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Optimal Stopping of Controlled

Jump Di�usion Processes:

A Viscosity Solution Approach�
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Abstract

This paper concerns the optimal stopping time problem in a �nite

horizon of a controlled jump di�usion process. We prove that the

value function is continuous and is a viscosity solution of the inte-

grodi�erential variational inequality arising from the associated dy-

namic programming. We also establish comparison principles, which

yield uniqueness results. Moreover, the viscosity solution approach

allows us to extend maximum principles for linear parabolic integrod-

i�erential operators in C0([0; T ]�IRn) and to obtain C1;2([0; T )�IRn)

existence result for the associated Cauchy problem in the nondegen-

erate case.
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1 Introduction

In this paper, we investigate the optimal stopping time problem of a con-
trolled jump di�usion process and the associated Bellman variational in-
equality. Let us brie
y recall the stochastic background for this problem.
On a probability space (
;F ; P ) with a �ltration IF = (Ft)0�t�T satis-
fying usual assumptions, are de�ned two processes (W;�) adapted to IF
where W is a standard d-Brownian motion and � is a homogeneous Pois-
son random measure with intensity measure q(dt; dz) = dt �m(dz). m is
the L�evy measure on IRn of � and ~�(dt; dz) = (� � q)(dt; dz) is called the
compensated jump martingale random measure of �. Readers are referred
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in Volume 8, Number 1, 1998.
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to Gihman-Skorohod (1972 [12]) or Jacod (1979 [17]) for more precise def-
initions and properties of random measures. The state of the system is
described by the IRn-valued process Xt solution of the following stochastic
di�erential equation:

dXt = b(t;Xt� ; �t)dt+ �(t;Xt� ; �t)dWt

+

Z
IRn


(t;Xt� ; �t; z)~�(dt; dz) (1.1)

where �t, the control, belongs to U , the set of all progressively measurable
processes with values in a compact metric separable space U , and �; b; 

are matrix and vectors valued functions satisfying assumptions detailed in
Section 2.

We consider the problem in a �nite time horizon T of maximizing with
control and optimal stopping a running gain f and a terminal reward g
with discount rate c, and we introduce therefore the value function:

v(t; x) = sup
� 2 Tt;T
�: 2 U

Etx

�Z �

t

e
�
R
s

t
c(u;Xu)duf(s;Xs; �s)ds

+e
�
R
�

t
c(u;Xu)dug(X� )

�
(1.2)

for all (t; x) 2 [0; T ]�IRn. Etx is the conditional expectation under P given
that Xt = x and Tt;T is the set of all stopping times between t and T . c, f
and g are real valued functions satisfying conditions detailed in Section 2.
This stochastic control problem applies in �nance theory for the American
option valuation and the consumption/investment portfolio choice.

The Hamilton-Jacobi-Bellman (HJB in short) equation associated
with this problem is a variational inequality involving, at least heuristi-
cally, a nonlinear second order parabolic integrodi�erential equation (see
Bensoussan{J.L. Lions (1982) [3] for example):

min

�
c(t; x)v �

@v

@t
+min

�2U
(�A�

t v �B�
t v � f(t; x; �)) ; v � g(x)

�
= 0

(1.3)
in [0; T )� IRn with the terminal data

v(T; x) = g(x) 8x 2 IRn (1.4)

where A�
t is the linear second-order di�erential operator:

A�
t v(t; x) = tr

�
1

2
��0(t; x; �)D2

xv(t; x)

�
+ b(t; x; �):Dxv(t; x)

2



CONTROLLED JUMP DIFFUSION PROCESSES

and B�
t is the integrodi�erential operator:

B�
t v(t; x) =

Z
IRn

[v(t; x+ 
(t; x; �; z))� v(t; x)

� 
(t; x; �; z):Dxv(t; x)]m(dz)

As it is well-known, there is not in general a smooth solution of the
equation (1.3), especially when the di�usion coe�cient is degenerate. One
is forced to use a notion of weak solutions such as viscosity solutions in-
troduced by Crandall{P.L. Lions (1983 [7]) in the deterministic �rst order
case and by P.L. Lions (1983 [19]) in the second order case for di�usion
processes. Soner (1986a-b [23] [24]) has extended the viscosity approach to
piecewise-deterministic processes with jumps, but restricts to bounded co-
e�cients. Sayah (1991 [22]) studied also �rst order Hamilton-Jacobi equa-
tions with integral term, under less restrictive assumptions. She obtains
existence results via Perron's method. In this paper, we use the dynamic
programming approach and viscosity solutions to study the �nite horizon
problem of mixed optimal stopping and stochastic control of jump di�usion
processes. In proving comparison principles, we adopt classical viscosity so-
lution techniques for second order equations (see Crandall{Ishii{P.L. Lions
1992 [6] for a general overview of the theory), by taking into account the
non local integral term B. Applied to a problem without stochastic con-
trol, the viscosity solution approach provides maximum principles for linear
second order parabolic integrodi�erential operators in the space of contin-
uous functions C0([0; T ]� IRn), extending then results obtained in Sobolev
spaces by Bony 1967 [4], Bensoussan{J.L. Lions [3] or Gimbert{P.L. Lions
1984 [13]. We give a simpler proof adapted to the linear case, which does
not use the general viscosity solution method and do not require any Lip-
schitz condition. Uniqueness results for viscosity solutions and standard
regularity results for second order parabolic operators (see e.g. Friedman
1964 [10]) also yield C1;2([0; T ) � IRn) existence result for the associated
Cauchy problem in the nondegenerate case.

The outline of the paper is as follows. Assumptions and equivalent def-
initions of viscosity solutions of second order integrodi�erential operators
are given in the next section, with a careful attention on the integral term.
In accordance with �nancial applications, we allow the coe�cients of the
state process and of the value function to be unbounded. In Section 3, us-
ing the dynamic programming principle and stating some careful estimates,
we prove that the value function is continuous and is a viscosity solution
of (1.3). Section 4 is devoted to uniqueness, and �nally in Section 5, we
apply the viscosity solution method to the case of linear integrodi�erential
operators.
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2 Assumptions and De�nitions

We assume that the functions b; �; 
; f; g; c are continuous with respect to
(t; x; �). We also assume also 
(t; x; �; :) is bounded uniformly in � 2 U in
a neighbourhood of z = 0 (for example jzj < 1). The L�evy measure m is
a positive �-�nite measure on IRn, eventually with a singularity in 0, such
that: Z

jzj�1

m(dz) < +1: (2.1)

Let us point out that this standard assumption is satis�ed for all stable
processes. Furthermore, we shall make the following assumptions: there

exist K > 0; c0 2 IR, � : IRn 7! IR+, with

Z
IRn

�2(z)m(dz) < +1, such

that for all t; s 2 [0; T ], x; y 2 IRn and � 2 U ,

jb(t; x; �) � b(t; y; �)j+ j�(t; x; �) � �(t; y; �)j � Kjx� yj (2.2)

j
(t; x; �; z)� 
(t; y; �; z)j � �(z)jx� yj (2.3)

j
(t; x; �; z)j � �(z)(1 + jxj) (2.4)

jf(t; x; �)� f(s; y; �)j+ jg(x)� g(y)j � K [jt� sj+ jx� yj] (2.5)

c(t; x) � c0: (2.6)

Notice that the global Lipschitz conditions (2.2), (2.5) and the continuity
of b; �; f with respect to (t; �) yield the global linear growth conditions:

jb(t; x; �)j + j�(t; x; �)j � K(1 + jxj); (2.7)

jf(t; x; �)j + jg(x)j � K(1 + jxj): (2.8)

Assumptions on b; �; 
 ensure that, for each admissible control �: 2 U ,
there exists a unique strong solution to (1.1) with an initial condition (see
Gihman{Skorohod [12]). Let us give two examples for which these technical
conditions, especially on the jump component, are satis�ed.

Example 1

m is a �nite measure on IR: m(dz) = �h(z)dz, and h is a probability density
which admits second order moment. 
(t; x; �; z) = xz so that assumptions
(2.3){(2.4) are satis�ed with �(z) = z. When b = � = 0, (Xt) is a standard
jump-Markov process with occurrence in state changes determined by a
Poisson process with parameter � and with transition probability given by

�(x;�) = 1
x

Z
�

h(
y

x
)dy, for any Borelian � of IR.
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Example 2

m is the L�evy measure of a symmetric stable process of order � 2]0; 2[, i.e.
m(dz) = jzj�1��dz, and 
(t; x; �; z) = z so that (2.3){(2.4) are satis�ed
with �(z) = 0.

For q � 0, we de�ne:

Cq([0; T ]� IRn) =

(
� 2 C0([0; T ]� IRn) = sup

[0;T ]�IRn

j�(t; x)j

1 + jxjq
< +1

)
:

Let us de�ne (by abuse of notation) for � 2 U , t 2 [0; T ]; x 2 IRn; p 2
IRn;M 2 Sn (where Sn is the space of symmetric n � n matrices) the
operator:

A�(t; x; p;M) = tr

�
1

2
��0(t; x; �)M

�
+ b(t; x; �):p:

For � 2 (0; 1) and � 2 C2([0; T ]� IRn), we can de�ne:

B�
� (t; x; �) =

Z
jzj��

[�(t; x+ 
(t; x; �; z))� �(t; x)

� 
(t; x; �; z):Dx�(t; x)]m(dz):

Indeed this integral term can be written also:

B�
� (t; x; �) =

Z
jzj��

Z 1

0

(1�y)tr
�
D2
x�(t; x+ y
(t; x; �; z))

0(t; x; �; z)

�
dym(dz):

whose integrand is bounded by: Ct;x;��
2(z), for all jzj � �, since 
(t; x; �; :)

is bounded uniformly in � 2 U for jzj < 1. Therefore, B�
� (t; x; �) is con-

vergent and bounded uniformly in � 2 U and

lim
�!0+

sup
�2U

B�
� (t; x; �) = 0: (2.9)

We de�ne also for � 2 C2([0; T ]� IRn):

B�;�(t; x; p; �) =

Z
jzj��

[�(t; x + 
(t; x; �; z))� �(t; x)

�
(t; x; �; z):p]m(dz):

The integrand of B�;�(t; x; p; �) is bounded by: Cp;x(1 + j
(t; x; �; z)j2)
and then this integral term is convergent and bounded uniformly in � 2 U
from assumptions (2.1) on m and (2.4) on 
. Finally, we can de�ne for all
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� 2 C2([0; T ]� IRn) \ C2([0; T ]� IRn), the integrodi�erential operator:

B�(t; x; �) =

Z
IRn

[�(t; x+ 
(t; x; �; z))� �(t; x)

�
(t; x; �; z):Dx�(t; x)]m(dz)

= B�
� (t; x; �) +B�;�(t; x;Dx�(t; x); �): (2.10)

Therefore, the Bellman equation (1.3) is well de�ned for all functions v 2
C2([0; T ]� IRn) \ C2([0; T ]� IRn), and is written as:

min

�
c(t; x)v(t; x) �

@v

@t
(t; x)

+min
�2U

�
�f(t; x; �)�A�(t; x;Dxv(t; x); D

2
xv(t; x))�B�(t; x; v)

�
;

v(t; x)� g(x)g = 0: (2.11)

But as it is well-known, the value function v de�ned in (1.2) is not
smooth and equation (2.11) should be interpreted in a weaker sense. Adapt-
ing the notion of viscosity solutions introduced by Crandall{P.L. Lions [7]
and then by Soner [23] and Sayah [22] for �rst order integrodi�erential
operators, we de�ne:

De�nition 2.1 (i) Any v 2 C0([0; T ] � IRn) is a viscosity supersolution

(subsolution) of (2.11) if

min

�
c(t; x)v(t; x) �

@ 

@t
(t; x)

+min
�2U

�
�f(t; x; �)�A�(t; x;Dx (t; x); D

2
x (t; x))�B�(t; x;  )

�
;

v(t; x)� g(x)g � 0 (2.12)

( � 0) whenever  2 C2([0; T ] � IRn) \ C2([0; T ] � IRn) and v �  has a

global minimum (maximum) at (t; x) 2 [0; T )� IRn.

(ii) u is a viscosity solution of (2.11) if it is both super and subsolution.

Repeating arguments of Soner ([23] Lemma 2.1) or Sayah ([22] Proposi-
tion 2.1), we easily obtain an equivalent formulation for viscosity solutions
in C2([0; T ]� IRn).

Lemma 2.1 Let v 2 C2([0; T ]� IRn). Then v is a viscosity supersolution

(subsolution) of (2.11) if and only if: 8� 2 (0; 1),

min

�
c(t; x)v(t; x) �

@ 

@t
(t; x)

+min
�2U

�
�f(t; x; �)�A�(t; x;Dx (t; x); D

2
x (t; x)) �B�

� (t; x;  )

�B�;�(t; x;Dx (t; x); v)) ; v(t; x) � g(x)g � 0 (2.13)

6
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(� 0) whenever  2 C2([0; T ] � IRn) and v �  has a global minimum

(maximum) at (t; x) 2 [0; T )� IRn.

Remark

As justi�ed above, the two integral terms

B�
� (t; x;  )

and
B�;�(t; x;Dx (t; x); v)

in the inequality (2.13) are well-de�ned and bounded uniformly in �, when-
ever  2 C2([0; T ]� IRn) and v 2 C2([0; T ]� IRn).

In proving the uniqueness result for viscosity solutions of second order
equations, it is convenient to give an intrinsic characterization of viscosity
solutions. First, let us recall the notion of parabolic semijets as introduced
in P.L. Lions [19]. Given v 2 C0([0; T ]� IRn) and (t; x) 2 [0; T )� IRn, we
de�ne the parabolic superjet:

P
2;+v(t; x) = f(p0; p;M) 2 IR� IRn

� Sn = v(s; y) � v(t; x) + p0(s� t)

+p:(y � x) +
1

2
(y � x):M(y � x) + o(js� tj+ jy � xj2)

as (s; y)! (t; x)g

and its closure:

�P2;+v(t; x) =

�
(p0; p;M) = lim

n!+1
(p0;n; pn;Mn)

with (p0;n; pn;Mn) 2 P
2;+v(tn; xn)

and lim
n!+1

(tn; xn; v(tn; xn)) = (t; x; v(t; x))

�
:

Similarly, we consider the parabolic subjet P2;�v(t; x) = �P2;+(�v)(t; x)
and its closure �P2;�v(t; x) = � �P2;+(�v)(t; x). It is proved in P.L. Lions
[19] that

P
2;+(�)v(t; x) =

n�
@ 

@t
(t; x);Dx (t; x); D

2
x (t; x)

�
;  2 C2([0; T ]� IRn

)

and v �  has a global maximum (minimum) at (t; x)g

Using the above de�nitions, Lemma 2.1 and continuity of the HJB opera-
tor, we have then an intrinsic formulation of viscosity solutions in C2([0; T ]�
IRn).

Lemma 2.2 Let v 2 C2([0; T ] � IRn) be a viscosity supersolution (resp.

subsolution) of (2.11). Then, for all � 2 (0; 1), 8(t; x) 2 [0; T ) � IRn,

7



HUYÊN PHAM

8(p0; p;M) 2 �P2;�v(t; x) (resp. �P2;+v(t; x)), there exists  2 C2([0; T ] �
IRn) such that

min

�
c(t; x)v(t; x) � p0 +min

�2U
(�f(t; x; �)�A�(t; x; p;M)

�B�
� (t; x;  )�B�;�(t; x; p; v)

�
; v(t; x)� g(x)

	
� 0 (2.14)

(resp. � 0).

Remarks

1. The test function  of the above lemma is such that v � has a global
maximum (minimum) at (tn; xn) with (tn; xn)! (t; x).
2. While De�nition 2.1 of viscosity solutions is convenient for establishing
that the value function is a viscosity solution of the HJB equation thanks
to the dynamic programming principle, this last equivalent formulation
(2.14) of viscosity solutions in C2([0; T ] � IRn) will be particularly useful
for proving comparison principles for (2.11).

3 Dynamic Programming and Viscosity Solutions

In this section, we focus on proving the continuity and the viscosity prop-
erties of the value function, as consequences of the dynamic programming
principle. To simplify notations, we assume c(t; x) = c (positive constant),
which is not a restriction from assumption (2.6) and by considering the
function e�c

0

0tv(t; x) with c00 < c0. Therefore, the value function de�ned in
(1.2) can be written as

v(t; x) = sup
� 2 TT�t
�: 2 U

E

�Z �

0

e�csf(s+ t;Xt;x
s ; �s)ds+ e�c�g(Xt;x

� )

�
(3.1)

where TT�t denotes the set of all stopping times between 0 and T � t and
Xt;x
s is the solution of the stochastic di�erential equation

dXs = b(s+ t;Xs�; �s)ds+ �(s+ t;Xs�; �s)dWs

+

Z
IRn


(s+ t;Xs�; �s; z)~�(ds; dz);

X0 = x:

First, we need some preliminary estimates on the moments of the jump
di�usion state process. The proof of the following lemma is rejected in
appendix.

8



CONTROLLED JUMP DIFFUSION PROCESSES

Lemma 3.1 Let (2.2), (2.3) and (2.4) hold. For any k 2 [0; 2], there exists
C = C(k;K; T ) > 0 such that for all h; t 2 [0; T ], x; y 2 IRn, � 2 U , � 2 Th:

E
��Xt;x

�

��k � C(1 + jxjk) (3.2)

E
��Xt;x

� � x
��k � C(1 + jxjk)h

k
2 (3.3)

E

�
sup

0�s�h

��Xt;x
s � x

���k � C(1 + jxjk)h
k
2 (3.4)

E
��Xt;x

� �Xt;y
�

��k � Cjx � yj2 (3.5)

Remark

Estimates of the moments for stochastic di�erential equations are gener-
ally proved for deterministic time � (see e.g. Krylov 1980 [18], Gihman-
Skorohod [12]). Actually, these results can be generalized for any stopping
times, essentially thanks to the optional sampling theorem. Note also that
in the di�usion case, estimates of Lemma 3.1 are valid for all orders k,
while it is generally not true in the jump di�usion case without any other
assumption on 
.

We deduce easily from linear growth condition (2.8) on f; g and from
estimate (3.2), with k=1, that v satis�es also a global linear growth condi-
tion:

v(t; x) � C(1 + jxj): (3.6)

Moreover, from Lipschitz condition (2.5) on f; g, and from estimate (3.5),
we deduce that the value function is also Lipschitz in x uniformly in t:

jv(t; x) � v(t; y)j � Cjx� yj: (3.7)

As it is well-known, the dynamic programming principle yields that
the value function is a viscosity solution of the corresponding HJB equa-
tion. The mathematical formulation of Bellman's principle for the optimal
stopping of a controlled process is the following:

Proposition 3.1 For all (t; x) 2 [0; T ]� IRn, h 2 TT�t, we have

v(t; x) = sup
� 2 TT�t
�: 2 U

E

�Z �^h

0

e�csf(s+ t;X
t;x
s ; �s)ds+ 1[�<h]e

�c�
g(X

t;x
� )

+ 1[h�� ]e
�chv(t+ h;Xt;x

h )
�
:

Actually, a stronger statement of Bellman's principle, which is more con-
venient for deriving the HJB equation, is:

9
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Proposition 3.2 Let � > 0. For all (t; x) 2 [0; T ] � IRn and for each

admissible control �: 2 U , de�ne the stopping time

� �t;x;� = inf
�
0 � s � T � t; v(s+ t;Xt;x

s ) � g(Xt;x
s ) + �

	
:

Therefore, if �� � � �t;x;� for all � 2 U , we have:

v(t; x) = sup
�:2U

E

�Z �

0

e�csf(s+ t;Xt;x
s ; �s)ds+ e�c�v(t+ �;Xt;x

� )

�

(we omit the dependence of �; � � in t; x; �:)

Remarks

1. Proposition 3.1 is a consequence of Proposition 3.2 as observed in Krylov
([18] p.135).
2. When the control set U is reduced to a point �0, i.e. there is no control
on the process X , we have the well known result that for � = 0, �0 is an
optimal stopping time for the problem and that f

R s
0
e�cuf(u+t;Xt;x

u ; �0)du
+ e�csv(s+ t;Xt;x

s ); 0 � s � �0g is a martingale.

Proposition 3.2 is proved by Krylov [18] for di�usion state process. Let
us mention how it may be generalized in the jump di�usion case. We
�rst prove Bellman's principle for the optimal control problem without
stopping. It can be studied by approximating an arbitrary control strategy
with the aid of step strategies, as in Krylov [18], or by using a semi-group
approach as in Bensoussan{J.L. Lions [3] and Nisio (1976 [20]). In both
methods, the main point is the continuity of the value function with respect
to the space variable x, which is actually the present case (see (3.7)). To
generalize the dynamic programming principle for the optimal control and
stopping problem, we use the technique of randomized stopping developed
by Krylov [18]. This method consists in approximating in a reasonable
sense the value function of the optimal control problem with stopping rule,
by value functions of a control problem without stopping.

Let us now prove the continuity of the value function.

Proposition 3.3 Under assumptions (2.2){(2.5), the value function v 2
C0([0; T ] � IRn). More precisely, there exists a constant C > 0 such that

for all t; s 2 [0; T ], x; y 2 IRn,

jv(t; x)� v(s; y)j � C
h
(1 + jxj)jt� sj

1
2 + jx� yj

i
: (3.8)

Proof: We have already seen that v is Lipschitz in x, uniformly in t
(see (3.7)). To prove continuity property in time t, we use the dynamic

10
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programming principle. Let 0 � t < s � T . Applying Proposition 3.1 to
v(t; x) with h = s� t, we deduce

0 � v(t; x) � v(s; x)

= sup
� 2 TT�t
�: 2 U

E

"Z �^(s�t)

0

e�cuf(u+ t;Xt;x
u ; �u)du

+1[�<s�t]e
�c�

�
g(Xt;x

� )� g(x)
�
+ 1[�<s�t]e

�c� (g(x)� v(s; x))

+ 1[s�t�� ]e
�c(s�t)

�
v(s;Xt;x

s�t)� v(s; x)
�

+ 1[s�t�� ]

�
e�c(s�t) � 1

�
v(s; x) +1[�<s�t]

�
e�c� � 1

�
v(s; x)

�
:

Now, thanks to linear growth condition (2.8) on f , Lipschitz assumption
(2.5) on g, relation (3.7) and noting that g(x) � v(s; x), 0 � 1� e�ch � ch
and v satis�es (3.6), we deduce that:

jv(t; x) � v(s; x)j � C

�Z s�t

0

(1 +EjXt;x
u j)du+ (1 + jxj)js � tj

+ sup
� 2 Ts�t
�: 2 U

EjXt;x
� � xj+ sup

�:2U

EjXt;x
s�t � xj

9>=
>; :

We conclude with the estimates of Lemma 3.1. 2

Remarks

1. The above proposition shows that v is in W 1([0; T ] � IRn), the set of
continuous functions in [0; T ]�IRn, Lipschitz in x, uniformly in t, and more
generally in UCx([0; T ]�IR

n), the set of continuous functions in [0; T ]�IRn,
uniformly continuous in x, uniformly in t.
2. If the linear growth condition (2.8) on f; g is strengthen to f; g 2
C�([0; T ] � IRn), for � 2 [0; 1], the preceding arguments show that v is
also in C�([0; T ]� IRn) and (3.8) becomes:

jv(t; x)� v(s; y)j � C
h
(1 + jxj�)jt� sj

1
2 + jx� yj

i
:

The following theorem relates the value function de�ned by (1.2) (or
(3.1)) to the Bellman equation (2.11). We essentially adapt arguments
of P.L. Lions [19] to an optimal control and stopping problem of a jump
di�usion process.

Theorem 3.1 Under assumptions (2.1){(2.5), the value function v is a

viscosity solution of (2.11).

11
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Proof: We already know that v 2 C0([0; T ]� IRn) (Proposition 3.3). We
�rst prove that v is a supersolution of (2.11). Let (t; x) 2 [0; T )� IRn and
 2 C2([0; T ]� IRn)\ C2([0; T ]�IR

n) such that without loss of generality

0 = (v �  )(t; x) = min
[0;T ]�IRn

(v �  ): (3.9)

Apply Proposition 3.1 with 0 < h < T � t:

v(t; x) � sup
�:2U

E

"Z h

0

e�csf(s+ t;Xt;x
s ; �s)ds+ e�chv(t+ h;Xt;x

h )

#
:

From (3.9), it yields

0 � sup
�:2U

E

"Z h

0

e�csf(s+ t;Xt;x
s ; �s)ds+ e�ch (t+ h;Xt;x

h )�  (t; x)

#

By applying Itô's formula to e�cs (t+s;Xt;x
s ), we obtain from assumptions

(2.1){(2.5) and estimates of Lemma 3.1:

sup
�2U

1

h
E

"Z h

0

�
�c (t; x) +

@ 

@t
(t; x) + A�s

t  (t; x) + B�s
t  (t; x)

+ f(t; x; �s)) ds] � �(h):

Choosing �s = � 2 U , we �nd by sending h! 0+

c (t; x)�
@ 

@t
(t; x)�A�

t  (t; x)�B�
t  (t; x)� f(t; x; �) � 0;

which provides supersolution inequality (2.12) since from de�nition of the
value function, v(t; x) � g(x). To prove subsolution property, we use
Proposition 3.2. Let (t; x) 2 [0; T ) � IRn and  2 C2([0; T ] � IRn)\

C2([0; T ]� IRn) such that without loss of generality

0 = (v �  )(t; x) = max
[0;T ]�IRn

(v �  ): (3.10)

We already know that v(t; x) � g(x). If v(t; x) = g(x), the inequality of
subsolution is obviously satis�ed. Assume therefore that v(t; x) > g(x) and
de�ne

� =
v(t; x) � g(x)

2
> 0:

For each control � 2 U , de�ne as in Proposition 3.2, the stopping time

� �t;x;� = inf
�
0 � s � T � t; v(s+ t;Xt;x

s ) � g(Xt;x
s ) + �

	
:

12
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Thus, we have for all h > 0, since h ^ � � � � �:

v(t; x) = sup
�:2U

E

"Z h^��

0

e�csf(s+ t;Xt;x
s ; �s)ds

+ e�c(h^�
�)v(t+ (h ^ � �); Xt;x

h^��)
i

and then from (3.10):

0 � sup
�:2U

1

h
E

"Z h^��

0

e�csf(s+ t;Xt;x
s ; �s)ds

+e�ch^�
�

 (t+ h ^ � �; Xt;x
h^��)�  (t; x) ] :

Apply Itô's formula to e�cs (t + s;Xt;x
s ) and use as above assumptions

(2.1){(2.5) with estimates of Lemma 3.1 to obtain:

�(h) � sup
�:2U

1

h
E

�Z h^��

0

�
�c (t; x) +

@ 

@t
(t; x) +A�s

t  (t; x)

+ B�s
t  (t; x) + f(t; x; �s)) ds]

� sup
�2U

n
�c (t; x) +

@ 

@t
(t; x) +A�

t  (t; x) +B�
t  (t; x) + f(t; x; �)

o
: sup
�2U

E
h
h ^ � �

h

i
: (3.11)

Consider the function ~v(s; x) = v(s + t; x) � g(x). Then ~v satis�es the
same continuity relation (3.8) as v, and for each control � 2 U :

P [� �t;x;� � h] � P

�
sup

0�s�h

��~v(s;Xt;x
s )� ~v(0; x)

�� � �

�

�
1

�2
E

�
sup

0�s�h

��~v(s;Xt;x
s )� ~v(0; x)

���2

�
C

�2
E

�
(1 + jxj)h

1
2 + sup

0�s�h

jXt;x
s � xj

�2
� C 0h

where the last inequality is derived from estimate (3.4) and C 0 is a constant
independent of � 2 U . Sending therefore h ! 0+ in the inequality (3.11),
we have:

0 � �c (t; x) +
@ 

@t
(t; x) + sup

�2U

fA�
t  (t; x) +B�

t  (t; x) + f(t; x; �)g

and �nally the subsolution inequality (2.12). 2

13
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4 Uniqueness

Uniqueness proofs for viscosity solutions of �rst-order integrodi�erential
operators were given in Soner [24] and Sayah [22]. The second order case
introduces other di�culties which may be overcome thanks to Ishii's lemma
(1989 [15]). In this section, we will use an intrinsic version of this lemma,
proved in Crandall{Ishii (1990 [5] Theorem 9). We state comparison prin-
ciples following, for the most part, classical viscosity solution techniques
with modi�cations arising from the integral term.

We shall work in the space of functions UCx([0; T ]� IR
n), even though,

under our assumptions, the value function v is more precisely inW 1([0; T ]�
IRn). As a matter of fact, this slight extension is straightforward. Since
gain and reward functions f and g are generally unbounded in �nancial
applications, we do not restrict to bounded viscosity solutions (recall that
UCx([0; T ]�IR

n)� C1([0; T ]�IR
n)). Sayah [22] proved an uniqueness result

for unbounded viscosity solutions of �rst order integrodi�erential operators.
However her method does not apply in our context, since her structure con-
ditions ([22] (5.3){(5.4) p.1081{1082) are clearly not satis�ed here, unless
the coe�cients b; �; 
 are bounded. To avoid such restrictive assumptions,
we shall adapt arguments of Ishii [14] (see also Barles{Buckdahn{Pardoux
1994 [1]) and prove the following comparison principle.

Theorem 4.1 Assume (2.1){(2.5). Let u (resp. v) 2 UCx([0; T ]� IR
n) be

a viscosity subsolution (resp. supersolution) of (2.11). If u(T; x) � v(T; x)
for all x 2 IRn, then

u(t; x) � v(t; x) 8(t; x) 2 [0; T ]� IRn: (4.1)

Proof: First, observe that it su�ces to prove comparison inequality (4.1)
for all (t; x) 2 (0; T ]�IRn by continuity of u and v in t = 0. For �; �; �; � > 0,
let us de�ne the function � in (0; T ]� IRn:

�(t; x; y) = u(t; x)� v(t; y)�
�

t
�

1

2�
jx� yj2� �e�(T�t)

�
jxj2 + jyj2

�
(4.2)

Since u; v 2 C1([0; T ] � IRn), � admits a maximum at (�t; �x; �y)2 (0; T ] �
IRn� IRn (we omit the dependance on �, �, � and � to alleviate notations).
Writing that 2�(�t; �x; �y) � �(�t; �x; �x)+�(�t; �y; �y) and using uniform continuity
of u and v, we easily check (see e.g. Ishii 1984 [14] Theorem 1.1) that:

1

�
j�x� �yj2 � !(C�

1
2 ) (4.3)

where C is a positive constant independent of �, �, �, �, and ! is a modulus
of continuity for u and v. From the inequality �(T; 0; 0) � �(�t; �x; �y) and
since u; v 2 C1([0; T ]� IRn), we have:

�(j�xj2 + j�yj2) � C(1 + j�xj+ j�yj):

14
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Using Young's inequality, we deduce that there exists a constant C� , de-
pending on � but not on �, such that:

j�xj; j�yj � C�: (4.4)

It follows from (4.3){(4.4) that, along a subsequence, (�t; �x; �y) converges to
(t0; x0; x0) 2 [0; T ]� IRn � IRn, as �! 0+.

If �t = T then writing that �(t; x; x) � �(T; �x; �y), we have

u(t; x)� v(t; x) �
�

t
� 2�e�(T�t)jxj2 � u(T; �x)� v(T; �x)

+v(T; �x)� v(T; �y)

� !(j�x� �yj)

where the second inequality follows from uniform continuity of v and since
by assumption u(T; x) � v(T; x). Sending �; �; � ! 0+ and using estimate
(4.3), we have: u(t; x) � v(t; x). Assume therefore that �t < T . Applying
Theorem 9 of Crandall{Ishii [5] to the function �(t; x; y) at point (�t; �x; �y)
2 (0; T )� IRn � IRn, we can �nd p0 2 IR, M;N 2 Sn such that�

p0 �
�
�t2
� ��e�(T�

�t)
�
j�xj2 + j�yj2

�
;

1

�
(�x� �y) + 2�e�(T�

�t)�x;M + 2�e�(T�
�t)In

�
2 �P2;+u(�t; �x)

�
p0;

1

�
(�x� �y)� 2�e�(T�

�t)�y;N � 2�e�(T�
�t)In

�
2 �P2;�v(�t; �y)

and under Lipschitz condition (2.2) on �,

tr

�
1

2
��0(�t; �x; �)M

�
� tr

�
1

2
��0(�t; �y; �)N

�
�

C

�
j�x� �yj2: (4.5)

The fact that u and v are respectively viscosity subsolution and supersolu-
tion in C2([0; T ]�IR

n) of (2.11) yields (thanks to Lemma 2.2): 8� 2 (0; 1),

min

n
cu(�t; �x)� p0 +

�
�t2

+ ��e�(T�
�t)
�
j�xj2 + j�yj2

�
+min

�2U
(�f(�t; �x; �)

�A�
(�t; �x;

1

�
(�x� �y) + 2�e�(T�

�t)
�x;M + 2�e�(T�

�t)In)

�B
�
� (�t; �x;  1)�B

�;�
(�t; �x;

1

�
(�x� �y) + 2�e�(T�

�t)
�x; u)

�
; u(�t; �x)� g(�x)

o
� 0

and
min fcv(�t; �y)� p0

+min
�2U

�
�f(�t; �y; �)�A�

(�t; �y;
1

�
(�x� �y)� 2�e�(T�

�t)
�y;N � 2�e

�(T��t)
In)

15
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�B�
� (�t; �y;  2)�B�;�

(�t; �y;
1

�
(�x� �y)� 2�e�(T�

�t)
�y; v)

�
; v(�t; �y)� g(�y)

o
� 0

for some  1;  2 2 C2([0; T ] � IRn). Subtracting these two inequalities
and remarking that min(a; b) � min(d; e) � 0 implies either a � d � 0 or
b� e � 0, we divide our consideration into two cases:

(i) the case

c [u(�t; �x)� v(�t; �y)] +
�
�t2

+ ��e�(T�
�t)
�
j�xj2 + j�yj2

�
� sup

�
ff(�t; �x; �)� f(�t; �y; �)g

+sup
�

�
A�

�
�t; �x;

1

�
(�x � �y) + 2�e�(T�

�t)�x;M + 2�e�(T�
�t)In

�

�A�

�
�t; �y;

1

�
(�x� �y)� 2�e�(T�

�t)�y;N � 2�e�(T�
�t)In

��
+sup

�

�
B�
� (�t; �x;  1)�B�

� (�t; �y;  2)
	

+sup
�

�
B�;�(�t; �x;

1

�
(�x� �y) + 2�e�(T�

�t)�x; u)

�B�;�(�t; �y;
1

�
(�x� �y)� 2�e�(T�

�t)�y; v)

�
� (I1) + (I2) + (I3;�) + (I�3 ) (4.6)

In view of conditions (2.2), (2.5), (2.7) on b; �; f and from (4.5), we have
the classical estimates of (I1) and (I2):

(I1) � Cj�x� �yj

(I2) � C

�
1

�
j�x� �yj2 + �e�(T�

�t)(1 + j�xj2 + j�yj2)

�
:

As justi�ed in Section 2, the two integral terms of (I3;�) are convergent and
bounded uniformly in � since  1;  2 2 C

2([0; T ]� IRn) and we have from
(2.9):

lim sup
�!0+

(I3;�) � 0

As also explained in Section 2, the two integral terms of (I�3 ) are convergent
and bounded uniformly in � since u; v 2 C2([0; T ]� IRn). Moreover, from
the de�nition (4.2) of �, the di�erences of these two integrands is given by:h

u(�t; �x+ 
(�t; �x; �; z))� u(�t; �x)� 
(�t; �x; �; z):

�
1

�
(�x� �y) + 2�e�(T�

�t)
�x
�i

�

h
v(�t; �y + 
(�t; �y; �; z))� v(�t; �y)� 
(�t; �y; �; z):

�
1

�
(�x� �y)� 2�e�(T�

�t)�y
�i

= �(�t; �x+ 
(�t; �x; �; z); �y + 
(�t; �y; �; z))� �(�t; �x; �y)

16
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+
1

2�
j
(�t; �x; �; z)� 
(�t; �y; �; z)j2

+ �e�(T�
�t)
�
j
(�t; �x; �; z)j2 + j
(�t; �y; �; z)j2

�
:

Since (�t; �x; �y) is a maximum point of � in (0; T ] � IRn � IRn: �(�t; �x +

(�t; �x; �; z); �y + 
(�t; �y; �; z)) � �(�t; �x; �y) � 0, and we have, therefore, by
assumptions (2.3){(2.4) on 
: for every � 2 (0; 1)

(I�3 ) � C

�
1

2�
j�x� �yj2 + �e�(T�

�t)(1 + j�xj2 + j�yj2)

�
:

Writing that �(t; x; x) � �(�t; �x; �x) and using inequality (4.6), we have
(recall that c; � > 0):

u(t; x)� v(t; x) �
�

t
� 2�e�(T�t)jxj2

�
1

c
[(I1) + (I2) + (I3;�) + (I�3 )]�

�

c
�e�(T�

�t)
�
j�xj2 + j�yj2

�
:

Sending �; � ! 0+, with the above estimates of (I1)-(I2)-(I3;�)-(I
�
3 ), we

obtain:

u(t; x)� v(t; x) �
�

t
� 2�e�(T�t)jxj2 �

2�

c
e�(T�t0)

�
C(1 + 2jx0j

2)� �jx0j
2
�

(4.7)
Choose � su�ciently large positive (� � 2C) and send �; � ! 0+ to con-
clude that u(t; x) � v(t; x).

(ii) the second case occurs if

u(�t; �x)� v(�t; �y) + g(�y)� g(�x) � 0:

Using Lipschitz condition (2.5) on g and estimate (4.3), we obtain that
lim sup
�!0+

(u(�t; �x)� v(�t; �y)) � 0 and �nally that

u(t; x) � v(t; x):

2

5 Applications of Viscosity Solutions to the Case of

Linear Integrodi�erential Operators

In this section, we apply the viscosity solution approach to a problem
without control and stopping time, and we consider therefore the linear
parabolic integrodi�erential operator

Lv = �
@v

@t
�Atv �Btv + c(t; x)v:

17
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A and B are the operators de�ned in the introduction and are associated to
a jump di�usion process Xt solution of (1.1), where the dependence upon
control � is suppressed.

Given v 2 C0([0; T ] � IRn), we say that Lv � 0 (resp. � 0) in the
viscosity sense if v is a viscosity supersolution (resp. subsolution), in the
sense of De�nition 2.1, of Lv = 0. We also say that Lv > 0 in the viscosity
sense if the supersolution inequality is strict. Thanks to the linearity of the
operator L, it is easy to check that if Lv � 0 in the viscosity sense and if
w 2 C2([0; T ]� IRn)\C2([0; T ]� IR

n) such that Lw � 0, then L(v+w) � 0
in the viscosity sense.

5.1 Maximum principles in C
0
([0; T ]� IRn

)

The results of Section 4 extend in particular maximum principles for the
operator L in Sobolev spaces, proved in Bony [4] or Bensoussan{J.L. Lions
[3], to the set C2([0; T ]�IR

n). We give in the linear case a simpler proof un-
der weaker assumptions and that do not use the classical viscosity solution
techniques. We �rst consider the case of bounded domains. The de�nition
of viscosity solutions in an open set Q of [0; T ] � IRn is straightforward.
Let us just note that from De�nition 2.1, where the nonlocal integral term
bears only on the test function  , we don't need to de�ne v outside Q,
contrarily to other notions of solutions. To simplify the notations, we take
Q of the form Q = (0; T )�O where O is an open bounded domain in IRn.
Let us de�ne

�Q : closure of Q @Q : boundary of Q

Q0 = Q [ (f0g � O) @0Q = @Q n (f0g � O) :

We have the following result.

Proposition 5.1 Assume (2.6). Let v 2 C0( �Q). If Lv � 0 in Q0, in the

viscosity sense, and v � 0 on @0Q, then

v(t; x) � 0 8(t; x) 2 �Q:

Moreover, if Lv > 0 in Q0, in the viscosity sense, then

v(t; x) > 0 8(t; x) 2 Q0:

Proof: As usual, by considering the function e�c0tv, we amount to c(t; x) �
0. If the �rst assertion is false, then for � su�ciently small positive, v �
�(t�T ) attains in �Q a negative minimum at (t0; x0) 2 Q0 and v(t0; x0) � 0.
By application of De�nition 2.1 with the test function  = �(t � T ), we
have

��+ c(t0; x0)v(t0; x0) � 0

18
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and then v(t0; x0) > 0, which is a contradiction. If the second assertion
is false, then v attains a nil minimum at (�t; �x)2 Q0. Writing the strict
supersolution inequality with the test function  = 0, we have now

c(�t; �x)v(�t; �x) > 0

hence, v(�t; �x) > 0, which is a contradiction. 2

Remark

The preceding proof shows that maximum principles in bounded domains
are valid more generally for operators L of the form:

Lv = �vt + c(t; x)v + F (t; x; v;Dxv;D
2
xv;Bv)

where c is a continuous function, c(t; x) � c0, and F is a continuous function
in [0; T ]� IRn � IR� IRn � Sn � IR such that

F (t; x; v; 0; 0; 0) = 0

for all (t; x; v) 2 [0; T )� IRn� IR. For a consistent de�nition with classical
solutions, we also assume that F is elliptic and nonincreasing with respect
to its last argument.

Let us now turn out to comparison principles in the whole domain
[0; T ]� IRn. We make the usual linear growth assumptions on the coe�-
cients b; �; 
:

jb(t; x)j2 + j�(t; x)j2 +

Z
IRn

j
(t; x; z)j2m(dz) � K(1 + jxj2) (5.1)

(the growth condition on 
 is slightly weakened compared to (2.4)) and we
prove the following result.

Proposition 5.2 Assume (2.6) and (5.1). Let v 2 C0([0; T ] � IRn) such
that Lv � 0 in [0; T )� IRn, in the viscosity sense, and

v(t; x) � �C(1 + jxjq) in [0; T )� IRn (5.2)

for some C > 0 and q 2 [0; 2). If v(T; x) � 0 for all x 2 IRn, then

v(t; x) � 0 8(t; x) 2 [0; T ]� IRn

Moreover, if Lv > 0 in [0; T )� IRn, in the viscosity sense, then

v(t; x) > 0 8(t; x) 2 [0; T )� IRn
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Proof: For � > 0, consider the (smooth) function in C2([0; T ]� IRn):

w(t; x) = (1 + jxj2)e�(T�t):

An easy calculation yields

Btw(t; x) = e�(T�t)
Z
IRn

j
(t; x; z)j2m(dz)

hence,

Lw

w
= �+ c(t; x)�

1

1 + jxj2
tr (��0(t; x)) �

2

1 + jxj2
b(t; x):x

�
1

1 + jxj2

Z
IRn

j
(t; x; z)j2m(dz):

From assumptions (2.6) and (5.1), we can choose � su�ciently large pos-
itive, such that Lw � 0. For � > 0, let us de�ne the continuous function
w� = v+ �w. It follows that Lw� � 0 in [0; T )� IRn, in the viscosity sense.
In view of the asymptotic condition (5.2) on v, we have lim inf

jxj!+1
w�(t; x) � 0,

and there exists therefore R(�) > 0 such that

w�(t; x) � 0 8t 2 [0; T ); jxj � R(�):

We also have w�(T; x) � 0 since v(T; x) � 0. Applying Proposition 5.1 to
w�(t; x) in the bounded domain Q = (0; T ) � B(R(�)) (where B(r) is the
open ball in IRn of radius r centered in 0), we deduce that

w�(t; x) � 0 8(t; x) 2 [0; T ]� IRn;

and thus the �rst asserted result by sending � ! 0+. If the second state-
ment is false, then e�c0tv attains a zero minimum at (�t; �x)2 [0; T ) � IRn.
Writing the strict supersolution inequality with the test function  = 0,
we have

(c(�t; �x)� c0) v(�t; �x) > 0;

which is a contradiction. 2

Remarks

1. In the linear case, a positivity result is proved under weaker assumptions
than in the nonlinear case, since no Lipschitz condition on the coe�cients
is required.
2. As for the second order parabolic case, we can derive maximum prin-
ciples for functions satisfying exponential growth conditions, by assuming
that the coe�cients b; � are bounded. About the jump component, we shall
assume either that the function

(t; x) 7�!

Z
IRn

exp (�j
(t; x; z)j)m(dz)
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is bounded uniformly in (t; x) for all � > 0, which implies in particular
that the measure m is bounded, or to avoid such an assumption that the
functions

(t; x) 7�!

Z
jzj�1

exp (�j
(t; x; z)j)m(dz)

(t; x) 7�!

Z
jzj�1

j
(t; x; z)j2m(dz)

(t; x) 7�! 1jzj�1j
(t; x; z)j

are bounded uniformly in (t; x) for all � > 0. Such results are proved by the
same way as in the proof of Proposition 5.2, by considering the function

w(t; x) = exp
�
k
p
1 + jxj2 +�(T � t)), and in the case of an unbounded

measurem, by breaking the integral term Bw into two integrals as in (2.10).

5.2 C1;2 existence result for the Cauchy problem

This paragraph is devoted to the existence of a smooth solution C1;2 (C1 in
t and C2 in x) of the Cauchy problem:

Lv = f(t; x) 8(t; x) 2 [0; T )� IRn (5.3)

v(T; x) = g(x) 8x 2 IRn (5.4)

Gihman{Skorohod [12] have proved a C1;2 existence result for (5.3){(5.4)
under strong smoothness conditions on the coe�cients b; �; 
; c; f; g. See
also Bensoussan{J.L. Lions [3]. We want to indicate here how the viscos-
ity solution approach allows to reach simply C1;2 existence result for the
Cauchy problem under weaker conditions on these coe�cients, analog to
the ones of Friedman (1975 [11]) for linear second order equations.

Provided that 
(t; x; :) 2 L1(m), we denote:

~b(t; x) = b(t; x)�

Z
IRn


(t; x; z)m(dz):

Observe therefore that equation (5.3) can be also written, at least formally,
as:

~Lv = fv(t; x) 8(t; x) 2 [0; T )� IRn (5.5)

where

~Lv = �
@v

@t
� tr

�
1

2
��0(t; x)D2

xv

�
� ~b(t; x):Dxv + c(t; x)v

fv(t; x) = f(t; x)�

Z
IRn

[v(t; x+ 
(t; x; z))� v(t; x)]m(dz):
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Note that the function fv is well-de�ned whenever v is Lipschitz in x, and
that ~L is a linear second order parabolic operator. Remark also that we
can send � ! 0+ in the super(sub)-solution inequality (2.13) since the limit
integral terms are convergent whenever v 2 W 1([0; T ]�IRn) and 
 2 L1(m).
It is, therefore, easily checked thanks to the de�nition{Lemma 2.1, with
� = 0, that if v is a viscosity solution in W 1([0; T ] � IRn) of the second
order integrodi�erential equation (5.3), then it is also a viscosity solution
of the second order equation (5.5). The idea is thus to characterize the
solution v of (5.3) thanks to viscosity notion for parabolic integrodi�erential
operators developed in the preceding sections and to consider according to
the above remark, equation (5.5), for which standard regularity theory for
second order parabolic equations can be applied. Uniqueness of viscosity
solutions will thus yield that v is smooth.

To apply both viscosity results and smoothness results for linear second
order equations (see Friedman [11]), we shall assume that the functions
b; �; 
; c; f; g are all continuous and:

(H0) There exists � > 0 such that for all t 2 [0; T ], x; � 2 IRn:

� 0��0(t; x)� � �j�j2:

(H1) b; � are bounded and locally Lipschitz in (t; x).

(H2) There exists a function � : IRn 7! IR+ with

Z
IRn

�2(z)m(dz) <

+1 such that :

j
(t; x; z)j � �(z) 8(t; x) 2 [0; T ]� IRn

j
(t; x; z)� 
(t; y; z)j � �(z)jx� yj 8(t; x; y) 2 [0; T ]� IRn � IRn

(t; x) 7�!

Z
IRn


(t; x; z)m(dz) is locally Lipschitz in (t; x):

(H3) There exists K > 0 such that for all t 2 [0; T ], x; y 2 IRn:

jb(t; x)� b(t; y)j+ j�(t; x) � �(t; y)j � Kjx� yj:

(H4) There exists K > 0 such that for all t; s 2 [0; T ], x; y 2 IRn:

jf(t; x)� f(s; y)j+ jg(x)� g(y)j � K [jt� sj+ jx� yj] :

(H5) c is bounded and locally H�older continuous in (t; x).

(H6) m is a bounded measure.
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This last assumption (H6) is the more restrictive and is required here to
ensure that the function fv is Lipschitz in x, uniformly in t. We have then
the following result.

Proposition 5.3 Under assumptions (H0){(H6), there exists a unique so-

lution v 2 C1;2([0; T ) �IRn) \ C0([0; T ]�IRn) of the Cauchy problem (5.3){
(5.4) that satis�es

jv(t; x)j � C(1 + jxjq) 8(t; x) 2 [0; T ]� IRn

for some q 2 [0; 2). This solution is given by:

v(t; x) = Etx

"Z T

t

e
�
R
s

t
c(u;Xu)duf(s;Xs)ds

+ e
�
R
T

t
c(u;Xu)dug(XT )

�
: (5.6)

Proof: Let v given by (5.6). Assumptions of Proposition 3.3 and Theorem
3.1 are satis�ed and it yields that v is a viscosity solution inW 1([0; T ]�IRn)
of (5.3) and hence a viscosity solution of (5.5). From (H2), (H6) and since
v 2 W 1([0; T ]�IRn), we deduce by the dominated convergence theorem and
with the continuity of f that fv is also continuous in [0; T ]�IR

n. In view of
(H3){(H4), and since v 2W 1([0; T ]� IRn), we see that fv is also Lipschitz
in x, uniformly in t, whenever m is a bounded measure. Moreover, (H0)
means that ~L is an uniformly parabolic operator, and by applying Theorem
5.3 of Friedman [11], whose other conditions are satis�ed by (H1){(H5),
it yields that the Cauchy problem (5.5){(5.4) admits a smooth solution
uv 2 C

1;2([0; T )� IRn) \ C1([0; T ]� IRn), which is in particular a viscosity
solution of (5.5). According to uniqueness results for viscosity solutions in
C1([0; T ] � IRn) of second order equations (see e.g. Ishii [15]), we deduce
that v coincides with uv and is therefore smooth. Uniqueness of the Cauchy

problem (5.3){(5.4) is a direct consequence of Proposition 5.2. 2

Appendix: Proof of Lemma 3.1

According to H�older inequality, it su�ces to prove estimates (3.2){(3.5)
for k = 2. For notational simplicity, hereafter, the C denotes a generic
constant in di�erent places.

1) By the optional sampling theorem and from growth conditions (2.4),
(2.7) on b; �; 
, we have for all � 2 Th:

E
��Xt;x

�

��2 � C

�
jxj2 +E

Z �

0

��b(u+ t;Xt;x
u ; �u)

��2 du
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+E

Z �

0

���(u+ t;Xt;x
u ; �u)

��2 du
+ E

�Z �

0

Z
IRn

��
(u+ t;Xt;x
u ; �u; z)

��2m(dz)du

��

� C

�
1 + jxj2 +E

Z �

0

��Xt;x
u

��2 du� : (A.1)

In particular, for any deterministic time � = s, this last inequality yields
by Fubini's theorem and by Gronwall's lemma:

E
��Xt;x

s

��2 � C(1 + jxj2): (A.2)

We obtain then estimate (3.2) by injecting (A.2) into (A.1) and noting that

E
R �
0
jXt;x

u j
2
du �

R h
0
E jXt;x

u j
2
du for any stopping time � 2 Th.

2) Similar arguments as above and (A.2) imply that for all � 2 Th,

E
��Xt;x

� � x
��2 � C

Z h

0

�
1 +E

��Xt;x
u

��2� du
� C(1 + jxj2)h:

3) From Doob's inequality for martingales, conditions (2.4), (2.7) and
estimate (A.2), we have

E

�
sup

0�s�h

jXt;x
s � xj

�2
� C

�
E

Z h

0

��b(u+ t;Xt;x
u ; �u)

��2
+E

Z h

0

���(u+ t;Xt;x
u ; �u)

��2 du
+E

�Z h

0

Z
IRn

��
(u+ t;Xt;x
u ; �u; z)

��2m(dz)du

��
� C(1 + jxj2)h:

4) Let us de�ne the process Zs = Xt;x1
s �Xt;x2

s . Applying Itô's formula,
we have by the optional sampling theorem: 8� 2 Th,

EjZ� j
2 = jx1 � x2j

2 +E

�Z �

0

�
2Z 0u

�b(u+ t;Xt;x1
u ; Xt;x2

u ; �u)

+tr
�
����0(u+ t;Xt;x1

u ; Xt;x2
u ; �u)

�
+

Z
IRn

���
(u+ t;Xt;x1
u ; Xt;x2

u ; �u; z)
��2m(dz)

�
ds

�

where �b(s; x; y; �) = b(s; x; �)� b(s; y; �),

��(s; x; y; �) = �(s; x; �) � �(s; y; �);
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�
(s; x; y; �; z) = 
(s; x; �; z)� 
(s; y; �; z):

We obtain then from Lipschitz assumptions (2.2){(2.3) on b; � and 
:

EjZ� j
2 � jx1 � x2j

2 + CE

�Z �

0

jZuj
2du

�
: (A.3)

This inequality being true in particular for any deterministic time u, we
deduce, thanks to Fubini's theorem and Gronwall's lemma, that EjZuj

2 �
eCujx1 � x2j

2. Injecting this last inequality into (A.3), we obtain:

EjZ� j
2 � jx1 � x2j

2 + Cjx1 � x2j
2

Z h

0

eCudu

which ends the proof. 2
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