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Abstract

A new concept of partially de�ned system on a singular set is in-

troduced. The setting is based on sheaf theory, and on a concept of

locally integrable vector �eld on a di�erentiable space, introduced by

K. Spallek. Short introductions to both areas are provided. The re-

sults consist of accessibility and observability criteria. They extend

classical theorems as well as local observability criterion given re-

cently by Bartosiewicz. Also an overview of integrability conditions

for Lie-algebra sheaves is presented.
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1 Introduction

In classical theory of nonlinear control systems (see [19, 18, 23]) one studies
a di�erential equation of the form:

_x(t) = f(x(t); u(t));

where x(t) belongs to a di�erential manifold M (called the state space)
and u is a control function with values u(t) in a set U � IRm. For every
�xed value ! 2 U , f(�; !) is a vector �eld on M . A control is a function
u : [0; T ] ! U , usually piecewise constant or piecewise analytic. Then for
each x0 2 M there is a trajectory of this equation, corresponding to the
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Z. BARTOSIEWICZ AND K. SPALLEK

control u and the initial condition x0. Many papers showed that a manifold
is a much better state space for nonlinear control systems than just IRn.
However it is not the best one.

In physical and technical sciences one often has to impose upon x(t)
constraints of the form (see e.g., [1])

g1(x(t)) = 0; : : : ; gk(x(t)) = 0;

where gi are analytic or smooth functions. Usually it is assumed that
the gradients of the functions g1; : : : ; gk are linearly independent at each
point, so the resulting state space is again a manifold. If this assumption is
dropped then our restricted state space is no longer a manifold. Instead, it
is an analytic (or a di�erentiable) space. Our aim is to extend the concept
of control system to a system on such a subset, that is to a system with
state-space constraints. Though our approach would allow for state spaces
which are virtually arbitrary subsets of IRn, one would rather keep in mind
the following example.

Example 1.1 Let M = IR2 and consider the control system

_x1 = 2x2u1

_x2 = 3x2
1
u1

_x3 = u2:

When we impose the constraint

x3
1
� x2

2
= 0;

we can see that the vector �elds associated with the system are tangent
to the subset de�ned by the constraint. This set is an algebraic (and ana-
lytic) variety, and in particular a di�erentiable space, but not a di�erential
manifold, since 0 is a singular point. Thus all the considerations can be
restricted to this space. Systems on algebraic varieties of this type arise
naturally when one studies realizations of polynomial systems [2]. 2

Since not all the components of the state x(t) might be available to the
operator of the system, one usually introduces the observation y(t) 2 IRr

related to the state by an equation of the form

y(t) = h(x(t));

where h is called an output or observation map. Each component hi of h
represents some measuring device.

In this paper we allow for in�nitely many such devices which leads rather
to a family of real functions than just a map h. Moreover we want the
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observation functions as well as the vector �elds constituting the dynamics
to be de�ned on open subsets of the state space. This corresponds to the
fact that a measuring device might have a bounded range of operation or
that only part of the dynamics can be used at a particular point. The
language of the sheaf theory, which lies at the background of di�erentiable
spaces, is especially useful here. Many of the problems we study here are
of a local nature. They are best expressed with the aid of germs of vector
�elds, functions and sets. The language of sheaves allows us to connect
those local investigations with the global picture.

A similar attempt was made earlier in [6], where the language of universe
spaces was used to deal with partially de�ned systems. Di�erentiable spaces
are more concrete objects than universe spaces, so our approach is a more
down-to-earth one. We also emphasize a local nature of our de�nitions and
results. In particular we do not name our vector �elds and observation
functions, so there is no natural correspondence between vector �elds and
observation functions at di�erent points of the state space.

Our main concerns are the classical problems of controllability and ob-
servability. We examine the rank condition for accessibility on di�erentiable
spaces, integrability of distributions and decomposition of the system. We
also prove the extension of the criterion of local observability obtained
recently in [3] to our new setting. The criterion is expressed with the lan-
guage of real radicals which makes it more algebraic than traditional ones.
On the other hand, it is far from a recent popular algebraic approach to
observability (see [11, 12, 13, 14]). The algebraic approach, based on dif-
ferential algebra, excludes the concept of state space which is basic in our
theory.

2 A Soft Introduction to Sheaves

Although the sheaf theory is not absolutely necessary to express the ideas
of this paper, it forms a natural and beautiful language simplifying and
clarifying our concepts. We believe that sooner or later sheaves will �nd
their way to the vocabulary of contemporary control theorists, and now it
is the right moment to start. We are going to present here a few de�nitions
and examples, following a nice introduction in [15]. We assume that the
reader is familiar with germs of functions and sets ([16] is a good source).

A sheaf on a topological space X is a topological space S together
with a local homeomorphism � : S ! X called projection. Then the stalk

Sx := ��1(x) is a discrete subset of S for every x 2 X . Although in
di�erent sources one can �nd di�erent de�nitions of sheaves, the one given
here is the simplest one. To clarify the concept we need more de�nitions.

Let (S1; �1) and (S2; �2) be sheaves on X . A continuous map ' : S1 !
S2 is called a sheaf mapping if �2 � ' = �1 which means that ' respects
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the stalks. A subset S 0 of a sheaf S equipped with the relative topology is
called a subsheaf of S if (S 0; �jS0) is a sheaf on X .

Let Y be a subspace of X . A continuous map s : Y ! S is called a
section over Y if � � s = idY . Then the value of s at x 2 Y , denoted by sx,
belongs to Sx. The set of all sections over Y is denoted by �(Y;S) or S(Y ).
Observe that the family fs(U) :=

S
s2U

sx : U � X open ; s 2 S(U)g
forms a basis for the topology of S.

Let us associate to every open set U in X some set S(U). Suppose
that for a pair of open sets ; 6= V � U in X we have a restriction map

rU
V
: S(U)! S(V ) such that

rU
U
= id and rV

W
� rU

V
= rU

W
;

whenever W � V � U . Then S := (S(U); rU
V
) is called a presheaf over X .

The most important examples of presheaves (at least for us) are pre-
sheaves of functions and vector �elds. For example, one may assign S(U)
to be the set of all continuous (or smooth or analytic) functions on U .
Then the restriction map rU

V
is simply the restriction of the domain U of

functions in S(U) to a subset V � U .
Every sheaf S over X de�nes the canonical preasheaf

�(S) := (S(U); rU
V
);

where rU
V
(s) is the restriction of s to V . This is the presheaf of sections. On

the other hand, given a presheaf, one can construct a corresponding sheaf
by \localization." In fact, this is a common way of de�ning and introducing
sheaves (see [15]). In the case of the presheaf of real (continuous) functions
on a topological space, the sheaf obtained by \localization" consists of
germs of real continuous functions. More precisely, the stalk Sx consists of
germs of functions at point x. (We assume that the reader knows what a
germ is). Obviously, the projection � assigns to a germ at x the point x.
The concept of sheaf is convenient when we want to consider such germs
at di�erent points.

Sheaves and presheaves de�ned so far are set-valued. We would rather
need sheaves of rings, modules or algebras, as functions and vector �elds
often form such structures. Let us concentrate on the last case, where
algebras are over the �eld of reals. The sheaf S is a sheaf of algebras if for
every x 2 X the stalk Sx is an algebra and all operations in the algebra
are continuous. Again, as an example, one can take the sheaf of germs of
real (continuous) functions. The germs at point x form an algebra over IR:
one can add them, multiply them, and multiply them by reals.

If S is a sheaf of algebras then for every open U inX , S(U) has a natural
structure of an algebra. Thus the canonical presheaf �(S) is a presheaf of
algebras.
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Let X be a C1 or C! manifold and let DN denote the sheaf of all
germs of CN real functions on X (N = ! or N =1). The stalk DN

x
is an

algebra over IR of all CN germs at x. We can safely add two such germs,
multiply them, or multiply one of them by a real scalar. A section of DN

over U is a continuous map which assigns to every x 2 U a germ at x of
a CN function. Such a section can be identi�ed with a CN real function
on U (i.e., a partially de�ned function on X). This is due to the fact that
the algebra of germs at x is local (see [15]). Thus the canonical presheaf
�(DN ) consists of CN functions de�ned on open subsets of X .

Similarly we can construct the sheaf VN of germs of CN vector �elds
on a manifold X . Sections can be identi�ed with partially de�ned vector
�elds on X . Sections over U form a Lie algebra over IR with respect to the
Lie bracket. This algebraic structure is carried down to stalks of the sheaf,
so VN is a sheaf of Lie algebras.

The sheaves DN have di�erent properties for N = ! and for N =1. If
N =1 then the sheaf D1 is soft. This means that for every closed subset
A � X and for every section s over A, s can be extended to the entire
space X [15]. This property does not hold for D!. On the other hand, if
we can extend an analytic section over an open set (or an analytic germ at
a point x) to the entire space, this extension is unique.

3 Di�erentiable Spaces and Locally Integrable Vector

Fields

In this section we introduce locally integrable vector �elds on subsets of
IRn. Though we could do this on arbitrary subsets (arbitrary di�erentiable
spaces), we prefer to use a set of the form

C = fx 2 IRn : g1(x) = 0; : : : ; gk(x) = 0g: (1)

If the functions gi are analytic, C is an analytic set. In the C1 case, an

arbitrary closed subset of IRn may be given form (1). If the equalities in (1)
are substituted with inequalities, for gi's analytic, C is a semi-analytic set.
A point x of C is regular if the dimension of the space spanned by gradients
of functions gi is constant in some neighborhood of x. Otherwise x is
singular. If all points of C are regular, then C is a C1 or C! submanifold
of IRn.

Though it is usually assumed that the set C is regular, i.e., it is a
manifold, there are cases in which singular points appear naturally. Many
such examples can be found in robotics.

Example 3.1 (suggested by K. Tcho�n) Consider a two-arm robot, or sim-
ply a double pendulum, with arms of the same length equal 1. If �1 denotes
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the angle between the horizontal line and the �rst arm, and �2 is the an-
gle between the directions of the arms, then the end point of the robot
(pendulum), (x; y), is described by the equations

x = cos �1 + cos(�1 + �2); (2)

y = sin �1 + sin(�1 + �2): (3)

Suppose now that the end point is to stay on the circle x2 � x+ y2 = 0, to
perform some job. Though the circle is a perfect manifold, this restriction
leads to a complicated curve in �1 and �2 coordinates. They, together with
their derivatives, form the state of the robot; the state space is a cartesian
product of a torus and a plane. The restriction on x and y leads to the
following equation on the torus

cos
�2

2
(2 cos

�2

2
+ cos(�1 +

�2

2
)) = 0:

Since the left-hand side is a product of two analytic functions, the set C
of the solutions of the equation is a union of two analytic curves on the
torus. Although both curves are regular, the points where they intersect
are singular points of the entire set. There are two such points: (0; �)
and (�; �). Hence, the state space C of the restricted robot is not a mani-
fold. 2

A real function ' on C is of class CN if ' has a CN extension to an open
set in IRn, containing C. Such a set C together with the sheaf of germs of
functions of class CN on C will be called a (reduced) di�erentiable space

of class CN . Actually, the class of di�erentiable spaces is much larger, but
we do not want to introduce too much theory here.

Let us point out the main reasons for studying systems on di�erentiable
spaces.

1) Di�erentiable spaces form a much larger and more 
exible class than
di�erential manifolds, but this class is still su�ciently concrete and most
of the standard analysis can be done here.

2) If a group G acts on a di�erential manifold, then in reasonable cases
the quotient M=G exists in the category of di�erentiable spaces. The quo-
tient is a manifold i� G operates �xed-point free. The singular case, when
the resulting space is not a manifold, was discussed in [8, 24, 25]. When
the quotient space is a di�erentiable space, we can still push down onto
M=G many objects from M , like functions, vector �elds or a metric ([17]).

3) The language of sheaves, used in the theory of di�erentiable spaces,
allows for easy manipulation of partially de�ned functions and vector �elds.
Such objects appear for example in systems described by rational functions.
Partially de�ned systems arise also as realizations of input/output equa-
tions that can be factorized (see [5]). In real life problems, the output
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functions, which represent measuring devices, need not be de�ned on the
whole state space. Each device may have a limited and di�erent range of
operation. For example, di�erent instruments are used to measure low and
high voltages.

To avoid abstract or more complicated constructions we describe only
the case of reduced locally compact di�erentiable spaces in IRn, i.e., the
spaces whose underlying sets have the form (1). In the last section we give
some remarks on a more general case.

Similarly as functions we de�ne vector �elds of class CN on a set C.
Assume now that f is a CN vector �eld on IRn. Then through every

point of the set C there passes a local trajectory (integral curve) de�ned on
some interval (��; �). This trajectory does not have to stay in C. However
if it does, and this holds for local trajectories through every point of C,
we call such a vector �eld locally integrable on C [28] (� may be di�erent
for di�erent points). Later in this section we give some comments on this
property.

Let us recall the usual de�nition of the tangent space to C at a point p.
The tangent space TpC consists of all vectors v 2 IRn such that d'(p)(v) =
0 for every di�erentiable function ' that vanishes near p on C. A vector
�eld f on IRn is tangent to C at p 2 C, if f(p) 2 TpC.

Remark 3.2

1. If C has no singularities, i.e., C is a manifold, we are in a classical
situation. Every (tangent) vector �eld on C is then locally integrable.
Hence we are interested in the case when C does have singularities.

2. A locally integrable vector �eld on U � C is always tangent to C at
every point of U .

3. If C is an analytic set then every C! or C1 vector �eld tangent to C
is locally integrable [28].

4. In general, a vector �eld on C, tangent to C, need not be locally
integrable. Take for example C = fx 2 IR : x � 0g and the vector
�eld f � 1. Then f is tangent to C, but it does not have local
trajectories passing through x = 0, so it is not locally integrable on
C. On the other hand, the vector �eld f(x) = x (or f(x) = x @

@x
in a

derivation form) is locally integrable. 2

Once the vector �eld is locally integrable on C, we can work with it
in exactly the same way as one does on manifolds. Moreover, C may be
replaced by any subset of IRn, even highly singular. This is based on results
of K. Spallek [27] which we are going to describe now.
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The ordinary tangent space is too large for our purposes. De�ne T i

p
C

to be the set of all tangent vectors v 2 TpC for which there exist a neigh-
borhood U of p in C and a locally integrable vector �eld f on U , such that
f(p) = v. Observe that for a regular point p of C, TpC = T i

p
C.

Theorem 3.3 [28]

1. Assume that C is a locally compact subset of IRn, U � C is open (in

C), and f is a vector �eld on U . Then f is locally integrable i� for

every q 2 U , f(q) 2 T i

q
C.

2. The sheaf V i(C) of germs of locally integrable vector �elds on C is a

Lie algebra sheaf on C, i.e., V i is closed under addition, Lie brackets

and multiplication by germs of functions.

3. There exists a unique family F(C) = fMj : j 2 Jg of sets satisfying:

(a) every Mj is a connected, 1:1 immersed submanifold of C,

(b)
S
Mj = C,

(c) for all j 2 J and p 2 Mj , TpMj = T i

p
C (so T i

p
C is a vector

space).

4. For a point p 2 C, dp := dimT i

p
C is the largest number s such that

in a neighborhood of p, C is di�eomorphic to some ~C � IRs, where ~C
is a subset of some IRk. 2

Now we are going to give some comments and examples which should
clarify presented results and stress their importance. More details can be
found in original papers.

The family F(C), called the natural foliation of C, can often be explic-
itly found either by geometric arguments (just looking at the set) or by
calculations. For example, if C � IR2 is the graph of a function that is
nowhere smooth, the foliation of C consists of isolated points (C is called
then geometrically degenerated).

If C is a cone in IRn given by the equation

x2
1
+ : : :+ x2

n�1 = x2
n

with the restriction xn � 0, the foliation consists of the zero point and the
rest. This implies that trajectories of locally integrable vector �elds cannot
pass through 0 (in other words, they are constant).

Consider several sheets (halfplanes) attached to each other along the
line | their common boundary (a book). Then the foliation consists of
the line and open halfplanes. All vector �elds tangent to the book are
locally integrable ([28]). In particular, their trajectories passing through
points in the line must stay in the line.

8



SINGULAR STATE-SPACE CONSTRAINTS

The cone and the book are important instances of the general case
studied in [28]. They are integrable spaces, i.e., spaces on which all tangent
vector �elds are locally integrable. The Cone Lemma and the Book Lemma,
proved in [28], describe large classes of integrable spaces based on the given
examples.

To be integrable the book must have at least two sheets. If there is only
one sheet (i.e., a closed halfplane), not every tangent vector �eld is locally
integrable. The integrable ones are tangent to the boundary.

If G is a �nite linear group acting on IRn, then the foliation of the
quotient space IRn=G given in Theorem 3.3 may be constructed in the
following way. First take the connected components of the set of regular
points. Then proceed in the same way with the set of singular points (which
has its own regular points). We can show that this gives so-called Whitney
strati�cation ([33]). Moreover, locally integrable vector �elds on IRn=G are
the images under the quotient map of G-equivariant vector �elds on IRn

([17]).
Note that our foliation of the set C is in general singular. This means

that the dimension of the leaves may change. But we can prove the follow-
ing property: the boundary in C of any leaf is a union of some leaves of
the foliation.

4 Systems

Let X be a constrained set of the form (1), where the functions gi are of
the class CN and N is either 1 or !. X will be called the space (this
is in fact an example of a di�erentiable space). All the de�nitions we are
going to give are valid in both cases, but some of the results are true, or
are known to be true, only in the analytic case. Let DN denote the sheaf
of germs of CN real functions on X , and V i the sheaf of germs of locally
integrable vector �elds on X . Then the stalk V i

x
is a module over DN and

a Lie algebra with respect to the Lie bracket (Theorem 3.3). When ' is a
germ of a CN function at x 2 X , we often use the same symbol ' to denote
a representative of this germ, i.e., a CN function on a neighborhood of x.
On the other hand, if ' is a function de�ned on a neighborhood of x, 'x
means the germ of ' at x. The same applies to germs of vector �elds.

By a dynamics on X we mean a set-sheaf V on X such that for every
x 2 X , Vx is a non-empty subset of V

i

x
. This means that at each point x of

X we have a family of admissible integrable vector �elds, each vector �eld
de�ned on some open neighborhood of x. This family may be �nite, but is
never empty. If Vx is �nite, we say that V is �nite at x, and if it is �nite at
every x 2 X , we call V locally �nite. We call Vx the local dynamics at x.

Let V be a dynamics on X . We say that a vector �eld V de�ned on an
open set U belongs to V , if V 2 �(U;V), i.e., for every x 2 U , Vx 2 Vx. As
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representatives of germs from Vx we always take elements of �(U;V) where
U is some open neighborhood of x.

Let V be a dynamics onX . By a trajectory of V we mean any continuous
and piecewise CN map 
 : I ! X , where I is an interval, such that
_
(t) 2 V(
(t)) for all t 2 I for which the derivative _
(t) exists. Observe
that V(
(t)) is a subset of T i


(t)
X . We say that the trajectory 
 starts at

x0 2 X if I = [0; T ) or I = [0; T ], and 
(0) = x0.
We say that a trajectory 
 : [a; b] ! X is simple if a = t0 < : : : <

tk = b and 
j[ti;ti+1] is a trajectory of Vi+1 for some t1; : : : ; tk�1 and some
vector �elds V1; : : : ; Vk belonging to V . It is easy to see that all trajectories
are simple if the dynamics is locally �nite. In most cases only simple
trajectories will be taken into account.

An observation structure on X is a set-sheaf H on X such that for
every x 2 X , Hx is a non-empty subset of DN . This means that at each
point x in X we have a set of real functions, each de�ned on some open
neighborhood of x. Such a function represents a measuring device which
delivers information about the current position of a trajectory starting from
x. Usually such information is not complete, i.e., it does not allow us to
establish this position. If Hx is a �nite set, we say that H is �nite at x.
We call H locally �nite if it is �nite at all x 2 X . The set Hx is called the
local observation structure at x. A representative of an element from Hx

is always understood as an element of �(U;H), where U is a neighborhood
of x.

A system on a space X is a pair � = (V ;H) where V is a dynamics and
H is an observation structure on X . We say that the system is of class CN

if X , V and H are of class CN , and we say that it is locally �nite (resp.
�nite at x) if both V and H are locally �nite (resp. �nite at x). If � is
a system on X and x 2 X , then �x = (Vx;Hx) is the local system at x

(associated with �).
Let x 2 X . We say that a dynamics V (resp. observation structure H)

is locally generated at x if there is an open neighborhood U of x such that
for every y 2 U , Vy = �(U;V)y (resp. Hy = �(U;H)y). Then U is called
a distinguished neighborhood of x (corresponding to V or H). A system
(V ;H) is locally generated at x if both V and H are locally generated at x.

A system � is called global if for every x 2 X , Vx = �(X;V)x and
Hx = �(X;H)x. Thus one can say that � is locally generated at x if
� is locally global at x, i.e., is global when restricted to a distinguished
neighborhood of this point. In particular, every global system is locally
generated.

10
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5 Reachability Properties

By a reachable set of the dynamics V at x0 2 X we mean the set of all
points 
(t) for all trajectories 
 of V that start at x0 and all t � 0 for which

 is de�ned. We denote this set by R(V ; x0), or simply R(x0) if V is �xed.

We say that V is accessible at x0 if R(x0) has the non-empty interior
in X . Let U be an open subset of X . By VjU we denote the dynamics V
restricted to the set U . We say that V is locally accessible at x0 if for every
neighborhood U of x0, the dynamics VjU is accessible at x0, and is locally
reachable at x0 if for every neighborhood U of x0, R(VjU ; x0) contains a
neighborhood of x0. Observe that the restriction to U means that the
trajectories of the dynamics cannot leave U .

In other words, V is locally accessible at x0 if for every neighborhood
U of x0, the germ of R(VjU ; x0) at x0 has the non-empty interior, and is
locally reachable if for every U this germ is full, i.e., it is the germ of a
neighborhood of x0. (The interior of a set-germ A at x is de�ned as the
germ at x of the interior of a representative of A.) Obviously, the latter
property implies the former one.

Let L(V) denote the sheaf of Lie algebras generated by the dynamics.
This means that the stalk L(V)x is a Lie algebra generated by the germs
of the vector �elds from Vx. If V is �xed, we skip it in the above notation.
Note that L(x), i.e., L evaluated at x, is a subspace of T i

x
X for every x 2 X .

The following theorem is an immediate generalization of results of
Krener [20], and Sussmann and Jurdjevic [32]. Observe however the as-
sumptions about regularity and local generatedness.

Theorem 5.1 If x0 is a regular point of X and L(x0) = Tx0X, then V is

locally accessible at x0.

If V is analytic and locally generated then also the converse is true. 2

If the point x0 is not regular then local accessibility at x0 cannot be
achieved, since locally trajectories are con�ned to a subset of X . Let U be
an open subset of X and let O(U; x0) denote the U -orbit at x0 of the family
V i of all locally integrable vector �elds on X restricted to U . It consists of
all those points x 2 U that can be joined with x0 by trajectories of V

i that
do not leave U . The U -orbit is a CN manifold (see e.g., [28]). X-orbit at
x0 is denoted by O(x0) and called just orbit. Obviously, for any dynamics
V on X , R(VjU ; x0) is a subset of O(U; x0).

We say that V is structurally accessible at x0 if R(x0) has non-empty
interior in O(x0), and it is structurally locally accessible at x0 if for every
neighborhood U of x0, the reachable set R(VjU ; x0) has nonempty interior
in O(U; x0). Similarly, V is structurally locally reachable at x0 if for every
open neighborhood of x0, R(VjU ; x0) contains an open neighborhood U of
x0 in O(U; x0).
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Theorem 5.2 If L(x0) = T i

x0
X then V is structurally locally accessible at

x0.

If V is analytic and locally generated, then also the converse is true.

Proof: After reducing to the orbit we are in the classical setting of [20]
and [31]. The only di�erence is that the vector �elds now are not globally
de�ned. But if we assume that L(x0) = T i

x0
X then we have enough vector

�elds at x0 to construct a set with non-empty interior in O(U; x0). On the
other hand, proving the converse, we assume local generatedness, which
makes the dynamics locally global. 2

Example 5.3 LetX be IR2 and let Vx = f@1; @2g for x1 > 0 and Vx = f@1g
for x1 � 0, where @i = @=@xi and x = (x1; x2). Take x0 = 0. Then V is
locally accessible at 0, but L(0) = spanf@1g 6= T0X . Observe that V is not
locally generated at 0. 2

6 Integrability of Distributions

When the system is not accessible we want to restrict it to a space (man-
ifold) on which it has this property. In other words, we are interested in
restricting our system to the integral manifold of L passing through a dis-
tinguished (initial) point. However such manifolds not always exist. They
do if L is integrable. Integrability means that for every x0 2 X there is a
manifold N immersed in X such that for every y 2 N , TyN = L(y). The
de�nition is the same as for globally de�ned vector �elds, but, as we shall
see, there are some di�erences in their characterizations.

One might ask why we restrict the system to the integral manifold,
which is a regular object, and not to the reachable set | a wilder space,
just right for our approach. One reason is tradition; we do not want to
change everything. Second, we would get something of little interest: every
system may be restricted to its reachable set (from a point) on which it is
reachable. One might like this, but the real progress could be made rather
in analysis of the reachable set. And the third reason is complications: the
reachable set need not be locally compact. The theory of locally integrable
vector �elds on such spaces is not yet fully developed. Reachability (global
or local) corresponds to forward trajectories, de�ned for positive times.
This leads to a concept of local half-integrability, the future topic of our
research (see the last section). Finally, the integral manifolds are disjoined
(or equal). This is not true for reachable sets corresponding to di�erent
points.

When L is integrable, the state space X may be decomposed into dis-
joint integral manifolds such that the dimension of L(x) is equal to the
dimension of the manifold passing through x. This means that the system

12
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restricted to such a manifold is locally accessible at each point. This leads
to a natural decomposition of the system on a singular space X into a
family of locally accessible systems on manifolds. Thus, the integrability
of L is crucial in this decomposition.

Below we summarize the results on integrability. We do this only for
the reason of completeness of our paper, so we do not intend to give here
all the details, examples and comments that one would like to see. Those
can be found in [7], where the global case was discussed, and in original
papers, especially in [29], where many examples and counter examples were
presented. We state the results for the sheaf of Lie algebras L de�ned by
a dynamics V .

Let us �rst recall �nite generatedness conditions that appeared in the
literature. Some of them have been de�ned only for global vector �elds, so
we extend them to partially de�ned ones, using the language of sheaves.

The sheaf L is locally �nitely generated at x 2 X if there is an open
neighborhood U of x and vector �elds V1; : : : ; Vk 2 �(U;L) such that for
every y 2 U , Ly is contained in the module over DN

y
generated by the

germs of V1; � � � ; Vk. This condition may be expressed in a more global
form. Namely L is locally �nitely generated at x i� there is a neighborhood
U of x and vector �elds V1; : : : ; Vk 2 �(U;L) such that �(U;L) is contained
in a module over �(U;DN ) generated by V1; : : : ; Vk [19]. We say that L
is locally �nitely generated if it is locally �nitely generated at x for every
x 2 X .

The sheaf L is locally of �nite type if for every x 2 X there exist germs
of vector �elds (V1)x; : : : ; (Vk)x 2 Lx such that spanfV1; : : : ; Vkg(x) = L(x)
and for every Vx 2 Lx there is a neighborhood U of x and functions
'ij ; i; j = 1; : : : ; k; in �(U;DN ) such that

[V; Vi](y) = 'i1(y)V1(y) + � � �+ 'ik(y)Vk(y)

for all y 2 U and i = 1; : : : ; k [21].
The sheaf L is locally softly of �nite type if for every x 2 X there exist

(V1)x; : : : ; (Vk)x 2 Lx such that spanfV1; : : : ; Vkg(x) = L(x) and for every
Vx 2 Lx there is � > 0 and C1 functions �ij de�ned on (��; �) such that

[V; Vi](

V

t
(x)) = �i1(t)V1(


V

t
(x)) + � � �+ �ik(t)Vk(


V

t
(x))

for t 2 (��; �) and i = 1; : : : ; k [31] (the name of the property is given by
us).

The sheaf L is pointwise �nitely generated if for every x 2 X the module
over DN

x
generated by Lx is �nitely generated. L is locally weakly �nitely

generated if for every x 2 X there exist a neighborhood U of x and vector
�elds V1; : : : ; Vk 2 �(U;L) such that spanfV1; : : : ; Vkg(y) = L(y) for all
y 2 U [29].

13
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The sheaf L is topologically closed if L = L, where the bar denotes
the closure in the Whitney topology (this topology is de�ned by uniform
convergence of all partial derivatives on compact sets; a vector �eld is
identi�ed with an n-tuple of real functions).

Assume that the system is smooth and consider the following conditions
for the sheaf L:
a) L is pointwise �nitely generated and topologically closed;
b) L is locally �nitely generated;
c) L is pointwise �nitely generated and locally weakly �nitely generated;
d) L is integrable;
e) L is invariant under L;
f) L is locally softly of �nite type;
g) L is locally of �nite type;
h) L is pointwise �nitely generated.
Then the following implications hold:

Theorem 6.1 a) )b) )c) )d) , e) )f ) and

c) )h) )g) )f ).

Proof: The �rst three implications are proved in [29]. The equivalence of
d) and e) is shown in [30, 31]. The implication e) )f) is proved in [31],
h) )g) shown in [29] and g) )f) shown in [31]. Some proofs should be
translated into the language of sheaves. 2

In general, none of the conditions f),g),h) implies d). If the dynamics
are analytic, a sheaf version of the Nagano theorem (see [22]) holds [29].

Theorem 6.2 If L is analytic and locally generated then it is inte-

grable. 2

Local generatedness is essential as the following example shows.

Example 6.3 Let X = IR and de�ne V by Vx = f(0 d

dx
)xg for x � 0 and

Vx = f(0 d

dx
)x; (

d

dx
)xg for x > 0. Then neither V nor L = spanV is locally

generated at 0. Observe that L is not integrable. 2

7 Local Observability

Let x0 2 X and V be a dynamics on X . Consider now a �nite number
of germs of vector �elds V1; : : : ; Vk 2 Vx0 and choose their representatives
belonging to V (calling them V1; : : : ; Vk). Let 
i(t; x) denote the trajectory
of Vi starting at x at time t. For small nonnegative t1; : : : ; tk we can de�ne
the following map:


(t1; : : : ; tk) = 
k(tk; 
k�1(tk�1; : : : ; 
1(t1; x0) : : :)):

14
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The map 
 is de�ned on an intersection of the positive orthant in IRk and
an open neighborhood of 0. We call 
 a k-trajectory of V starting at x0.

Let � = (V ;H) be a system on X . By the k-behavior of � at x0
we mean the set Bk(�; x0) of germs at 0 of all maps h � 
 where h is a
representative of a germ from Hx0

and 
 is a k-trajectory of V starting at
x0. The sequence (Bk(�; x0))k2IN is called the local behavior of � at x0
and denoted by B(�; x0). We skip � in the above notation if it is �xed.

Let x1 and x2 belong to X and � be a system on X . We say that x1 and
x2 are locally indistinguishable if B(x1) = B(x2), i.e., Bk(x1) = Bk(x2) for
k 2 IN. If this is not the case we say that they are locally distinguishable.

The concept of local indistinguishability de�ned above di�ers from the
classical indistinguishability in two aspects. First, we are satis�ed with
germs of the maps h � 
, which means that in order to check equality
of behaviors, it is enough to check equality of such maps only for small
t1; : : : ; tk. Another feature of our de�nition is that we do not name or
numerate elements in Vx and Hx. This means that we do not have any
correspondence between observation functions used at x1 and observation
functions used at x2. This also concerns the vector �elds of local dynamics
at x1 and x2. Classically, when all vector �elds and observation functions
are globally de�ned on X , we still know locally which germ in Hx or in Vx
corresponds to which global function or vector �eld. Thus we have then
a natural correspondence between elements of Vx and Vy, and similarly,
between elements of Hx and Hy. If the global system is analytic, then
those correspondences are bijective. Obviously, if the system is global and
x1; x2 are classically indistinguishable in arbitrarily short time, then they
are locally indistinguishable in our sense. The converse is not true.

Example 7.1 Let X = IR, Vx = fV1x; V2xg, V1 = � d

dx
, V2 = d

dx
and

Hx = fx2g at each x 2 X . Then (V ;H) is a global system on X . Take
x1 = �1 and x2 = 1. Let 
i

j
denote the trajectory of Vj starting at xi.

Then 
i
j
(t) = (�1)i + (�1)jt for all t > 0. Denote the only observation

function by h. Then h � 
1
1
6= h � 
2

1
and that is enough for classical

distinguishability of x1 and x2. On the other hand, h � 
i
j
= h � 
j

i
for

i; j = 1; 2, so B1(x1) = B1(x2). Similarly one shows that Bk(x1) = Bk(x2)
for all k 2 IN, which means that x1 and x2 are locally indistinguishable. 2

Example 7.2 Let X = IR, Vx = fx d

dx
g and Hx = f�x; xg. Obviously,

any two points x1; x2 2 X are classically distinguishable. But for x1 = �1
and x2 = 1,

B1(x1) = f�
t;��tg = f��t; �tg = B1(x2);

so x1; x2 are locally indistinguishable, since the local behaviors consist only
of B1. 2
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In both examples above a simple symmetry was used to show that our
concept is weaker than the classical one. It is an interesting problem to
establish conditions under which the concepts coincide. They coincide at
least in the trivial case where the dynamic and the observation structures
are just one-element sets. The system is global in this case, and each local
behavior contains only one element.

We say that the system � is locally observable at x0 2 X if there is an
open neighborhood U of x0, such that for every x 2 U , x and x0 are locally
distinguishable.

In what follows we are going to give a criterion of local observability
which extends that of [3] (see also [4] for the smooth case). The reader
can �nd there examples and comments that show the importance of real
radicals used in the criterion.

Let S(�) denote a subsheaf of DN such that for each x 2 X , S(�)x is
the algebra over IR generated by the germs at x of the form

LVk : : : LV1h; (4)

where h 2 Hx, k � 0, Vi 2 Vx, and LV means the Lie derivative with
respect to (the germ of) the vector �eld V . It is clear that S(�), denoted
shortly by S, is the smallest algebra-subsheaf of DN that contains H and is
closed with respect to the Lie derivatives associated with the vector �elds
of V .

Now let Ix be the ideal in DN

x
generated by all those elements of Sx

which vanish at x. Obviously, Ix is contained in the maximal ideal mx

of DN

x
. Let IR

p
Ix denote the real radical of Ix in DN

x
(see [3, 9, 26]). By

de�nition, IR
p
Ix consists of all elements a 2 DN

x
for which there is m > 0,

k � 0 and elements b1; : : : ; bk 2 DN

x
, such that

a2m + b2
1
+ : : :+ b2

k
2 Ix:

The reader might want to check [3, 4] in order to learn more about com-
putation of real radicals.

Theorem 7.3 Assume that � is analytic (on an analytic set X), �nite and

locally generated at x0. Then, � is locally observable at x0 i�
IR
p
Ix0 = mx0

.

In order to prove the above theorem we shall �rst establish a few im-
portant lemmas.

Lemma 7.4 Assume that � is �nite and locally generated at x0 and let U

be a distinguished neighborhood of x0. Then the following conditions are

equivalent:

a) for every neighborhood W of x0 there is x 2W such that B(x) = B(x0);
b) for every neighborhood W of x0 contained in U there is x 2 W such that

16
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for every h 2 �(U;H), every k 2 IN, and every vector �elds V1; : : : ; Vk 2
�(U;V), the germs at 0 of h � 
x and h � 
x0 are equal, where 
x and 
x0

denote the k-trajectories corresponding to V1; : : : ; Vk and starting at x and

x0 respectively.

Proof b) ) a) is obvious since behaviors at x and x0 consist exactly of
the elements described in b).
a) ) b) Since we have �nite numbers of vector �elds in local dynamics on
U and �nite numbers of output functions, k-behaviors Bk(x) are �nite for
all x 2 U . Let for x 2 U

Bk(x) = fhi � 

x

j
gi=1;:::r;j=1;:::m(k)

where k-trajectories and output functions are numbered in some �xed way
independent of x. It may happen that some elements in Bk(x) encoded with
di�erent indices are equal. We assume a) and want to show that arbitrarily
close to x0 there is x such that hi � 
xj = hi � 


x0

j
for all i; j. Suppose that

for some i; j this equality does not hold. Since arbitrarily close to x0 there
is x such that B(x) = B(x0), and because the behaviors are �nite, there
is a sequence xn such that xn ! x0 when n ! 1, and for all n 2 IN,
hi � 


xn

j
= hm � 
x0s for some m and s. From the continuous dependence of

k-trajectories on the initial condition, we get hi � 

x0

j
= hm � 


x0
s
, so also

hi � 

xn

j
= hi � 


x0

j
. 2

The proof of Lemma 7.4 depends on the �niteness of �x0
. It is not clear

whether the lemma holds without this assumption. Local generatedness is
of course essential for the formulation of the lemma.

Lemma 7.5 Assume that � is global when restricted to an open set U and

x1; x2 2 U . Let 
x1 and 
x2 denote k-trajectories starting from x1 and x2,

respectively, and corresponding to the same sequence of vector �elds from

the dynamics. Then the following implication holds:

If (h � 
x1)x1 = (h � 
x2)x2 for every observation function h, every k-

trajectory and every k, then LVs : : : LV1h(x1) = LVs : : : LV1h(x2) for every

observation function h and all vector �elds V1; : : : ; Vs in the dynamics.

Moreover, if � is analytic then the converse is also true.

Proof: The proof is essentially the same as in [18] and [10]. 2

Let X be an analytic set (i.e., the functions that de�ne it are analytic).
For an ideal J � D!

x
(X), let Z(J) be (the germ at x of) the zero set of

J in X . Since J is �nitely generated, Z(J) is well de�ned (see [16]). Let
I(Z(J)) be the ideal in D!

x
(X) of all germs of analytic functions that vanish

on Z(J).

17
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Lemma 7.6 Assume that � is an analytic system de�ned on an analytic

set X. If � is locally generated at x0, then the following are equivalent:

a) Z(Ix0) 6= fx0g;
b) arbitrarily close to x0 there is x such that '(x0) = '(x) for every ' 2
Sx0 .

Proof: a) holds i� arbitrarily close to x0 there is x such that all represen-
tatives of germs ' 2 Ix0 (all de�ned in some neighborhood of x0) are 0 at
x i� all representatives of germs ' 2 Sx0 take on the same values at x0 and
this x i� b) holds. 2

Lemma 7.7 If X is an analytic set and J is an ideal in D!

x
(X) then

I(Z(J)) = IR
p
J .

Proof: This is a simple extension of the Risler result [26]. 2

Proof of Theorem 7.3:

Suppose that � is not locally observable at x0. This is equivalent to the
fact that arbitrarily close to x0 there is an x such that B(x) = B(x0). By
Lemmas 7.4, 7.5 and 7.6 this is equivalent to the fact that Z(Ix0) is di�erent
from fx0g. And this, by Lemma 7.7, is equivalent to I(Z(Ix0)) = mx0

. 2

Let us stress the importance of the proved result. Suppose that we
have a standard global system on a manifold M . Let us construct the
\localization" of this system at every point x 2 M by taking germs at
x of vector �elds that form the dynamics, and output functions. Thus
we get a system in our sense. The ideal Ix and its real radical are the
same for the original global system and its localization. Theorem 7.3 is
a \generalization" of an earlier result in [3], where the same condition on
the radical was proved to be equivalent to standard local observability.
This means that under the assumptions of Theorem 7.3 both concepts of
local observability coincide. This is quite surprising, for the de�nitions of
indistinguishability for both cases are di�erent and not equivalent.

8 Remarks on Future Work

There are two things we plan to work on. The �rst concerns spaces that
are not locally compact. Such spaces may appear as reachable sets.

Example 8.1 Let X be a subset of IR2 that consists of the line x2 = 0 and
the open half-plane x1 > 0. Observe that X is not locally compact. Let
V = (�1; 0) be a vector �eld on X . Although local trajectories through
each point ofX do exist, they do not de�ne a local 
ow in the neighborhood
of 0. We call this phenomenon weak local integrability of the vector �eld
V . (On locally compact spaces local integrability always implies existence
of the local 
ow.) 2
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The second thing is half local integrability. This property is related
to existence of local forward trajectories, i.e., de�ned for small positive
times. We have three di�erent propositions for such a concept and it is not
clear at the moment which one will appear the most fruitful. The forward
integrability is essential in control theory, where the direction of time is
one of the basic things to take into account. We do not know yet which
properties of locally integrable vector �elds can be transferred to local half
integrability.
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