof: We use Lemma 3.4.2, (3.4.7c), combined with Datko's result [4]. 2

We now give the counterparts of Lemmas 4.7 and 4.8 of [5].

Lemma 3.4.3 Assume (H.1) { (H.4) and that there exists a positive constant,

�, such that the operator F3 � �I. Then, for AF and P de�ned by (3.4.7) and

(3.1.6) respectively.

A�P 2 L(D(AF );U); (3.4.11)

A�FP 2 L(D(A);U): (3.4.12)

Moreover,

�A�Px = F1x� F�13 F2x� F�13 B�Px+ PAFx 2 X; x 2 D(AF ); (3.4.13)

�A�FPx = F1x� F�13 F2x� F�13 B�Px+ PAx 2 X; x 2 D(A): (3.4.14)

Proof: The proof follows closely that of Lemmas 4.7 and 4.8 in [5] with R

replaced by F1 � F�13 [B�P + F2]. The proof relies heavily on the identity

(3.3.10) for  (0;�) = P�.

3.5 The operator P is a solution of the algebraic Riccati

equation

As in Corollary 4.9 of [5], we begin with a corollary to Lemma 3.4.3.

15
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Lemma 3.5.1 Assume (H.1) { (H.4) and that there exists a positive constant,

�, such that the operator F3 � �I. Then, for P de�ned in (3.1.6) we have

(B�Px;B�Pz)U is well � de�ned either for x; z 2 D(A); or for x; z 2 D(AF)

(3.5.1)

j(B�Px;B�Pz)U j � C

(
kAFxkX kAF zjjX ; x; z 2 D(AF )

kAxkX kAzjjX ; x; z 2 D(A) (3.5.2)

(3.5.3)

Proof: We �rst let x 2 D(A) so that A�FPx 2 X by (3.4.12) Next, we take

z 2 X for now. Then,

j(A�FPx; z)X j � ckAxkX kzkX : (3.5.4)

We now compute, with A��F = AF since AF is closed, still with x 2 D(A), z 2 X

(A�FPx; z)X = (Px;AF z)X =

(Px; [A+BF�13 (B�P + F2)]z)X

= (Px; [I +BF�13 (B�PA�1 + F2A
�1)]Az)X

= ([I +BF�13 (B�PA�1 + F2A
�1)]�Px;Az)X (3.5.5)

= well � de�ned for x 2 D(A); z 2 X: (3.5.6)

Now, we restrict z to z 2 D(A), so that Az �lls all of X as z runs over D(A).

Then (3.5.6) says that the left term in the inner product in (3.5.5) is in X , i.e.

that

D([I +BF�13 (B�PA�1 + F2A
�1)]�P ) � D(A): (3.5.7)

But, since P is bounded self-adjoint and F2 is bounded, we have that

D([I +BF�13 (B�PA�1 + F2A
�1)]�P )

= D([I +A��1PBF ��13 B� +A��1F �2 F
��1
3 B�]P )

= fx 2 X : Px 2 D([I +A��1PBF ��13 B� +A��1F �2 F
��1
3 B�])g

= fx 2 X : Px 2 D(A��1PBF ��13 B�)g

= D(A��1PBF ��13 B�P ): (3.5.8)

Combining (3.5.8) with (3.5.7) we obtain

D(A��1PBF ��13 B�P ) � D(A): (3.5.9)

Finally, with x; z 2 D(A) we obtain, as desired

ckAxkX kAzkX

� j(A��1PBF ��13 B�Px;Az)X j(well � de�ned by (3:5:9))

� c2j(B
�Px;B�Pz)U j; c2 (constant) (3.5.10)
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and the �rst case of (3.5.1) as well as (3.5.2) follow. The result in (3.5.1) and

(3.5.3) for x; z 2 D(AF ) is contained in (3.4.13) of Lemma 3.4.3. 2

We �nally obtain the ultimate goal of our analysis in this section.

Theorem 3.5.1 Assume (H.1) { (H.4). Then,

1. The operator P de�ned in (3.1.6) satis�es the Algebraic Riccati Equation,

in (1.2.5) i.e.

(Ax; Py)+(Px;Ay)�([(PB+F �2 )F
�1
3 (B�P +F2)�F1]x; y) = 0 (3.5.11)

for all x; z 2 D(A); or else for all x; z 2 D(AF ).

2. Moreover, such P is the unique solution of (3.5.11) within the class of self-

adjoint operators P 2 L(X) such that B�P 2 L(AF ;X) \L(D(A);X).

Proof:

(i) We combine Lemma 3.4.3 and Lemma 3.5.1.

(ii) Uniqueness of the ARE:

Let P1 and P2 be two solutions to the algebraic Riccati equation such that

the semigroups generated by Fi = AK�BB
�Pi = A�BF�13 (B�Pi+F2); i = 1; 2

are exponentially stable on X :

(Ax; Py) + (Px;Ay) �(F �2 F
�1
3 F2x; y) + (F1x; y)� (F�13 B�Px;B�Py)

�(F�13 B�Px; F2y)� (F�13 F2x;B
�Py) (3.5.12)

= 0: (3.5.13)

Let Q = P1 � P2. Then, we have

0 = (QAKx; y) + (Qx;AKy)

�(F�13 B�P1x;B
�P1y)� (F�13 B�P2x;B

�P2y)

= (QAKx; y) + (Qx;AKy)� (BB�P1x;Qy) + (BB�P2x; P2y)

�(BB�P1x; P2y) + (BB�P1x; P2y)

= (QAKx; y) + (Qx;AKy)� (BB�P1x;Qy) + (BB�P2x; P2y)

+(P1x;BB
�P2y)

= (QAKx; y) + (Qx;AKy)� (BB�P1x;Qy)� (Qx;BB�P2y)

= (Q(AK �BB�P1)x; y)� (Qx; (AK �BB�P2)y)

= (QAF1x; y)� (Qx;AF2y)

17
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where AF1 and AF2 are the exponentially stable semigroups generated by Fi; i =

1; 2. But this is just a Lyapunov equation so P1 � P2 = 0: 2

This completes the proof of Theorem 3.1. 2

3.6 Proof of Theorem 1.2.1

(i) follows from Lemma 2.4;

(ii)(a) follows from Lemma 2.5;

(ii)(b) { (c) follow from Eqs. (1.1.1), (3.2.3), Proposition 3.2.1, and

Lemma 3.2.1;

To prove condition (iii), we use the following Lemma.

Lemma 3.6.1 If � < 0, then infM�
J(x; u) = �1.

Proof: Let � < 0. Then, the functional F (x; u) is not bounded below on the

set M� for some � 2 X . Thus, there exists a triple f!; ~a; ~ug in R�D(A) � U

such that i!~a = A~+B~u and F (~a; ~u) < 0. Proceeding as in the proof of Lemma

2.3 we then obtain that

inf J(x; u) = �1 2 (3.6.1)

This completes the proof of Theorem 1.2.1. 2

4 Proof of the Frequency Theorem for the Non-

singular Case

(i); (iv) { (vii) follow from Theorem 3.1.

(ii); (iii):

By using the ARE for x = y 2 D(A), it is a simple exercise to show that

2Re(Ax+Bu; Px)X + F (x; u) = kF
1=2
3 (u+ F�13 (B�P + F2)x)k

2
U ; (4.1)

(x; u) 2 D(A) � U , where all terms are well-de�ned by the regularity of B�P .

Thus,

2Re(Ax+Bu; Px)X + F (x; u) � 0 (x; u) 2 D(A)� U: (4.2)

Now, consider the Hermitian form F1(x; u) = F (x; u) � �(kxk2X + kuk2U), 0 <

� < �2. Then, Theorem 1.2.1 still applies to the form F1(x; u), and so the

representation

2Re(Ax+Bu; P1x)X + F1(x; u) � 0 (x; u) 2 D(A)� U (4.3)

18
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for some P1 2 L(X) holds true, and all the properties of Theorem 1.2.1 hold

true for this P1. But, this is equivalent to (4.1) and condition (iii) is proved. 2

This completes the proof of Theorem 1.2.2. 2

5 Proof of the Frequency Theorem for the Sin-

gular Case

In the remainder of this paper, we shall study the frequency theorem for the

singular problem, i.e., when the cost functional J is only nonnegative on the

state space X . We �rst prove the following result:

Lemma 5.1 Let P 2 L(X) be a self-adjoint solution of the LOI (1.2.16) for

(x; u) 2 X � U . Then, for each � 2 X and (x; u) 2M�,

J0(x; u) � (P�; �) = V (�): (5.1)

Moreover, J0 is bounded below in each M� for each �.

Proof: We choose an arbitrary constant T > 0 and a sequence

un(t) 2 L2([0; T ];U) \ C
1([0; T ];U) such that un(t) �! u(t) in L2(0;1;U).

Since (Ax + Bu; Px) is well-de�ned for (x; u) 2 X � U , then the following

computations are justi�ed:

d

dt
(Px(t); x(t))X = 2Re(Ax(t) +Bun(t); Px(t))X ; 8t 2 [0; T ] (5.2)

recalling (1.1.1). Since P satis�es the LOI (1.2.16) integrating (5.2) from 0 to

T yields

(Px(T ); x(T ))X +

Z T

0

F (x(t); un(t))dt � (P�; �)X : (5.3)

Letting n �!1 we obtain

(Px(T ); x(T ))X +

Z T

0

F (x(t); u(t))dt � (P�; �)X : (5.4)

Since x(� ) 2 L2(0;1;X), then there exists a sequence of positive reals fTpg

such that x(Tp) �! 0 as Tp �! 1. Then, (5.1) follows by letting Tp �!1 in

(5.4). 2

5.1 De�nition of the operator Pn and its properties

We �rst introduce the cost functional

Jn(x; u) =

Z 1

0

Fn(x(�); u(�))d� (5.1.1)

19



C. MCMILLAN

where

Fn = (F1x; x)X + 2Re(F2x; u)U + (F3;nu; u)U + �nkukU (5.1.2)

F3;n = F3 + �nI (5.1.3)

and f�ng is a decreasing sequence of positive reals converging to 0 as n �!1.

Proposition 5.1.1 The map � �! (x0n(� ;�);u0n(� ;�)) from

X �! L2(0;1;X) � L2(0;1;U) is linear and continuous. Thus, the optimal

cost

inf
(x;u)2M�

Jn(x; u) = J0n(�) = V 0
n (�) = (Pn�; �)X � 2 X (5.1.4)

is a continuous Hermitian form on X.

Proof: We use the fact that the quadratic form F (x; u) � 0 since the number

� � 0 (by assumption) Hence, the form Fn(x; u) is coercive, i.e., Fn(x; u) �

�nkukU . Thus, Theorem 3.1 applies. Hence, if we denote the optimal solution

to the problem

inf
(x;u)2M�

Jn(x; u) = inf
(x;u)2M�

Z 1

0

Fn(x(�); u(�))d� (5.1.5)

by fx0n(t;�);u
0
n(t;�)g, then we have that, for each n � 0, there exists a self-

adjoint operator, Pn 2 L(X); Pn � 0 such that

inf
(x;u)2M�

Jn(x; u) = J0n(�) = V 0
n (�) = (Pn�; �)X � 2 X2 (5.1.6)

Proposition 5.1.2 Assume (H.1) { (H.4). Moreover, assume that the number

� de�ned in Eq. (1.2.2) is nonnegative. Then, the operator Pn, guaranteed by

Proposition 5.1.1 satis�es the following, for each n �xed:

1. B�Pn 2 L(D(A);U):

2. The operator Pn is the satis�es the following (nonstandard) algebraic Ric-

cati equation

(Ax; Pny) + (Pnx;Ay)� ([(PnB + F �2 )F
�1
3;n(B

�Pn + F2)� F1]x; y) = 0;

(5.1.7)

8x; y 2 D(A). Equivalently,

2Re(Ax+Bu; Pnx)+Fn(x; u) = kF
1=2
3;n [u�F

�1
3;n(B

�Pn+F2)x]kU ; (5.1.8)

8(x; u) 2 D(A)� U (see Eq. (4.2)).

3. Pn is the unique solution to Eq. (5.1.7) within the class of operators

fQ : Q 2 L(X)g.
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Proof: Since the form Fn(x; u) is coercive, Theorem 3.1 applies. Proposition

5.1.1 guarantees that there exists a bounded self-adjoint operator Pn � 0. As

in the proof of Lemma 3.5.1, we can show that B�Pn 2 L(D(A);U). Using the

regularity of B�Pn and Theorem 3.1, we obtain, for each n �xed,

(Ax; Pny) + (Pnx;Ay)� ([(PnB + F �2 )F
�1
3;n(B

�Pn + F2)� F1]x; y) = 0; (5.1.9)

8x; y 2 D(A). Equivalently,

2Re(Ax+Bu; Pnx) + Fn(x; u) = kF
1=2
3;n [u� F�13;n(B

�Pn + F2)x]kU ; (5.1.10)

8(x; u) 2 D(A)� U (see Eq. (4.2)). 2

5.2 Convergence of the sequence fPng to P

Theorem 5.2.1 Assume hypotheses (H.1) { (H.4). Then, the sequence of op-

erators fPng (de�ned in Eq. (5.1.4)) converges to an operator P 2 L(X) as

n �! 1. Hence, P satis�es the linear operator inequality (1.2.16) in a weak

sense.

Proof: By Theorem 3.1 there exists a self-adjoint operator Pn 2 L(X) such

that

inf
fx(� ;�);u(� ;�)g2M�

Jn(x(� ;�); u(� ;�)) = (Pn�;�)X ; � 2 X (5.2.1)

with Jn given by Eq. (5.1.1) Moreover, Pn satis�es

2Re(Ax+Bu; Pnx)X + Fn(x; u) = kF
1=2
3 (u� hnx)k

2
U 8(x; u) 2 D(A)� U

(5.2.2)

with

hn = �BF
�1
3;n(B

�P + F2) (5.2.3)

(see Eq. (5.1.8)). Thus,

2Re(Ax+Bu; Pnx)X + Fn(x; u) � 0 8(x; u) 2 D(A)� U: (5.2.4)

Now, we note that since Fn+1 � Fn for all n, the sequence fPng is decreasing in

the norm of L(X). Moreover, fPng is uniformly bounded in the norm of L(X):

�k�k2X � inf
u
J(�) � (Pn�; �)X � (P0�; �)X ; � 2 X: (5.2.5)

Thus, by the Principle of Uniform Boundedness, there exists an operator P0
such that Pn �! P0 strongly to P0 in L(X). Thus, P0 satis�es the LOI (5.2.4)

in a weak sense as each of the Pn satisfy the LOI. 2
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Remark 5.2.1We are not authorized to pass through the limit on the sequence

fPng in the LOI as the regularity of the limit operator P0 is unclear, in partic-

ular, we do not know if B�P0 is well-de�ned on a dense set.

Proof of Theorem 1.2.3

(i) follows from Theorem 5.2.1;

(ii) follows from Lemma 5.1. 2

6 Applications of the Theory

6.1 Damped Euler-Bernoulli plate equation with Dirichlet

control

Let 
 be a smooth bounded domain in R
n
, n � 3. We consider the following

equation

ztt +�2z + c2zt = 0 in (0; T ]�
 = Q (6.1.1a)

z(0; � ) = z0; zt(0; � ) = z1 in 
 (6.1.1b)

zj� � 0 in (0; T ]� � � � (6.1.1c)

�zj� � u in � (6.1.1d)

c 6= 0, with boundary control u 2 L2(�). Consistently with optimal regularity

results [28], [16], the cost functional which we wish to consider is

J(u; z) =

Z 1

0

fkz(t)k2H1

0
(
) + kzt(t)k

2
H�1(
)gdt (6.1.2)

with initial data fz0; z1g 2 H
1
0 (
)�H�1(
).

Abstract setting

Let x = [z; zt], X = H1
0 (
)�H�1(
); U = L2(�). Then, to put (7.1.1) {

(7.1.2) into the abstract model (1.1.1), (1.1.3), we introduce the operators

Ah � �2h; D(A) = fh 2 H4(
); hj� = �hj� = 0g (6.1.3)

A =

�
0 I

�A �c2I

�
; Bu =

�
0

AGu

�
; F1 = I; F2 = F3 = 0 (6.1.4)

where G is the Green maps de�ned by

h = Gv () f�2h = 0; hj� = 0; �hj� = vg (6.1.5a)

G : continuous L2(�) �! H5=2(
): (6.1.5b)
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The operatorA de�ned in (7.1.4) is uniformly stable onD(A1=4)�[D(A1=4)]0 and

hence on X by the equivalence of the two norms. By [13], (�A)�1B 2 L(U ;X).

We can show that [15],

B�eA
�t

�
z1
z2

�
=
@��(t)

@�
j�0

z 2 X (6.1.6a)

where �(t) = �(t;�0; �1) solves the corresponding homogeneous problem for

[�1; �2] 2 X

�tt +�2�+ c2�t = 0 in (0; T ]�
 = Q (6.1.7a)

�(0; � ) = �0; �t(0; � ) = �1 in 
 (6.1.7b)

�j� � 0 in (0; T ]� � � � (6.1.7c)

��j� � 0 in (0; T ]� � � � (6.1.7d)

with

�0 � �A
�1=2�2 2 D(A

3=4) =M ; �1 � �1 2 D(A
1=4) = H1

0 (
) (6.1.8)

Hence, an equivalent formulation of assumption (H.2) is the inequalityZ
�
j
@��

@�
j
2d� � CT k[�0; �1]k

2
M�H1

0
(
) (6.1.9)

which is an independent regularity result which indeed holds true for general

smooth 
 [15]. Thus, assumptions (H.1) { (H.4) are satis�ed [13].

We now verify that the number � � 0. To do this, we consider the case when

the initial condition � = 0. Then,

J(x; u) = kLuk2
L2(0;1;U)

� 0: (6.1.10)

Thus, the number � � 0. Hence, we have shown that Theorem 1.2.3 applies to

problem (7.1.1) { (7.1.2).

6.2 Damped Kircho� plate with boundary control in the

bending moment

Let 
 be a smooth bounded domain in Rn; n � 3. We consider the Kircho�

plate equation

ztt +�2z � ��ztt + c2zt = 0 in (0; T ]� 
 = Q (6.2.1a)

z(0; � ) = z0; zt(0; � ) = z1 in 
 (6.2.1b)

zj� � 0; �zj� � u in (0; T ]� � � � (6.2.1c)
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c 6= 0, � > 0, with boundary control u 2 L2(�), and initial data fz0; z1g 2

H2(
) �H1
0 (
). Consistently with optimal regularity theory [29], we take the

following cost functional

J(u; z) �

Z 1

0

fkz(t)k2H2(
) + kzt(t)k
2
H1

0
(
)gdt: (6.2.2)

Abstract setting

To put problem (7.2.1) { (7.2.2) into the abstract model (1.1.1), (1.1.3), we

introduce the positive self-adjoint operators

A = �2h; D(A) = fh 2 H4(
) : hj� = �hj� = 0g (6.2.3)

A
1=2 = ��h; D(A1=2) = H2(
)�H1

0 (
) (6.2.4)

and de�ne the operators

A �

�
0 I

�A �c2I

�
; Bu �

�
0

AGu

�
; (6.2.5a)

A = (I + �A1=2)�1A; (6.2.5b)

G is the Green map de�ned in (7.1.5) and G = �A�1=2D0, with D0 de�ned by

h = Dg () (� + c2)h = 0 in 
; hj� = g: (6.2.6)

By elliptic theory [8] and [27]

D : continuous L2(�) �! H1=2(
) � H1=2�2�(
) � D(A
1=4��
D ); 8� > 0

(6.2.7)

where the operator AD is de�ned by

ADh = ��h; D(AD) � H2(
) \H1
0 (
): (6.2.8)

F1 = I; F2 = F3 = 0: (6.2.9)

Let x = [z; zt] and de�ne the spaces

X = [H2(
) \H1
0 (
)]�H1

0 (
) = D(A1=2)�D(A1=4); U = L2(�): (6.2.10)

We can show [13] that for [�1; �2] 2 X ,

B�eA
�t

�
�1
�2

�
=
@��(t)

@�
j�; z 2 X (6.2.11)

where �(t) = �(t;�0; �1) solves the corresponding homogeneous problem

�tt � ���tt +�2�+ c2�t = 0 in (0; T ]�
 = Q (6.2.12a)

�(0; � ) = �0; �t(0; � ) = �1 in 
 (6.2.12b)

�j� � 0 in (0; T ]� � � � (6.2.12c)

��j� � 0 in (0; T ]� � � � (6.2.12d)
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with

�0 � (I + �A1=2)�1�2 2 D(A
3=4); �1 � (I + �A1=2)�1A1=2�1 2 D(A

1=2)

(6.2.13)

Thus, assumption (H.3) can be rewritten by the inequalityZ
�
j
@��

@�
j
2d� � CT k[�0; �1]k

2

D(A
3=4

)�D(A
1=2

)
(6.2.14)

which indeed holds true [13]. By [13], hypotheses (H.1) { (H.4) also hold true.

We now verify that the number � � 0. To do this, we consider the case when

the initial condition � = 0. Then,

J(x; u) = kLuk2
L2(0;1;U)

(6.2.15)

� 0: (6.2.16)

Thus, the number � � 0. Hence, we have shown that Theorem 1.2.3 applies to

problem (7.2.1) { (7.2.2).
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