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Optimality Conditions for Dirichlet Boundary

Control Problems of Parabolic Type�
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Abstract

This paper is devoted to the study of �nite horizon optimal con-

trol problems with Dirichlet boundary control. The main di�culty

to overcome is the discontinuity of the trajectories. We prove nec-

essary and su�cient conditions for optimality of trajectory{control

pairs. We formulate the necessary condition in terms of an Hamilto-

nian system for which we show an existence and uniqueness result.

This yields a su�cient condition for optimality.
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1 Introduction

In this paper we study the minimization of the functional

J(t0; x0; ) =

Z T

t0

L(s; x(s; t0; x0; ); (s))ds+ �(x(T ; t0; x0; )) ; (1.1)

overall trajectory{control pairs fx; g, which are mild solutions of the in�-
nite dimensional controlled system�

x0(t) +Ax(t) + F (x(t)) = A�B(t)
x(t0) = x0

: (1.2)

The control space U and the state spaceX are two real Hilbert spaces. Here
L and � are real{valued smooth function, A : D(A) � X ! X is a self{

adjoint accretive operator, A� is the �{fractional power of A,
3

4
< � < 1,

�Received August 16, 1994; received in �nal form November 21, 1996. Summary

appeared in Volume 8, Number 1, 1998.
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F. GOZZI AND M.E. TESSITORE

B is a bounded linear operator, F : X ! X is a Lipschitz continuous map
and  : [t0; T ] ! U is a measurable function. In addition if we consider
B = D� = A1��D, where D is the Dirichlet map, then system (1:2) is
the abstract version of a parabolic equation that is controlled through a
Dirichlet type boundary condition, see Section 2 for further details.

The main aim of the present paper is to state necessary and su�cient
optimality conditions for boundary control problems (1:1){(1:2). In the
later years, boundary control problems have been studied by many au-
thors. The Linear Quadratic problem has been extensively treated, see for
instance [5], [19], [20]. As for nonlinear boundary control problems one of
the �rst case to be studied was the convex problem, see [1], [18], where
it is considered a linear state equation and a convex running cost. As for
general nonlinear boundary control problems, most of the results that are
available in the literature are concerned with necessary optimality condi-
tions, see e.g. [13], [14] and [25]. The Dynamic Programming approach
to nonlinear boundary control problems is more recent and uses viscosity
solutions, see [9], [10] and [11]. We refer to [17] for second order su�cient
conditions for boundary control problems.

In this paper, as it is done in [12] for the Neumann boundary control
problem, the running cost L can be unbounded if we assume a coercivity
condition of the form

9�0 > 0; �1 2 lR : L(t; x; ) � �0jj
2 + �1;8t 2 [0; T ];  2 U :

We consider the value function associated to the optimal control problem
(1:1){(1:2)

v(t0; x0) = inf
(t)2U

(Z T

t0

L(s; x(s; t0; x0; ); (s))ds+ �(x(T ; t0; x0; ))

)
:

(1.3)
A control (�) is said to be optimal if the in�mum in the above equation
is attained at (�). The presence of the unbounded operator A� acting
on B in the state equation, causes, in general, the discontinuity of the
trajectories. In order to avoid this di�culty we follow the reasoning of [12]
to prove a result of existence and boundedness of optimal controls. We
prove more precisely that an optimal control  satis�es:

j(t)j �
C

(T � t)
1
2
�"

(1.4)

for a suitable constant C > 0 and for " > 0 small (see Proposition 2.5).
This allows us to consider continuous mild solutions of equation (1:2) for
t < T and to prove that the value function enjoys the following regularity
result (see [7] and Proposition 2.7). For every R > 0; � 2 [0; 1) there exists
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a constant CR;� > 0 such that

jv(t; x)�v(t; y)j � CR;�jA
��(x�y)j 8jxj; jyj � R; t 2 [0; T�

1

R
]: (1.5)

Going back to our goal we use the previous results to state necessary con-
ditions for optimality both in the classical version of the Pontryagin Maxi-
mum Principle, see Theorem 3:2, and in the Hamiltonian formulation, see
Theorem 3:6. In the proof of the Maximum Principle we adapt the ap-
proach of [3] and [15]. Their results do not apply to problem (1:2){(1:1)
since they do not deal with the presence of the unbounded operator A� . As
in [6] for distributed control systems and as in [12] for Neumann boundary
control problems, we derive that the superdi�erential of the value function
v along the optimal trajectory x(�) includes the co{state associated to the
optimal pair (x(�); (�)).

We obtain su�cient conditions for optimality adapting the techniques
contained in [12] showing that the Hamiltonian system8<

:
x0(t) = �Ax(t) � F (x(t)) �A�DpH(t; x(t); A�p(t))

p0(t) = Ap(t) + [DF (x(t))]�p(t) +DxH(t; x(t); A�p(t))

with the initial{terminal condition�
x(t0) = x0
p(T ) = D�(x(T ))

(1.6)

has a solution which is an optimal trajectory. In the case when F = 0, sub-
stituting the initial{terminal condition above with particular initial{initial
condition, we are able to prove that this solution is unique. Therefore, a
stronger su�cient condition holds.

We briey outline the paper. In x2 we recall the main assumptions on
the data and the basic material on boundary control problems. In this
Section we state some properties of the value function of problem (1.1){
(1.2). In x3 we derive necessary conditions for optimality through the
Pontryagin Maximum Principle, see Theorem 3.2. Then we formulate its
Hamiltonian version. In x4 we show an existence and uniqueness result for
the Hamiltonian system (1.6) which is a su�cient condition for optimality,
see Theorems 4.1 and 4.2.

2 Preliminaries

We begin by giving some notations. Let Y be a real Hilbert space. For
a < b 2 lR we denote by L2(a; b;Y ) the space of all square integrable
functions  : [a; b] ! Y . If 
 is a subset of another Hilbert space Z,
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then C(
;Y ) will denote the set of all continuous functions f : 
 ! Y .
For p 2 [1;+1], Lp(
; Y ) will denote the set of all functions f : 
 ! Y

such that kfkpY is integrable on 
. If Y = lR we will write simply C(
)
and Lp(
). Finally L(Z;Y ) will denote the space of all bounded linear
operators T : Z ! Y .

Let X be a real Hilbert space with norm j � j and scalar product <
�; � > and let U be another real Hilbert space. Let x0 2 X , T > 0; t0 2
[0; T );  2 L2(t0; T ;U) and consider the in�nite dimensional controlled
system �

x0(t) +Ax(t) + F (x(t)) = A�B(t)
x(t0) = x0

: (2.1)

In (2:1), A� denotes the fractional powers of the operator A, see [23]. In
the sequel we assume

(i) A : D(A) � X ! X is a closed linear operator
such that A = A� and < Ax; x >� !jxj2

for some ! > 0 and all x 2 D(A);

(ii) the inclusion D(A) � X is dense and compact ;

(iii) F : X ! X ; jF (x) � F (y)j � KF jx� yj ; 8x; y 2 X
for some KF > 0;

(iv) � 2
�
3
4
; 1
�
;

(v) B 2 L(U ;D(A�)) for some � > 0:

(2.2)

Remark 2.1

(i) We note that (i) and (ii) imply that �A is the in�nitesimal generator
of an analytic semigroup satisfying jje�tAjj � e�!t for some ! > 0
and all t � 0.

(ii) Assumption (iii) allows us to treat the case of linear continuous per-
turbations of A and the case of Nemitski operators associated to
Lipschitz continuous functions.

(iii) Assumption (iv) is necessary in order to consider Dirichlet parabolic
boundary control problems. In fact it could be enough to take � < 1.

(iv) Hypothesis (v) can be replaced by the weaker one:

(v)-bis B 2 L(U ;X):

All the results stated in this paper remain true with simple modi�ca-
tions. Hypothesis (v) allows us to simplify the exposition. Moreover
it is veri�ed in our motivating example, as we are going to see.
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We recall two useful estimates related to the analyticity of the semigroup
e�tA. For every � 2 [0; 1] there exists a constant M� > 0 such that

jA�e�tAxj �
M�

t�
jxj; 8t > 0;8x 2 X: (2.3)

Moreover, let � 2 (0; 1] and � 2 (0; �): Then, a well{known interpolation
inequality, see e.g. [23], states that for every � > 0 there exists C� > 0
such that

jA�xj � �jA�xj+ C� jxj; 8x 2 D(A�): (2.4)

System (2:1) is important in applications since it can be seen as the
abstract formulation of the following. parabolic partial di�erential equation
controlled by a Dirichlet datum at the boundary8>>>>><

>>>>>:

@x

@t
(t; �) = ��x(t; �) + f(x(t; �)) in (t0; T )�


x(t0; �) = x0(�) on 


x(t; �) = (t; �) on (t0; T )� @


(2.5)

where 
 � lRn is open and bounded with a smooth boundary @
, T >

0; t0 2 [0; T ]. Moreover �� =
PN

j=1
@2x
@2�j

is the Laplace operator, x0 2

L2(
),  2 L2(t0; T ;L
2(@
)) and f : lR ! lR is Lipschitz continuous. See

[5] for further details.
Going back to equation (2:1), we observe that it makes sense only in

integral form as follows

x(t) = e�(t�t0)Ax0 �

Z t

t0

e�(t�s)AF (x(s))ds +A�

Z t

t0

e�(t�s)AB(s)ds :

(2.6)
We say that x is a mild solution of (2:1) if x 2 L2(t0; T ;X) and it is
a solution of the above integral equation. We denote such a solution by
x(�; t0; x0; ).

The following proposition studies the regularity properties of the solu-
tion of equation (2.6).

Proposition 2.2 Assume that (2:2) holds. Fix 0 � t0 < T and let  :
[t0; T ]! U . Then for any x0 2 X there exists a unique solution

x 2 L2(t0; T ;D(A
1��+�)) where � is given by (2.2)-(v) (2.7)

such that

A
1
2
��x 2 C(t0; T ;X)); (2.8)
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and

jA
1
2
��x(t)j � C0[jx0j+ jF (0)j+ jjjjL2(t0;T ;U)] 8t 2 [t0; T ] (2.9)

for some C0 > 0.
Moreover, if (�) is bounded

x 2 C([t0; T ];X)): (2.10)

Finally, if x0 2 D(A
1��) and (�) is bounded, then

x 2 C([t0; T ];D(A
1��)): (2.11)

Proof: We sketch the proof for the reader's convenience. First we focus
our attention on the term

g(t) = A�

Z t

t0

e�(t�s)AB(s)ds:

By standard arguments (see e.g. [5]) we can show that:

 2 L2(t0; T ;U) =) g 2 L2(t0; T ;D(A
1��+�)) (2.12)

and
 2 L1(t0; T ;U) =) g 2 C([t0; T ];D(A

1��+��")) (2.13)

for small " > 0.
Let (t0; x0) 2 [0; T ] � X and consider the map � : L2(t0; T ;X) !

L2(t0; T ;X) de�ned as follows

�x(t) = e�(t�t0)Ax0 �

Z t

t0

e�(t�s)AF (x(s))ds +A�

Z t

t0

e�(t�s)AB(s)ds :

(2.14)
Recalling that the map t ! e�(t�t0)Ax0 belongs to C([t0; T ];X) and to

L2(t0; T ;D(A
1
2 )), see [22], by (2.12) and (2.13) we can see that, for small �

� : L2(t0; T ;D(A
1��+�))! L2(t0; T ;D(A

1��+�))
� : C([t0; T ];X)! C([t0; T ];X))

(2.15)

and, if x0 2 D(A
1��), taking " < � in (2.13)

� : C([t0; T ];D(A
1��))! C([t0; T ];D(A

1��)): (2.16)

The claims (2.7) (2.10) and (2.11) follow by (2.15), (2.16) and Contraction

Mapping Principle. claim (2.8) follows by setting z(t) = A
1
2
��x(t) and
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applying Contraction Mapping Principle to the equation for z. Finally
estimate (2.9) follows by observing that for some C1 > 0

jA
1
2
��x(t)j � C1[jx0j+ jF (0)j] +KF

Z t

t0

jx(s)jds + jA
1
2
��g(t)j

and that, by a standard application of Gronwall inequalityZ t

t0

jx(s)jds � C2[jx0j+ jF (0)j] + C3jjjjL2(t0;T ;U)

for some C2; C3 > 0.

Now let us consider the problem of minimizing the functional

J(t0; x0; ) =

Z T

t0

L(t; x(t; t0; x0; ); (t))dt+ �(x(T ; t0; x0; )) (2.17)

over all functions  2 L2(t0; T ;U) (usually called controls), where the func-
tion x(�; t0; x0; ) is the mild solution of (2:1). Here L : [0; T ]�X�U ! lR
and � : X ! lR are assumed to satisfy the following

(i) L 2 C([0; T ]�X � U);

(ii) For some constant CL > 0 :
jL(t; x; )� L(t; y; )j � CL(1 + jxj+ jyj)jx� yj;
8t 2 [0; T ];  2 U; jxj; jyj 2 X ;

(iii) L(t; x; �) is strictly convex;
9�0 > 0; �1 2 lR : L(t; x; ) � �0jj

2 + �1
8(t; x) 2 [0; T ]�X;  2 U
and L(t; x; )� L(t; x; 0) � �0jj

2 + �1; ;

(iv) � is bounded from below and 8R > 0 9C�;R > 0 :

j�(x) � �(y)j � C�;RjA
1
2
��(x � y)j;

8x; y 2 X such that jA
1
2
��xj; jA

1
2
��yj � R:

(2.18)

Remark 2.3

(i) Assumption (ii) allows us to treat the case of quadratic growth with
respect to x of the running cost L. In particular the linear{quadratic
case is included in the above framework.

(ii) The strict convexity and the �rst inequality in hypothesis (2.18){(iii)
guarantee the existence and uniqueness of the optimal control, see
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Remark 2.4. The second inequality hypothesis (2.18){(iii) guarantee
an estimate of optimal controls, see Proposition 2.5 which will be cru-
cial in the sequel. Assumption (iii) is needed since  2 L2(t0; T ;U).
If we take  bounded then we can avoid this hypothesis.

(iii) Assumption (2.18){(iv) is useful in order to have a meaningful ter-

minal cost. In fact if � satis�es (2.18){(iv) then �(x) =  (A
1
2
��x)

for every x 2 X and a suitable function  Lipschitz continuous on
bounded subsets of X . Note also that (2.18)-(iv) implies that at every
point x where � is di�erentiable we have (see [7])

D�(x) 2 D(A�� 1
2 ):

We de�ne the value function of problem (2:17){(2:1) as

v(t0; x0) = inf
(t)2U

(Z T

t0

L(t; x(t; t0; x0; ); (t))dt+ �(x(T ; t0; x0; ))

)
:

(2.19)
A control �(t) 2 U at which the in�mum in (2.19) is attained, is said to
be optimal, in other words if

v(t0; x0) =

Z T

t0

L(s; x(s; t0; x0; 
�); �((s))ds + �(x(T ; t0; x0; 

�)):

Remark 2.4 From assumptions (2:2) and (2:18) we derive, for every t0 2
[0; T ] and x0 2 X the existence and uniqueness of the optimal control for
problem (2:1){(2:19) (see, e.g. [2]). Moreover the following property holds.
Let R > 0. There exists C1(R) > 0 such that if t0 2 [0; T ], jx0j � R and 
is the optimal control for J(t0; x0; �) then

kkL2(t0;T ;U) � C1(R): (2.20)

Indeed, by (2.18)-(iii) it followsZ T

t0

�0j(s)j
2ds+ �1(T � t0) �

Z T

t0

L(s; x(s); (s))ds

so that

�0

Z T

t0

j(s)j2ds � J(t0; x0; )� �(x(T )) � �1(T � t0) � J(t0; x0; 0) +K

for a suitable constant K depending on the lower bound of �, see assump-
tion (2.18)-(iv). Finally,

J(t0; x0; 0) �

Z T

t0

L(t; x(t; t0; x0; 0); 0)dt+ �(x(T ; t0; x0; 0))

8
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where, by a simple application of Gronwall inequality we have

jx(t; t0; x0; 0)j � eKFT [jx0j+ jF (0)j(T � t)];

which yields, by applying (2.18)-(ii) and (iv)

J(t0; x0; 0) � C1(jx0j);

which gives the claim.

The following Proposition states the boundedness, on compact subsets
of [t0; T ), of the optimal control (�).

Proposition 2.5 Assume (2:2) and (2:18). Then, for any R > 0 there

exists a constant MR > 0 such that, for any t0 2 [0; T ], x0 2 X, with

jx0j � R and any control  2 L2(t0; T ;U), there exists  2 L2(t0; T ;U)
satisfying

(i) J(t0; x0; ) � J(t0; x0; )

(ii) j(t)j �
MR

(T � t)
1
2
��

8t 2 [t0; T )
(2.21)

where � is given in (2:2){(v).

Proof: We follow the approach of [12].
Let R > 0 and let t0 2 [0; T ], jx0j � R and let  2 L2(t0; T ;U). Due

to assumption 2.18-(iii) and Remark 2.4 we can assume, without loss of
generality, that kkL2(t0;T ;U) � C1(R). De�ne, for any n 2 lN,

In =

�
t 2 [t0; T ] : j(t)j >

n

(T � t)
1
2
��

�

and

n(t) =

�
(t) if t =2 In
0 if t 2 In:

:

Moreover, let us set

x(t) = x(t; t0; x0; ) ; xn(t) = x(t; t0; x0; n):

Then, denoting by jInj the Lebesgue measure of In, we have

J(t0; x0; n) = J(t0; x0; ) +

Z T

t0

[L(t; xn(t); n(t))� L(t; xn(t); (t))]dt

+

Z T

t0

[L(t; xn(t); (t))� L(t; x(t); (t))]dt + [�(xn(T ))� �(x(T ))]

9
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� J(t0; x0; ) + j�1j jInj � �0

Z
In

j(r)j2dr

+CL

Z T

t0

(1 + jxn(t)j+ jx(t)j)jxn(t)� x(t)jdt + ~CjA
1
2
��(xn(T )� x(T ))j;

where ~C = C
�;maxfjA

1
2
��

xn(T )j;jA
1
2
��

x(T )jg
. Now we use (2.9), (2.20) to see

that ~C depends only on �;R, so that we can write ~C = ~C�;R. Then by
Schwarz inequality we obtain

J(t0; x0; n)� J(t0; x0; ) � j�1j jInj � �0

Z
In

j(r)j2dr

+ ~C�;RjA
1
2
��(xn(T )� x(T ))j

+2CL

"Z T

t0

(1 + jxn(t)j
2 + jx(t)j2)dt

# 1
2
"Z T

t0

jxn(t)� x(t)j2dt

# 1
2

:

(2.22)
Now, recalling (2.6),

jxn(s)� x(s)j

� KF

Z s

t0

jxn(r) � x(r)jdr +

����A�

Z s

t0

e�(s�r)AB(r)�In(r)dr

����
(2.23)

where � denotes the characteristic function of the set In. Let

�(t) =

Z t

t0

jxn(s)� x(s)j2ds:

Then, taking the square of (2.23) and integrating,

�(t) � K

(
KF

Z t

t0

�(s)ds+

Z t

t0

ds

����
Z s

t0

M���j(r)j

(s� r)���
�In(r)dr

����
2
)

� KKF

Z t

t0

�(s)ds + C(T; �; �)

Z
In

j(r)j2dr

where K is a positive constant. Hence, by Gronwall's inequality,

�(t) � eKKFTC(T; �; �)

Z
In

j(r)j2dr =: C2

Z
In

j(r)j2dr: (2.24)

From (2.6), (2.23), it follows that

jA
1
2
��(xn(s)� x(s))j

� KF

R s
t0
jxn(r) � x(r)jdr +

���A 1
2

R s
t0
e�(s�r)AB(r)�In(r)dr

���
10
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so that, by estimating

Z s

t0

jxn(r) � x(r)jdr in the same way of � we obtain

jA
1
2
��(xn(s)�x(s))j � C3

Z
In

j(r)jdr+C4

Z
In

j(r)j

(s� r)
1
2
��
�In(r)dr (2.25)

for suitable constants C3; C4 > 0.
Now we estimate the state x. The same estimate will hold for xn. By

(2.6) it follows

jx(t)j � [jx0j+ jF (0)j(T � t0)]+KF

Z t

t0

jx(s)jds+

����A�

Z t

t0

e�(t�s)AB(s)ds

����
Set �(t) =

Z t

t0

jx(s)j2ds. Applying the same technique used to estimate �(t)

we obtain

j�(t)j � C5

�
jx0j

2 + jF (0)j2 +

Z t

t0

j(s)j2ds

�
� C6(R): (2.26)

Putting (2.24), (2.25) (2.26) in (2.22) and recalling that jjjjL1(In) �
cjjjjL2(In) for some positive constant c, we obtain,

J(t0; x0; n)� J(t0; x0; )

� j�1j jInj � �0

Z
In

j(r)j2dr + C7

Z
In

j(r)j

(T � r)�
dr + C8

�Z
In

j(r)j2dr

� 1
2

:

(2.27)
Finally, we claim that the right{hand side of (2.27) is negative for su�-
ciently large n, which will yield the conclusion of the proof. Indeed,

j�1j jInj �
1

3
�0

Z
In

j(r)j2dr � j�1j jInj �
n2�0

3T 2�
jInj < 0

provided n is large enough, say n � n1. Furthermore,

C7

Z
In

j(r)j

(T � r)�
dr �

1

3
�0

Z
In

j(r)j2dr

� C7

Z
In

j(r)j

(T � r)�
dr �

n�0

3

Z
In

j(r)j

(T � r)�
dr < 0

if n � n2. Finally

C8

�Z
In

j(r)j2dr

� 1
2

�
1

3
�0

Z
In

j(r)j2dr

11
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�

�
C8 �

n�0

3T �

��Z
In

j(r)j2dr

� 1
2

< 0:

The claim follows and the proof is complete.

Remark 2.6 By Proposition 2.5 it follows that, if  is optimal at (t0; x0) 2
[0; T ]�X , then, for every (s; �) 2 [t0; T ]�X we have

x(t; s; �; ) 2 C([0; T );X)

and, if (s; �) 2 [t0; T ]�D(A1��),

x(t; s; �; ) 2 C([0; T );D(A1��)):

More generally, if  2 L2(t0; T ;U) and (s; �) 2 [t0; T ]�X , then, at every
t 2 (s; T ], t Lebesgue point of  we have

x(t; s; �; ) 2 D(A1��):

Moreover, A1��x is continuous in t and, in particular, t is a Lebesgue point
for x and A1��x. Indeed, if t 2 (s; T ] is a Lebesgue point of  we have that
 is bounded on a neighborhood of t so that����A

Z t

s

e�(t�r)AB(r)dr

����
�

����A
Z t�"

s

e�(t�r)AB(r)dr

���� +
����A
Z t

t�"

e�(t�r)AB(r)dr

����
�
M1 � �

"1��
kkL2(t0;T ;U) +

Z t

t�"

M1 � �

(t� r)1��
esssupr2[t�";t]j(r)jdr

from which the claim follows by standard arguments.

Let us now recall the de�nition of some generalized gradients which will
be used in the sequel. Let O be an open subset of X . The superdi�erential
of a function w : O ! lR at a point x0 2 R is the (possibly empty) set

D+w(x0) =

�
p 2 X : lim sup

x!x0

w(x) � w(x0)� < p; x� x0 >

jx� x0j
� 0

�
:

(2.28)
We denote by D�w(x0) the set of all vectors p 2 X for which there exists
a sequence fxng of points of O such that8<

:
(i) xn ! x0 as n! +1
(ii) w is Fr�echet di�erentiable at xn;8n
(iii) Dw(xn)* p as n! +1

(2.29)

12
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If the function w is Lipschitz continuous in a neighborhood R0 of x0, then
w is Fr�echet di�erentiable on a dense subset of R0 (see [24]). Hence,
D�w(x0) 6= ;:

Assuming (2:2) and (2:18) the value function v is Lipschitz continuous
with respect to the negative fractional powers of A. This fact yields a
crucial property of the superdi�erential of v (see [7], [9], [11]), which is
stated in the following proposition.

Proposition 2.7 Assume (2:2), (2:18). Then, the value function v de�ned
in (2:19) is continuous in [0; T ] � X. Moreover, for every R > 1

T
and

� 2 [0; 1) there exists a constant C�R > 0 such that

jv(t; x)�v(t; y)j � C�RjA
��(x�y)j 8t 2 [0; T �

1

R
]; jxj; jyj � R: (2.30)

In particular v is sequentially weakly continuous in [0; T )�X and

D+
x v(t; x) � D(A�) 8� 2 [0; 1) and for all j[0; T )�X: (2.31)

Proof: Let x; y 2 X , t 2 [0; T ] and let  be optimal for (t; x). We set
x(�) = x(�; t; x; ) and y(�) = y(�; t; y; ). Then

v(t; x) � v(t; y)

�

Z T

t

[L(s; x(s); (s))� L(s(y(s); (s)] + �(x(T )) � �(y(T ))

�

Z T

t

CL(1 + jx(s)j + jy(s)j)jx(s) � y(s)jds+ ~CjA
1
2
��(x(T )� y(T ))j

(2.32)
where ~C = C

�;maxfjA
1
2
��

x(T )j;jA
1
2
��

y(T )jg
. Now we estimate the state func-

tion using boundedness of optimal controls. Indeed, recalling (2.6) and
(2.21)

jx(s)j � jxj+ jF (0)j(T � t) +KF

Z s

t

jx(�)jd�

+

����
Z s

t

M�

(s� �)���
MR

(T � �)
1
2
��
d�

����
so that, by Gronwall inequality

jx(s)j � eKFT

�
jxj+ jF (0)j(T � t) +

C1(R))

(T � s)
1
2
��

�
: (2.33)

Clearly, a similar estimate holds true for y(�).

13
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Now writing x and y in mild form and subtracting we get

x(s)� y(s) = e�(s�t)A(x� y)�

Z s

t

e�(s��)A[F (x(s)) � F (y(s))]ds:

By (2.3) and Lipschitz continuity of F

jx(s) � y(s)j �
M�

(s� t)�
jA��(x� y)j+KF

Z s

t

jx(�) � y(�)jd�

and by applying Gronwall inequality as in the proof of previous proposition,

jx(s) � y(s)j � [
C2

(s� t)�
+ C3]jA

��(x � y)j (2.34)

for constants C2; C3 > 0. Putting estimates (2.33) and (2.34) in (2.32) we
have, for jxj; jyj � R,

v(t; x) � v(t; y)

� CLjA
��(x� y)j�

Z T

t

�
1 + C4(R)

�
1 +

1

(T � s)
1
2
��

���
C2

(s� t)�
+ C3

�
ds

+ ~CjA
1
2
��x(T )� y(T )j:

(2.35)

Now we recall that, if jxj; jyj � R then, by (2.9) and Remark 2.4 we have

jA
1
2
��x(T )j; jA

1
2
��y(T )j �M(R);

so that ~C = ~C�;R as in the proof of Proposition 2.5. This yields together
with (2.34)

v(t; x)� v(t; y) � C1;RjA
��(x� y)j+ C2;R

�
K1

T � t)�
+K2

�
jA��(x� y)j

(2.36)
which yields (2.30). On the other hand (2.31) can be easily veri�ed arguing
as in [7].

Now, by standard arguments, we verify that the value function v satis-
�es an inequality related to the following Hamilton{Jacobi equation8>>><

>>>:
�
@v

@t
(t; x) +H(t; x; A�Dxv(t; x))

+ < A1��x+A��F (x); A�Dxv(t; x) >= 0

v(T; x) = �(x)

(2.37)

14



DIRICHLET BOUNDARY CONTROL PROBLEMS

where
H(t; x; p) = sup

2U

[� < B; p > �L(t; x; )] : (2.38)

Theorem 2.8 Assume that (2:2) and (2:18) hold true. Then for every

' 2 C([0; T ]�X) we have,

(i) �
@'

@t
(t; x) +H(t; x; A�Dx'(t; x))

+ < A1��x+A��F (x); A�Dx'(t; x) >� 0
for all (t; x) 2 [0; T )�D(A1��) which are maximum points of

v � ' at which ' is di�erentiable

(ii) lim
t#0

sup
x2X

[v(T � t; x)� �(e�tAx)]+ = 0

where a+ = maxfa; 0g:
(2.39)

Proof: Fix (t0; x0) 2 [0; T )�D(A1��) and a constant control (�) =  in U .
Set x(t) = x(t; t0; x0; ). Now suppose that there exists ' 2 C([0; T ]�X)
di�erentiable in (t0; x0) such that

v(t0; x0)� '(t0; x0) = max (v � ') � v(t; x(t)) � '(t; x(t)): (2.40)

By the Dynamic Programming Principle , we have

v(t0; x0) �

Z t

t0

L(s; x(s); )ds+ v(t; x(t)):

Therefore

'(t0; x0)� '(t; x(t))

t� t0
�
v(t0; x0)� v(t; x(t))

t� t0
�

1

t� t0

Z t

t0

L(s; x(s); )ds:

(2.41)
Since ' is di�erentiable in (t0; x0) we have, by (2.40) and (2.31)

Dx'(t0; x0) 2 D
+
x v(t0; x0) � D(A�); (2.42)

so that

'(t0; x0)� '(t; x(t))

t� t0

= �
@'

@t
(t0; x0)� < A�Dx'(t0; y0);

A��(x(t) � x0)

t� t0
> +!(t� t0):

(2.43)

15
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Here, and in the sequel of the proof, we denote by !(�) a function such that
!(r) # 0 as r # 0. Recalling from Proposition 2:2 that if x0 2 D(A

1��) and
(�) =  then x 2 C([0; T ]; D(A1��)), we get

A��(x(t) � x0)

t� t0
= �A1��x0 �A��F (x0) +B + !(t� t0):

Substituting the above equality in (2:43) and recalling (2:41) we have

�
@'

@t
(t0; x0)� < A�Dx'(t0; x0);�A

1��x0 �A��F (y0) +B >

� L(t0; x0; ) + !(t� t0):

Therefore 2:39 (i) follows from the de�nition of the Hamiltonian H , letting
t! t0 in the above estimate. We still have to prove 2:39 (ii). By de�nition
of value function we have

v(T � t; x0) = inf
(t)2U

(Z T

T�t

L(s; x(s); (s))ds+ �(x(T ))

)
;

therefore, for any constant control (�) = 

v(T � t; x0)��(e
�tAx0) �

Z T

T�t

L(s; x(s); )ds+CjA
1
2
��(x(T )� e�tAy0)j;

(2.44)
where C is a positive constant depending on jx0j. From (2.6) it follows that

x(T ) = e�tAx0 �

Z T

T�t

e�(T�s)AF (x(s))ds +A�

Z T

T�t

e�(T�s)ABds:

(2.45)
Substituting (2.45) in (2.44) we have

v(T � t; x0)� �(e�tAx0) �

Z T

T�t

L(s; x(s); )ds

+C

������A 1
2
��

Z T

T�t

e�(T�s)AF (x(s))ds +A
1
2

Z T

T�t

e�(T�s)ABds

����� :
Since L and F are continuous, as t! 0 we conclude that

lim
t#0

sup
x02X

�
v(T � t; x0)� �(e�tAx0)

�+
� 0; (2.46)

which yields the conclusion.
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Remark 2.9 The above theorem can be used to de�ne viscosity subsolu-
tions of (2:37). Similarly we can de�ne viscosity supersolutions. Therefore
we can state an existence result for viscosity solutions of equation (2:37).
In order to obtain uniqueness results the de�nition of viscosity solution has
to be modi�ed, see [11].

3 Necessary Conditions

In this section we derive necessary conditions for the problem of minimizing
J(t0; x0; ) overall controls  2 L2(t0; T ;U). Here J is de�ned in (2.17).
In addition to hypotheses (2.2),(2.18), we will assume that

(i) F is continuously Fr�echet di�erentiable;

(ii) L is continuously Fr�echet di�erentiable with respect to x;

(iii) � is continuously Fr�echet di�erentiable and

D�(A�� 1
2 �) is continuous on X:

(3.1)

Remark 3.1 Notice that the above assumptions and (2.2){(2.18) imply
that DF is bounded on X and that jDxL(t; x; )j � 2CL(1+ jxj); 8t; x;  2
[0; T ]�X � U .

Let  2 L2(t0; T ;U); x(�) = x(�; t0; x0; ) and pT = D�(x(T )):We recall
that the co{state associated to the triplet f; x; pT g is formally de�ned as
the mild solution to the problem�

p0(t) = Ap(t) + [DF (x(t))]�p(t)�DxL(t; x(t); (t)) ; t 2 [t0; T )
p(T ) = pT ;

(3.2)
which is expressed through the following integral equation

p(t) = e�(T�t)ApT +

Z T

t

e�(T�s)A[DF (x(s))]�p(s)ds

+

Z T

t

e�(T�s)ADxL(s; x(s); (s))ds:

We note that assumption (3.1) (iii) is necessary to have a meaningful ter-
minal datum pT . Now we can state the main result of this section.

Theorem 3.2 Assume (2:2); (2:18); (3:1). Let f; xg be an optimal pair

for problem (2:19)� (2:1), with starting point (t0; x0) 2 [0; T ]�X. More-

over, set pT = D�(x(T )) and let p be the corresponding co{state. Then it

satis�es the co{state inclusion

p(t) 2 D+
x v(t; x(t)) (3.3)

17
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for every t 2 [t0; T ] and the Maximum Principle

� < B(t); A�p(t) > �L(t; x(t); (t)) = H(t; x(t); A�p(t)) (3.4)

for a.e. t 2 [t0; T ] Lebesgue point of , where

H(t; x; p) = sup
2U

[� < B; p > �L(t; x; )]: (3.5)

We prove this result using the approach of [4] (see also [3] and [15]). We
begin giving some preliminary results.

Lemma 3.3 Let (t0; x0) 2 [0; T ] � X and consider the control problem

(2:1) and (2:19) starting at (t0; x0). Let (�) be an optimal control for this

problem and de�ne the function W : [t0; T ]�X ! lR

W (s; �) =

Z T

s

L(r; x(r; s; �; ); (r))dr + �(x(T ; s; �; )): (3.6)

Then

(i) 8� 2 D(A1��), W (�; �) is di�erentiable at every Lebesgue point of 

in [t0; T ].

(ii) 8s 2 [t0; T ], W (s; �) is continuously Fr�echet di�erentiable on X.

Proof: We follow the approach of [15]. Let (s; �) 2 [t0; T ] � X and let
x(t; s; �; ) be the mild solution of

x(t) = e�(t�s)A� �

Z t

s

e�(t�r)AF (x(r))dr +A�

Z t

s

e�(t�r)AB(r)dr :

Then, by the parameter dependent Contraction Mapping Principle (see
[22]), applied to equation (2.14) it follows that x(t; s; �; ) is Fr�echet di�er-
entiable with respect to �. Moreover, see e.g. [7], if we set

	(t) =< D�x(t; s; �; ); z > for z 2 X: (3.7)

Then 	 satis�es, in integral form, the following�
	0(t) = �[A+DF (x(t; s; �; )]	(t)
	(s) = z

: (3.8)

By classical results, (see [5], [22]), we have that 	 is the unique mild solution
of (3.8) and

	 2 C([t0; T ];X) \ L2(t0; T ;D(A
1
2 )) \ L1(t0; T ;D(A

�)): (3.9)

18
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Moreover, j	(t)j � M1jzj where M1 depends only on �, T and KF . Ex-
ploiting (3.8) and setting x(t) = x(t; s; �; ) then we can write, for z 2 X

< D�W (s; �); z >

=

Z T

s

< DxL(r; x(r); (r));	(r) > dr+ < D�(x(T ));	(T ) >:

(3.10)

Then, by regularity properties of 	; L and D�, (see (3.9), by Hypotheses
(2.18), (3.1) and by Remark 3.1 and by estimate (2.33) we obtain

j < D�W (s; �); z > j � K

"Z T

s

Cj	(r)j(1 + jx(r)j)dr + j	(T )j

#
� KM1jzj

(3.11)
where K does not depend on z. The above estimate yields the Gâteaux
di�erentiability.

We now prove continuous Fr�echet di�erentiability. Let �n; �0 � X and

let �n
n!+1
�! �0. Then, setting

xn(t) = x(t; s; �n; ); x0(t) = x(t; s; �0; );

we obtain

[xn(t)� x0(t)] = e�(t�s)A[�n � �0]�

Z t

s

e�(t�r)A[F (xn(r)) � F (x0(r))]dr:

Applying Gronwall inequality we get

jxn(T )� x0(T )j �M j�n � �0j; (3.12)

for some positive M . Now, de�ne 	n(t) =< D�xn(t); z > and 	0(t) =<
D�x0(t); z >. By equation (3.8) we obtain

[	n(t)�	0(t)] =

Z t

s

e�(t�r)A[DF (x0(r))	0(r) �DF (xn(r))	n(r)]dr

so that, by Gronwall inequality

j	n(t)�	0(t)j �M1e
KF (t�s)jzj

Z t

s

jDF (x0(r)) �DF (xn(r))jdr: (3.13)

Then we recall that, by (3.10), we have

< D�W (s; �n)�D�W (s; �0); z >

�

Z T

s

[<DxL(r; xn(r); (r));	n(r)>�<DxL(r; x0(r); (r));	0(r)>] dr

+ [< D�(xn(T ));	n(T ) > � < D�(x0(T ));	0(T ) >] :
(3.14)
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Putting estimates (3.12){(3.13) in (3.14) we prove continuous Fr�echet dif-
ferentiability on X .

On the other hand, let � 2 D(A1��) and de�ne

y(t; s; �; ) = A��x(t; s; �; ):

Then y satis�es

y(t) = e�(t�s)A� �

Z t

s

e�(t�r)AF (y(r))dr +A�

Z t

s

e�(t�r)AB(r)dr :

(3.15)
Then, by the parameter dependent Contraction Mapping Principle it fol-
lows that y(t; s; �; ) is di�erentiable with respect to s. Setting

�(t) = @sy(t; s; �; ); (3.16)

we �nd that � satis�es in mild form�
�0(t) = �[A+DF (x(t))]�(t)
�(s) = A1��� +A��F (�)�B(s) = �s

(3.17)

where the initial condition of (3.17) is satis�ed for a. e. s 2 [t0; T ] (i. e. at
every Lebesgue point of ). By classical results we have that � the unique
mild solution of (3.17) and

� 2 C([t0; T ];X) \ L2(t0; T ;D(A
1
2 )) \ L1(t0; T ;D(A

�)):

Now we show that the scalar product < DxL(r; x(r); (r)); A
��(r) > is

integrable. In factZ T

s

< DxL(r; x(r); (r)); A
��(r) > dr �

Z T

s

C(1 + jx(r)j)jA��(r)jdr:

Now recalling, from estimate (2.33) , that

jx(s)j � eKFT

�
j�j+ jF (0)j(T � t) +

C1(j�j))

(T � s)
1
2
��

�

and deriving that, for some positive C,

jA��(r)j � C

�
j�sj

(r � s)�
+ 1

�
;

we can conclude the integrability of the term under consideration. There-
fore, from (3.17) and assumption (3.1) it follows that for every � 2 D(A1��)
the function W (�; �) is di�erentiable at every Lebesgue point of  and

@sW (s; �) =

Z T

s

< DxL(r; x(r); (r)); A
��(r) > dr

�L(s; �; (s))+ < D�(x(T )); A��(T ) >

(3.18)
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which yields (i).

The following Corollary is a straightforward consequence of the previous
Lemma and it can be proved arguing as in [3] and [15].

Corollary 3.4 Assume (2:2); (2:18); (3:1) and let � 2 D(A1��). Then,

for every s 2 [t0; T ] and for a. e. Lebesgue point t 2 [s; T ] of  the function

W is Fr�echet di�erentiable at (t; x(t; s; �; )) 2 [s; T ]�D(A1��). Moreover

we have

�@tW (t; x(t))+ < A�DxW (t; x(t)); A1��x(t) + A��F (x(t)) �B(t) >

�L(t; x(t); (t)) = 0
(3.19)

where x(t) = x(t; s; �; ). In addition

W (T; x(T ; s; �; )) = �(x(T ; s; �; )): (3.20)

Proof: Recall that, by the de�nition of W in (3.6) we have, for every
t 2 [s; T ]

W (t; x(t)) =

Z T

t

L(r; x(r); (r))dr + �(x(T ))

where x(r) = x(r; t; x(t); ) = x(r; s; �; ). Then, for h 2 lR su�ciently
small

W (t+ h; x(t+ h))�W (t; x(t)) = �

Z t+h

t

L(r; x(r); (r))dr

so that, if t is a Lebesgue point of the map r ! L(r; x(r); (r)) (which is
true for every Lebesgue point of , see Remark 2.6) we get

lim
h!0

1

h
[W (t+ h; x(t+ h))�W (t; x(t))] = L(t; x(t); (t)): (3.21)

At this point observe that due to the optimality of  we have v(t0; x0) =
W (t0; x0) and also, by Dynamic ProgrammingPrinciple (see [2]) v(t; x(t)) =
W (t; x(t)) for every t 2 [t0; T ]. Since v(s; �) < W (s; �) for every (s; �) 2
[t0; T ] � X and W (t; �) is Fr�echet di�erentiable for every t 2 [t0; T ] (see
Lemma 3.3 (ii)), then we have, as in (2.42)

DxW 2 D+
x v � D(A�):

Moreover, if t is a Lebesgue point for  then x(t) 2 D(A1��) (see Remark
2.6). By Lemma 3.3 (i) and (ii), it follows that W (�; x(t)) is di�erentiable
so that

d

dt
W (t; x(t))
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= @tW (t; x(t))+ < A�DxW (t; x(t));�A1��x(t)�A��F (x(t)) +B(t) >

which gives the claim, together with (3.21).

Proof of Theorem 3.2: For the reader's convenience we divide the proof
in three steps.

Step I Let (t0; x0) 2 [0; T ]�D(A1��) be the starting point and let f; xg
be an optimal pair associated to it. We recall that x(t) = x(t; t0; x0; ).
Let p 2 C([t0; T ];X) be the mild solution of the co{state equation (3.2)
associated to the optimal pair f; xg. We argue as in [15], [3] to show that
p(t) = DxW (t; x(t)).

Take z 2 D(A), � 2 [t0; T ] and let � = x(�) = x(� ; t0; x0; ). Let
	 2 C([t0; T ];D(A)) be the solution of�

	0(t) = �[A+DF (x(t))]	(t)
	(�) = z;

(3.22)

where, we set x(t) = x(t; �; �; ).
By equation (3.2) we have, for every � 2 D(A)

< p0(t); � >=< p(t); (A+DF (x(t)))� > � < DxL(t; x(t); (t)); � > :

Now, being 	 2 C([t0; T ];D(A)) we get, for every t 2 [t0; T ]

< p0(t);	(t) >

=< p(t); (A+DF (x(t)))	(t) > � < DxL(t; x(t); (t));	(t) > :

Hence, recalling that, by uniqueness, x(t; �; �; ) = x(t), from (3.22) and
the previous formula we get

@t < p(t);	(t) >=< p0(t);	(t) > + < p(t);	0(t) >

= � < DxL(t; x(t); (t));	(t) >:
(3.23)

Now integrating from � to T we derive

< p(T );	(T ) > � < p(�);	(�) >= �

Z T

�

< DxL(t; x(t); (t));	(t) > dt

(3.24)
which yields

< p(�); z >=

Z T

�

< DxL(t; x(t); (t));	(t) > dt+ < pT ;	(T ) > : (3.25)

On the other hand, by arbitrariness of z 2 D(A), by density of D(A) in X
and by (3.10), it is easy to see that p(t) = DxW (t; x(t)).
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Step II Let x(t) = x(t; t0; x0; ) be the optimal state. By reasoning as in
the proof of the previous Corollary we obtain that v(t; x(t)) = W (t; x(t))
for every t 2 [t0; T ] and v(t; �) � W (t; �) for every (t; �) 2 [t0; T ] � X .
Since x0 2 D(A1��) and (t) is bounded on [0; T ) then (see Remark 2.6)
x 2 C([t0; T );D(A

1��)) and so for every t 2 [t0; T ) the pairs (t; x(t)) belong
to [t0; T )�D(A

1��) and are maximum points of v�W , which yields (3.3).
By Corollary 3.4 we can use W as a test function in inequality (2.39) (i)
in Theorem 2.8 since DxW 2 D+

x v � D(A�). Therefore we derive that for
a.e. t 2 [t0; T ]

�@tW (t; x(t))+ < A�DxW (t; x(t)); A1��x(t) +A��F (x(t)) >

+H(t; x(t); A�DxW (t; x(t))) � 0:

(3.26)

We recall that from (3.19) and from (2.38) for every s 2 [t0; T ] and for a.
e. t such that t0 � s � t � T , we have

�@tW (t; x(t))+ < A�DxW (t; x(t)); A1��x(t) +A��F (x(t)) >

+H(t; x(t); A�DxW (t; x(t))) � 0:

(3.27)

Comparing inequalities (3.27) and (3.26) we obtain

�@tW (t; x(t))+ < A�DxW (t; x(t)); A1��x(t) +A��F (x(t)) >

+H(t; x(t); A�DxW (t; x(t))) = 0:

(3.28)

Thus, from (3.19) and (3.28) we �nd

� < A�DxW (t; x(t)); B(t) > �L(t; x(t); (t))

= H(t; x(t); A�DxW (t; x(t)))

= sup
2U

�
� < A�DxW (t; x(t)); B > �L(t; x(t); )

	
:

(3.29)

Therefore the maximum principle holds if the starting point (t0; x0) 2
[0; T ]�D(A1��).

Step III Now we show that the maximum principle holds if the start-
ing point (t0; x0) 2 [0; T ] � X . Let (�) be an optimal control for prob-
lem (2.19){(2.1) and let x(t) = x(t; t0; x0; ) be the corresponding opti-
mal trajectory. Since x(t) 2 L2(t0; T ;D(A

1��)), we can �nd a sequence
tn ! t0 as n ! 1 such that x(tn) = x(tn; t0; x0; ) 2 D(A1��). Setting
xn(t) = x(t; tn; x(tn); ) we have, by Dynamic Programming Principle,
that xn is an optimal trajectory for the problem with the starting point
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(tn; x(tn)) 2 [0; T ] � D(A1��). Then, if pn is the mild solution of the
problem8>><

>>:
�p0n(t) = �[A+ [DF (xn(t))]

�]pn(t) +DxL(t; xn(t); (t))
for t 2 [tn; T )

pn(T ) = D�(xn(T ))

(3.30)

by Step I and Step II, pn satis�es the maximum principle (3.4) for a.e.
t 2 [tn; T ] and the co{state inclusion (3.3) for every t 2 [tn; T ].

Recalling that, by uniqueness, x(t) = x(t; tn; x(tn); ) = xn(t) for every
t 2 [tn; T ], we obtain that, for every n 2 lN and t 2 [tn; T ], pn(t) = p(t),
where p is the mild solution of equation (3.2). Then p satis�es the maximum
principle (3.4) for a.e. t 2 [tn; T ] and the co{state inclusion (3.3) for every
t 2 [tn; T ]. Since tn ! t0 the result follows for a.e. t 2 [t0; T ].

Remark 3.5 From assumption (2.2), (2.18) and (3.1) H is Gâteaux dif-
ferentiable with respect to p. Then by (3.4) and (3.5) for any v 2 D(A�)
we easily derive

< DpH(t; x(t); A�p(t)); A�v >= � < B(t); A�v > :

Then we obtain
(t) = �B�DpH(t; x(t); A�p(t)) (3.31)

for a.e. t 2 [t0; T ]: The above equation and (3.3) yield the feedback law

(t) 2 �B�DpH(t; x(t); A�D+
x v(t; x(t))) (3.32)

for a.e. t 2 [t0; T ]:

Next, by standard procedure, we reformulate the Pontryagin Maximum
Principle in terms of an Hamiltonian system (see e.g.[6]).

Theorem 3.6 Assume (2:2); (2:18); (3:1). Let f; xg be an optimal pair

for problem (2:19)�(2:1), with starting point (t0; x0) 2 [0; T ]�X. Moreover

set pT = D�(x(T )) and let p be the corresponding co{state. Then H is

Gâteaux di�erentiable with respect to (x; p) at (x(t); p(t)), for a. e. t 2
[t0; T ]. Moreover the pair (x(t); p(t)) is a mild solution of the Hamiltonian

system8<
:

x0(t) = �Ax(t)� F (x(t)) �A�DpH(t; x(t); A�p(t))

p0(t) = Ap(t) + [DF (x(t)]�p(t) +DxH(t; x(t); A�p(t))
(3.33)

with the initial{terminal condition�
x(t0) = x0
p(T ) = D�(x(T ))

:
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4 Su�cient Conditions

The next result may be directly derived following the same reasonings
contained in [6], Theorem 5.9.

Theorem 4.1 Assume (2:2); (2:18); (3:1). Suppose that for all R > 0,

jDxH(t; x; p)�DxH(t; y; q)j+ jDpH(t; x; p)�DpH(t; y; q)j

� CR[jx� yj+ jp� qj]

for some constant CR > 0 and all x; y; p; q 2 X satisfying jxj; jyj � R: Let

(t0; x0) 2 [0; T ]�X and p0 2 D
�
xv(t0; x0). Then, the system8<

:
x0(t) = �Ax(t)� F (x(t)) �A�DpH(t; x(t); A�p(t))

p0(t) = Ap(t) + [DF (x(t))]�p(t) +DxH(t; x(t); A�p(t))
(4.1)

with the initial{terminal condition�
x(t0) = x0
p(T ) = D�(x(T ))

has a solution (x; p) such that x is an optimal trajectory for problem (2:19)�
(2:1) corresponding to some control :Moreover, p is the co{state associated

to  and satis�es p(t0) = p0:

The above theorem gives, in some sense, a su�cient condition for opti-
mality. This condition would be more useful if one could guarantee unique-
ness of solutions for (4:1). Uniqueness results for problem (4:1) have been
obtained in the linear case, see [16] and in [21], [8]. In the next theorem
we adapt the reasoning of [12] to the present case to show an existence and
uniqueness result for the solution of an Hamiltonian system of kind (4.1).
As in [12], we replace the terminal co{state datum with an initial one. We
consider the case when F = 0. Set y(t) = A��x(t) as in (3.15). Then the
Hamiltonian system (4:1) becomes8<

:
y0(t) = �Ay(t)�DpH(t; A�y(t); A�p(t)) ; y(0) = y0 = A��x0

p0(t) = Ap(t) +DxH(t; A�y(t); A�p(t)) ; p(0) = p0
(4.2)

Theorem 4.2 Assume (2:2); (2:18) and (3:1). Suppose that

jDxH(t; x; p)�DxH(t; y; q)j+ jDpH(t; x; p)�DpH(t; y; q)j

� LH [jx� yj+ jp� qj]
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for some constant LH > 0 and all x; y; p; q 2 X. Let (t0; y0) 2 [0; T ] �

D(A
1
2 ) and p0 2 D�

xv(t0; y0): Then the Hamiltonian system (4:2) has a

unique solution (y; p) such that y; p 2 C([t0; T ];D(A
1
2 ))\L2(t0; T ;D(A))\

W 1;2(t0; T ;X).

Proof: The existence part is a straightforward consequence of the previous
Theorem. Without loss of generality we set t0 = 0. Let (y1(t); p1(t))
and (y2(t); p2(t)) be two distinct solutions to system (4.2) and consider
~y(t) = y1(t)� y2(t) and ~p(t) = p1(t)� p2(t). Then ~y(t) and ~p(t) satisfy the
system8<

:
~y0(t) = �A~y(t)�Dp

~H(t; A� ~y(t); A� ~p(t)) ; ~y(0) = 0

~p0(t) = A~p(t) +Dx
~H(t; A� ~y(t); A� ~p(t)) ; ~p(0) = 0

(4.3)

where
Dp

~H(t; A� ~y(t); A� ~p(t))

= DpH(t; A�y1(t); A
�p1(t))�DpH(t; A�y2(t); A

�p2(t));

and
Dx

~H(t; A� ~y(t); A� ~p(t))

= DxH(t; A�y1(t); A
�p1(t))�DxH(t; A�y2(t); A

�p2(t))

Let � 2 C1(lR) be a function such that

�(t) =

8><
>:

1 0 � t �
T

2

0 t = T

and j�0(t)j �
4

T
:

We set y(t) = �(t)~y(t) and p(t) = �(t)~p(t). Then y(t) and p(t) satisfy the
system8<
:

y0(t) = �Ay(t)�DpH(t; A�y(t); A�p(t)) + gx(t) ; y(0) = 0

p0(t) = Ap(t) +DxH(t; A�y(t); A�p(t)) + gp(t) ; p(0) = 0

(4.4)

where
gx(t) = �0(t)~y(t) and gp(t) = �0(t)~p(t)

and
DpH(t; A�y(t); A�p(t)) = �(t)Dp

~H(t; A� ~y(t); A� ~p(t))

DxH(t; A�y(t); A�p(t)) = �(t)Dx
~H(t; A� ~y(t); A� ~p(t)):

Now we set

z(t) = e
k(t�T )2

2 y(t) and q(t) = e
k(t�T )2

2 p(t);
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then z(t) and q(t) satisfy the system8>>>><
>>>>:

z0(t) = �Az(t) + k(t� T )z(t)�DqH(t; A�z(t); A�q(t)) + fz(t) ;
z(0) = z(T ) = 0

q0(t) = Aq(t) + k(t� T )q(t) +DzH(t; A�z(t); A�q(t)) + fq(t) ;
q(0) = q(T ) = 0

(4.5)
where

fz(t) = e
k(t�T )2

2 gx(t) and fq(t) = e
k(t�T )2

2 gp(t)

and

DqH(t; A�z(t); A�q(t)) = e
k(t�T )2

2 DpH(t; A�y(t); A�p(t))

DzH(t; A�z(t); A�q(t)) = e
k(t�T )2

2 DxH(t; A�y(t); A�p(t)):

Then multiplying the �rst equation of system (4.5) by z0(t) and the second
equation by q0(t) we get

jz0(t)j2 = � < Az(t); z0(t) > + < k(t� T )z(t); z0(t) >

� < DqH(t; A�z(t); A�q(t)); z0(t) > + < fz(t); z
0(t) >

and

jq0(t)j2 =< Aq(t); q0(t) > + < k(t� T )q(t); q0(t) >

+ < DzH(t; A�z(t); A�q(t)); q0(t) > + < fq(t); q
0(t) > :

The above equalities can be rewritten as

jz0(t)j2 =
1

2

d

dt
f� < Az(t); z(t) > +k(t� T )jz(t)j2g �

k

2
jz(t)j2

� < DqH(t; A�z(t); A�q(t)); z0(t) > + < fz(t); z
0(t) >

and

jq0(t)j2 =
1

2

d

dt
f< Aq(t); q(t) > +k(t� T )jq(t)j2g �

k

2
jq(t)j2

+ < DzH(t; A�z(t); A�q(t)); q0(t) > + < fq(t); q
0(t) > :

Integrating on [0; T ], recalling that z and q vanish at initial and terminal
points, we get Z T

0

(jz0(t)j2 +
k

2
jz(t)j2)dt
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�

Z T

0

jz0(t)j2dt+
1

2

Z T

0

(jDqH(t; A�z(t); A�q(t))j2 + jfz(t)j
2)dt

and Z T

0

(jq0(t)j2 +
k

2
jq(t)j2)dt

�

Z T

0

jq0(t)j2dt+
1

2

Z T

0

(jDzH(t; A�z(t); A�q(t))j2 + jfq(t)j
2)dt:

Therefore these estimates yield

k

Z T

0

(jz(t)j2 + jq(t)j2)dt �

Z T

0

(jfz(t)j
2 + jfq(t)j

2)dt

+

Z T

0

(jDqH(t; A�z(t); A�q(t))j2 + jDzH(t; A�z(t); A�q(t))j2)dt :

(4.6)

In [12] the last two terms of the left hand{side of the above inequality are
estimated, using the interpolation inequality (2.4), by the quantity

C[jA
1
2 z(t)j2 + jA

1
2 q(t)j2];

for some positive constant C. In this case, since � >
1

2
, from the interpo-

lation inequality (2.4) it follows for � <  � 1 and for any � > 0

jDqH(t; A�z(t); A�q(t))j = e
k(t�T )2

2 jDpH(t; A�y(t); A�p(t))j

� e
k(t�T )2

2 �(t)jDpH(t; A�y1(t); A
�p1(t)) �DpH(t; A�y2(t); A

�p2(t))j

� LHe
k(t�T )2

2 �(t)
�
jA�(y1(t)� y2(t))j+ jA�(p1(t)� p2(t))j

�
= LH [jA

�z(t)j+ jA�q(t)j]

� LH�[jA
z(t)j+ jAq(t)j] + LHC� [jz(t)j+ jq(t)j]

(4.7)
and

jDzH(t; A�z(t); A�q(t))j

� LH�[jA
z(t)j+ jAq(t)j] + LHC� [jz(t)j+ jq(t)j]

(4.8)

where C� =
C1

�
, for some positive constant C1. Notice that from estimates

(4.7) and (4.8) it follows

jDqH(t; A�z(t); A�q(t))j2 + jDpH(t; A�z(t); A�q(t))j2

� 2C2LH�[jA
z(t)j2 + jAq(t)j2] + 2C2LHC� [jz(t)j

2 + jq(t)j2]
(4.9)
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for some positive constant C2. Let � be such that 2� � 1 < � � 1. Then,
multiplying by A�z(t) the �rst equation of (4.5) and integrating, we obtain

Z T

0

jA
�+1
2 z(t)j2dt � kT

Z T

0

jA
�
2 z(t)j2dt

+
1

2

Z T

0

(jDqH(t; A�z(t); A�q(t))j2 + jfz(t)j
2)dt+

Z T

0

jA�z(t)j2dt:

Similarly, multiplying by �A�q(t) the second equation of (4.5) and inte-
grating, we obtain

Z T

0

jA
�+1
2 q(t)j2dt � kT

Z T

0

jA
�
2 q(t)j2dt

+
1

2

Z T

0

(jDzH(t; A�z(t); A�q(t))j2 + jfq(t)j
2)dt+

Z T

0

jA�q(t)j2dt:

Adding the two above inequalities we get

Z T

0

(jA
�+1
2 z(t)j2 + jA

�+1
2 q(t)j2)dt � kT

Z T

0

(jA
�
2 z(t)j2 + jA

�
2 q(t)j2)dt

+
1

2

Z T

0

(jDqH(t; A�z(t); A�q(t))j2 + jDzH(t; A�z(t); A�q(t))j2)dt

+
1

2

Z T

0

(jfz(t)j
2 + jfq(t)j

2)dt+

Z T

0

(jA�z(t)j2 + jA�q(t)j2)dt:

(4.10)

Choosing  =
� + 1

2
in (4:9) and applying the interpolation inequality (2.4)

to the �rst and to the last term of the right hand side of (4:10) it follows

Z T

0

(jAz(t)j2 + jAq(t)j2)dt � +
1

2

Z T

0

(jfz(t)j
2 + jfq(t)j

2)dt

+�(kT + LHC + 1)

Z T

0

(jAz(t)j2 + jAq(t)j2)dt

+
C�

2
(kT + LHC2 + 1)

Z T

0

(jz(t)j2 + jq(t)j2)dt:

(4.11)
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So setting � =
1

2(kT + LHC2 + 1)
, recalling C� =

C1

�
, in the above in-

equality we obtain

Z T

0

(jAz(t)j2 + jAq(t)j2)dt � +
1

2

Z T

0

(jfz(t)j
2 + jfq(t)j

2)dt

+2C1(kT + LHC2 + 1)2
Z T

0

(jz(t)j2 + jq(t)j2)dt:

(4.12)

Substituting estimate (4:9) for � = � in (4:6) and then exploiting (4:12) we
derive

k

Z T

0

(jz(t)j2 + jq(t)j2)dt �

Z T

0

(jfz(t)j
2) + jfq(t)j

2)dt

+C2LHC�

Z T

0

(jz(t)j2 + jq(t)j2)dt+ C2LH�

Z T

0

(jAz(t)j2 + jAq(t)j2)dt

� C2[LHC� + 2C1LH�(kT + LHC2 + 1)2]

Z T

0

(jz(t)j2 + jq(t)j2)dt

+(C2LH�+ 1)

Z T

0

(jfz(t)j
2) + jfq(t)j

2)dt :

(4.13)

We set � =
1

kT + LHC2 + 1
, then C� � C1(kT + LHC2 + 1). Therefore,

for T <
1

3LHC1C2

we derive

Z T

0

(jz(t)j2 + jq(t)j2)dt � C(k)

Z T

0

(jfz(t)j
2 + jfq(t)j

2)dt ; (4.14)

where

C(k) =
2

k(1� 3LHC1C2T )� 3LHC1C2(1 + LHC2)

is positive for k big enough and C(k)! 0 as k !1.
From (4.14) directly follows

Z T

0

ek(t�T )
2

(jy(t)j2 + jp(t)j2)dt � C(k)

Z T

0

ek(t�T )
2

(jgx(t)j
2 + jgp(t)j

2)dt :

(4.15)
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On the other hand,

Z T

0

ek(t�T )
2

(jy(t)j2 + jp(t)j2)dt �

Z T
2

0

ek(t�T )
2

(j~y(t)j2 + j~p(t)j2)dt

� ek
T2

4

Z T
2

0

(j~y(t)j2 + j~p(t)j2)dt

(4.16)
and the following holds

Z T

0

ek(t�T )
2

(jgx(t)j
2 + jgp(t)j

2)dt

=

Z T

0

ek(t�T )
2

j�0(t)j2(j~y(t)j2 + j~p(t)j2)dt

�

�
4

T

�2 Z T

T
2

ek(t�T )
2

(j~y(t)j2 + j~p(t)j2)dt

�

�
4

T

�2

ek
T2

4

Z T

T
2

(j~y(t)j2 + j~p(t)j2)dt :

(4.17)

In conclusion, from (4.15), (4.16) and (4.17) we get

ek
T2

4

Z T
2

0

(j~y(t)j2 + j~p(t)j2)dt � C(k)

�
4

T

�2

ek
T2

4

Z T

T
2

(j~y(t)j2 + j~p(t)j2)dt :

From the above inequality we obtain

Z T
2

0

(j~y(t)j2 + j~p(t)j2)dt! 0 as k !1

and we conclude that j~y(t)j = j~p(t)j = 0 on [0; T
2
]. Iterating this procedure

we obtain the result on [0,T].
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