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Abstract

In the behavioral approach a dynamical system is essentially de-

termined by a set of trajectories B, which is called behavior. There

exist various ways for representing behaviors that are linear and

shift-invariant: kernel representations, image representations and la-

tent variable representations. In this paper we deal with families of

parametrized linear shift-invariant behaviors and with the problem

of representing such families in an e�cient way. The representation

of parametrized families of behaviors we propose is based on the al-

gebraic properties of a class of rings that are called Jacobson rings.

Also in this case parametrized kernel representations, parametrized

image representations, and parametrized latent variable representa-

tions play an essential role. Finally, algorithms for passing from

one representation to another are proposed. This also solves the

parametrized latent variable elimination problem.
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1 Introduction

In the behavioral approach to systems theory [15, 16, 17], a dynamical
system is de�ned as a triple

� = (T;W;B);

where T is the time set (in general R or Z), W is the set of signal variables
and B � W T , called behavior, is a set of time trajectories which describes

�Receives January 12, 1996; accepted January 13, 1997; received in �nal form March

5, 1997. Summary appeared in Volume 8, Number 1, 1998.
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the way the system can interact with the external environment. Typically,

B is represented as the solution set of a system of di�erence or di�erential

equations in the signal variables. In this case B can be described as the

kernel of the di�erence or di�erential operator associated to the di�erence

or di�erential equation representing B. Therefore this way of representing

the behavior B is called kernel representation.
However, in the modelling procedure it may come naturally, and some-

times even unavoidably, to introduce a set L of auxiliary variables, and to

describe the behavior through a system of di�erence or di�erential equa-

tions involving both the variables inW and in L. Variables in L are usually

called latent and the corresponding descriptions, latent variable represen-
tations [17, 20]. A special latent variable representation of independent in-

terest is the image representation which corresponds to the situation when

B is described as the image of a di�erence or di�erential operator acting on

l-valued time functions. This type of representation provides an e�cient

way to parameterize the trajectories of a system and is, therefore, a useful

instrument for simulation purpose. It can be seen, moreover, that image

representations are more suitable for solving control problems [18, 19]. On

the other hand, kernel representations are obviously very useful if we want

to check whether an observed trajectory is in the behavior B and so in any

fault detection process. It can be seen, moreover, that also in �ltering ker-

nel representations, latent variable representation and their relations play

an essential role.

A basic problem, of evident theoretical and practical importance, is

to study which systems admit such representations and how these di�erent

descriptions of a system are related to each other. When we restrict our at-

tention to representations that are based on linear and constant coe�cient

di�erence or di�erential operators, this problem is completely understood.

More precisely, let k be any �eld and let � denote the backward shift oper-

ator on any of the spaces of bi-in�nite sequences (kr)Z. Every polynomial

matrix � 2 k[u; u�1]g�q

� =

nX
i=m

�iu
i; �i 2 kg�q

naturally induces an operator

�(�; ��1) : (kq)Z! (kg)Z; (1.1)

�(�; ��1)w :=

nX
i=m

�i(�
iw):

The operators de�ned in this way are linear shift-invariant (namely, ��� =

� � �) and are called shift operators.
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One of the main results proved in [16] is that the class of systems ad-

mitting kernel representations through shift operators coincides with the

class of systems having T = Z, W = kq and the behavior B which is a

linear shift-invariant and closed (with respect to the pointwise convergence

topology: see Section 2) subspace of W T . In other words, given a system

� = (Z; kq;B), where the behavior B is linear shift-invariant and closed,

there exists a polynomial matrix � 2 k[u; u�1]g�q such that

B = ker�(�; ��1):

These systems are called linear autoregressive (AR) systems. Among all

possible kernel representations of a given behavior B, we call minimal the

ones which attain the minimum number of rows g in � (and this happens

if and only if the corresponding shift operator is onto).

It can be shown that the class of systems admitting image represen-

tations is strictly smaller than the class of systems admitting kernel rep-

resentations. Indeed, [15, 16] on one hand, it can be seen that images of

shift operators can always be expressed as kernels. On the other hand,

the behavior B of an AR system can be expressed as the image of a shift

operator

B = im  (�; ��1)

if and only if it is controllable (see Section 2). Moreover, in this case the

shift operator can be chosen to be injective: such image representations are

called observable and are of evident importance.

The latent variable representation generalizes both the concepts of ker-

nel and image representations presented above. In this case a latent variable

representation is de�ned as follows: suppose we have polynomial matrices

� 2 k[u; u�1]r�q and  2 k[u; u�1]r�p and consider the di�erence equation

�(�; ��1)w =  (�; ��1)l: (1.2)

This di�erence equation describes an AR system with signal space kq�kp.
However, we can also consider the system � = (Z; kq;B), where

B := fw 2 (kq)Z j 9l 2 (kp)Z; (w; l) satis�es (1:2)g:

The di�erence equation (1.2) is thus a latent variable representation of B.
The most relevant example of latent variable representation is the state

space representation. A basic result in [15, 16] is that � de�ned in this

way is an AR system. Namely, there exists � 2 k[u; u�1]g�q such that

B = ker�(�; ��1). The problem of obtaining a kernel representation from

a latent variable representation is called latent variable elimination.
Another important problem solved in [15, 16] is how to obtain con-

cretely one representation from another one. More speci�cally, given a
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kernel representation of B, B = ker�(�; ��1), there exists an e�cient

algorithm, based on the Smith canonical form, that allows us to check

whether B is controllable and, if this is the case, allows us to obtain an

observable image representation of B. Conversely, given an image rep-

resentation B = im �(�; ��1), still computing the Smith canonical form

of �, a minimal kernel representation of B can be obtained. Observe

that the problem of obtaining kernel representations from image repre-

sentations is a particular case of the latent variable elimination. How-

ever, once we know how to pass from image representations to kernel

representations, the general latent variable elimination problem can be

solved easily. Actually, given a latent variable representation (1.2) of B,
if � is such that im  (�; ��1) = ker�(�; ��1), then it follows easily that

B = ker(��)(�; ��1).

The problems we address in this paper are the natural extension of

the above ones for parameterized families of linear systems which we now

introduce. For the sake of simplicity of notation, we will drop the more

precise system notation as a triple, and we will simply consider behav-

iors. Behaviors coming from AR systems will be simply called linear or

k-behaviors.

Let X be a set and let k be a �eld. Consider a subalgebra R of the

algebra kX of all the maps from X to k. Let � 2 R[u; u�1]g�q . Given

x 2 X , denote by �x 2 k[u; u�1]g�q the polynomial matrix obtained by

evaluating at x all the coe�cients of �. For every x 2 X we can consider

the linear behavior

ker�x(�; �
�1): (1.3)

This will be called an R-family of k-kernels. Similarly, we can consider

im �x(�; �
�1) (1.4)

which instead will be called an R-family of k-images. Generally, (1.3) and
(1.4) will be called R-families of k-behaviors.

The �rst question we address is to �nd the conditions under which

an R-family of k-kernels is also representable as an R-family of k-images

and vice versa. If R = kX , the problem is trivial: it follows from previous

considerations that a family of k-images is always a family of k-kernels while

the converse holds if and only if each kernel is controllable. The interesting

situation is when R is a proper subalgebra, since this gives restrictions on

the way the polynomial matrices must depend on the parameters. The

case on which we will focus our attention is when X is an a�ne k-variety

and R is the algebra of polynomial k-valued maps on X . As we will see

in this setting, new obstructions to this change of representation can come

out. In case of obstructions, we will characterize subsets X0 � X for which

the change of representation can be achieved. Another interesting issue in

this setting is constituted by minimality and observability: as we will see,
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even if a family of k-kernels can be represented as a family of k-images, it

may not admit image representations in the class R which are observable

at every point x 2 X . Similar problems can occur regarding minimality of

kernel representations.

Notice that, given an R-family of latent variable representations

�x(�; �
�1)w =  x(�; �

�1)l; (1.5)

where � 2 R[u; u�1]r�q and  2 R[u; u�1]r�p, then it can be seen that

also the parametrized latent variable elimination problem can be solved by

obtaining an R-family of k-kernels from an R-family of k-images. More

precisely, if there exists � 2 R[u; u�1]g�q such that

im  x(�; �
�1) = ker�x(�; �

�1); 8x 2 X0 � X;

then, for all x 2 X0, we have that the behavior represented by the parametri-

zed latent variable representation (1.5) is represented by the parametrized

kernel representation ker(�x�x)(�; �
�1). For this reason on we will concen-

trate our attention only on kernel and image representations.

We will approach these problems by studying more general behaviors

over rings. Notice indeed that � 2 R[u; u�1]g�q induces, exactly as in (1.1),
a shift operator

�(�; ��1) : (Rq)Z! (Rg)Z:

In analogy with the linear case, we can thus consider objects like

ker�(�; ��1); im �(�; ��1); (1.6)

which can be thought as behaviors over the signal variable set, respectively,

Rq and Rg . Let us see how they are related to the families of k-behaviors

introduced above. Let x 2 X and consider �x : R! k, the evaluation map

at the point x (i.e. �x(r) := r(x)). The map �x admits a trivial extension

to vectors which will be denoted in the same way while �1x will denote

the extension of �x to sequences. Put B := ker�(�; ��1) and consider

Bx := �1x (B) � (kq)Z. Clearly,

Bx � ker�x(�; �
�1): (1.7)

If we have equality in (1.7), this means that, in a certain sense, all the in-

formation about the family ker�x(�; �
�1) is contained inside ker�(�; ��1).

More precisely, if equality holds in (1.7), given v 2 ker�x(�; �
�1), we can

�nd ~v 2 (Rq)Z such that

�1x ~v = v;

�1y ~v 2 ker�y(�; �
�1) 8y 2 X:
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This shows that also the single trajectories admit a sort of parametrization

in the class R. Conditions under which equality in (1.7) holds will be

studied in Section 2.

As far as families of images are concerned, it is clear that, if �x is onto

(very mild assumption which is true in the algebraic case), we always have

that

�1x (im �(�; ��1)) = im �x(�; �
�1):

Sections 3 and 4 will be devoted to studying the relation between behaviors

in kernel and image representation, as (1.6), and generalizing many results

known in the �eld case. Beside the importance for parameterized systems,

such extensions have independent interest also considering the recent ex-

tensions of the theory of convolutional codes to group and ring setting [5].

Finally, in Section 5, we will come back to parameterized families of linear

behaviors and show how the abstract results of Sections 3 and 4 can be

speci�cally used in this setting. A number of illustrative examples will also

be presented. A few of them are brie
y introduced now.

Example 1: Let k = R, X = R
2 and R = R[z1; z2]. Consider

� :=

�
z1u z2 z2 + 1

0 1 1 + z1u

�
2 R[u; u�1]2�3:

The R-family of kernels ker�(x;y)(�; �
�1) admits the following observable

image representation which can be obtained with the techniques of section

3.2

ker�(x;y)(�; �
�1) = im

0
@ xy� � 1

�x�(1 + x�)

x�

1
A 8(x; y) 2 R2:

Example 2: Let k = R, X = S1 = f(x; y) 2 R
2 j x2 + y2 = 1g and R

be the algebra of polynomial k-valued maps on X . It is known that R is

isomorphic to R[z1; z2]=(1� z21 � z22). Consider

� := ( z1u
2 + z2 z2 ) 2 R[u; u�1]1�2:

The R-family of kernels ker�(x;y)(�; �
�1) admits the following observable

parametrized image representation

ker�(x;y)(�; �
�1) = im

�
�y
x��2

�
8(x; y) 2 S1:

Example 3: Let k = R, X = R and R := R[z]. Consider

� := ( zu z ) :

We will show later that, in this case, the R-family of kernels ker�(x;y)(�; �
�1)

does not admit a parametrized image representation.
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PARAMETRIZED LINEAR BEHAVIORS

2 Behaviors over Rings and Their Representations

2.1 Behaviors and shift operators

We now introduce some basic concepts and notations that will be needed

in the sequel. If A is a commutative ring, denote by A� the multiplicative

group of units of A and by Ag�q the A-module of g�q matrices with entries

in A. If � 2 Ag�q , ker� and im � denote the kernel and the image of �

thought as a homomorphism from Aq to Ag . If A is an integral domain,

rk (�) denotes the rank of � in the �eld of fractions of A. The symbol 'A
denotes isomorphism in the category of A-modules. Subscript A will be

dropped whenever it is clear from the context. Finally Max(A) denotes the

set of all maximal ideals of A.

In the sequel, R will always denote a Noetherian commutative ring with

identity. Moreover, we will always assume that R is Jacobson [2], namely,

that every prime ideal can be obtained as intersection (possibly in�nite)

of maximal ideals. Rings of polynomial functions on an a�ne variety as

well the ring Z of integers are examples of Jacobson rings. Denote by

R[u; u�1] the ring of Laurent polynomials with coe�cients in R. If V is

any R-module, then the symbol V Zwill denote the R-module of bi-in�nite

sequences over V . On V Z we can introduce a module structure over the

ring R[u; u�1] by de�ning for v 2 V Z

(u � v)(t) := (�v)(t) := v(t+ 1) 8t 2 Z: (2.1)

The operator � is called the backward shift. From now on we will always

assume that V is a �nitely generated R-module equipped with the discrete

topology and V Z with the corresponding product topology. It is clear

that the topology just introduced on V Z is metrizable and a sequence

vn 2 V Z converges to v 2 V Z if and only if for every t 2 Z, vn(t) = v(t),

for n su�ciently large. For this reason this topology is called pointwise

convergence topology. If V is a �nitely generated R-module, then an R-

behavior on V is any closed R[u; u�1]-submodule B � V Z. In particular

the R-behavior V Z is called the full R-behavior over V .
If I � Z, denote by BjI the R-module of restrictions to I of the bi-

in�nite sequences in B. We recall now the concept of memory [15, 16]. An

R-behavior B is said to have memory n 2 N if

v 2 V Z and vj[t;t+n] 2 Bj[t;t+n] 8t 2 Z) v 2 B:

B is said to have �nite memory (or to be of �nite type), if it has memory n

for some n 2 N . Let B � V Z be an R-behavior. B is said to be controllable
[15, 16] if for all v1; v2 2 B, there exists n 2 N and v 2 B with

v(t) = v1(t) 8t < 0; (�nv)(t) = v2(t) 8t � 0: (2.2)
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It is shown in [21] that in our context every controllable R-behavior B
satis�es a stronger notion of controllability in the sense that the number

n 2 N in (2.2) can be chosen a priori for all pairs v1; v2 2 B. Moreover, if

B is a �nite memory R-behavior, then there exists the largest controllable

R-behavior contained in B which is denoted by Bc and which is called the

controllable part of B. In this case it can be shown that Bc = Bf , where
Bf is the submodule of B constituted by the �nite supported trajectories

in B and � means closure.

It follows from (2.1) that any polynomial p 2 R[u; u�1] can be inter-

preted as a continuous R[u; u�1]-homomorphism

p(�; ��1) : RZ! RZ:

In an analogous way, if V;W are R-modules, every � 2 HomR(V;W )[u; u�1]

naturally induces a continuous R[u; u�1]-homomorphism

�(�; ��1) : V Z!WZ:

The homomorphisms de�ned in this way are called shift operators. In case

V = Rq and W = Rl, we identify HomR(V;W )[u; u�1] with R[u; u�1]g�q .

In this case, corresponding shift operators are also called matrix shift op-
erators. It can be shown that all continuous R[u; u�1]-homomorphisms

between full R-behaviors are given by shift operators [21].

In this paper we will focus our attention on R-behaviors which are

kernels or images of matrix shift operators. It can be easily shown that if

an R-behavior is a kernel of a matrix shift operator (called matrix kernel
representation), it has �nite memory. The converse is in general not true.

Finite memory easily yields the existence of a kernel representation but

not necessarily of matrix type. On the other hand, it has been shown in

[21] that an R-behavior B � (Rq)Z is the image of a matrix shift operator

(called matrix image representation) if and only if it is controllable. As

we will see in the sequel, sometimes we will be forced to consider more

general image representations through shift operators induced by objects

of the type � 2 Hom(V;Rq)[u; u�1], where V is usually a projective �nitely

generated R-module. An image representation is said to be observable if it
is one to one.

When R = k is a �eld, all the previous properties become stronger.

Every k-behavior has �nite memory, which in this setting is equivalent to

possessing matrix kernel representations: therefore linear behaviors consid-

ered in the introduction always admit a matrix kernel representation. If B is

a k-behavior, Bf is then a free �nite-dimensional k[u; u�1]-module. De�ne

the rank of B (denoted rk (B)) as the dimension of Bf . If B = ker�(�; ��1),

� 2 k[u; u�1]g�q , is a kernel representation of B and Bc = im  (�; ��1),

 2 k[u; u�1]q�r, is an image representation of the controllable part Bc of

8
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B, we have that
q � rk (�) = rk ( ) = rk (B): (2.3)

Moreover, ker�(�; ��1) is a minimal kernel representation, as we have de-

�ned in the previous section, if and only if rk (�) = g, while im  (�; ��1)

is an observable image representation if and only if rk ( ) = r. Finally, if

B1 � B2 are two k-behaviors and rk (B1) = rk(B2), then (B1)c = (B2)c.
This will be used in the sequel.

2.2 Projection of behaviors over quotient rings

Let V be a �nitely generatedR-module and let L be an ideal in R. Consider

the quotient module V=LV . As we will show in the sequel, it is interesting,

particularly when dealing with parametrized systems, to investigate how

a property of an R-behavior B � V Z is connected with the analogous

property of the projection of B on the signal space (V=LV )Z.

To this aim consider the quotient projection p : V ! V=LV . As men-

tioned above we can obtain from p the projection

p1 : V Z�! (V=LV )Z:

De�ne

BL := p1(B):
Clearly, BL is an (R=L)[u; u�1]-submodule of (V=LV )Z, but it is not a

priori clear that it is closed and so that it is an (R=L)-behavior. As we will

see, this turns out to be true for a particular class of R-behaviors over Rq

admitting matrix kernel representations that will be called regular.

De�nition An R-behavior B � (Rq)Z is said to be regular if there exist

�1 2 R[u; u�1]q1�q; �2 2 R[u; u�1]q2�q1 ; : : : ; �n 2 R[u; u�1]qn�qn�1 such

that the following sequence is exact

0 �! B i
,! (Rq)Z

�1(�;�
�1)�! (Rq1)Z

�2(�;�
�1)�! � � � �n(�;�

�1)�!! (Rqn)Z�! 0;

(2.4)

where i is the injection map. We say that an R-behavior B � (Rq)Z is

regular of order n if it is regular and if the exact sequence of minimum

length associated to B has length n. We say that the full R-behavior (Rq)Z

is regular of order 0. B = ker�1(�; �
�1) as in (2.4) is called a regular kernel

representation of B.
If R is a principal ideal domains (PID), it follows from standard fac-

torization results [7, 4] that if an R-behavior admits a matrix kernel rep-

resentation, then it admits one that is onto, so it is regular of order 1.

Moreover, we will show in the sequel that when R[u; u�1] is Hermite, then

a regular behavior has always order less than or equal to 1 (see Proposition

9
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6). Regular behaviors of order strictly greater than 1; however, do exist

(see Section 4).

For regular R-behaviors the following important technical result holds

true.

Lemma 1 Assume that B � (Rq)Z is a regular R-behavior and let L be an
ideal in R. Then

B \ (Lq)Z= LB: (2.5)

Proof: It is trivial to verify that LB � B \ (Lq)Z. In order to prove the

converse we need to verify something slightly stronger, that is the following:

If v1; : : : ; vm 2 B and if there exist gij 2 R such that

vi =

nX
j=1

gijwj ;

where w1; : : : ; wn 2 (Rq)Z, then there exist �w1; : : : ; �wn 2 B such that

vi =

nX
j=1

gij �wj :

We will show the assertion by induction on the regularity order of B. If B
has order 0, then the assertion is trivial. Suppose that the assertion holds

for R-behaviors of order n�1 and suppose that B is an R-behavior of order

n. Consider the exact sequence of length n associated to B

0 �! B i
,! (Rq)Z

�1(�;�
�1)�! (Rq1)Z

�2(�;�
�1)�! � � � �n(�;�

�1)�!! (Rqn)Z�! 0:

(2.6)

Then, B = ker�1(�; �
�1). Let v1; : : : ; vm 2 B and let

vi =

nX
j=1

gijwj ;

where w1; : : : ; wn 2 (Rq)Z and gij 2 R. Then,

0 = �1(�; �
�1)vi =

nX
j=1

gij�1(�; �
�1)wj :

Let uj := �1(�; �
�1)wj . Then, uj 2 im �1(�; �

�1) � (Rq1)Z, that is regular

of order n� 1. Moreover,

nX
j=1

gijuj = 0 i = 1; 2; : : : ;m: (2.7)

10
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The vectors uj can be expressed as follows

uj =

2
64
u1j
...

uq1j

3
75 ;

where uij 2 RZ. De�ne the R-module

M := f[a1; : : : ; an] 2 R1�n :

nX
j=1

ajgij = 0; i = 1; 2; : : : ;mg:

SinceM is �nitely generated, let f1; : : : ; fl 2 R1�n be its generators. Notice

that, if fk = [fk1; : : : ; fkn], then

nX
j=1

fkjgij = 0: (2.8)

Moreover, by (2.7), we have that [ui1(t); : : : ; uin(t)] 2 M for all t 2 Z and

so [ui1; : : : ; uin] =
Pl
k=1 �ikfk, where �ij 2 RZ. De�ne

�k :=

2
4
�1k
...

�q1k

3
5 2 (Rq1)Z:

It is easy to verify that

uj =

lX
k=1

fkj�k 2 im �1(�; �
�1):

By induction, there exist ��1; : : : ; ��l 2 im �1(�; �
�1) such that

uj =

lX
k=1

fkj ��k: (2.9)

Therefore ��k = �1(�; �
�1)�uk. Put �nally

�wj = wj �
lX

k=1

fkj �uk: (2.10)

It is easy to verify both that �wj 2 ker�1(�; �
�1) and that

nX
j=1

gij �wj = vi:

11
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Consider a polynomial matrix � 2 R[u; u�1]g�q and let L be an ideal in

R. Using the projection p mentioned above, we can construct the polyno-

mial matrix �L 2 (R=L)[u; u�1]g�q in the obvious way. It can be easily seen

that if an R-behavior B admits an image representation B = im �(�; ��1),

� 2 R[u; u�1]g�q , then BL = im �L(�; �
�1) and consequently if B is con-

trollable, then BL is controllable. It is possible to prove an analogous

result for kernel representations only for regular R-behaviors as stated in

the following theorem.

Theorem 2 Let B � (Rq)Z be a regular R-behavior and suppose that B
admits the regular kernel representation B = ker�(�; ��1), where � 2
R[u; u�1]g�q. Then, for each ideal L in R

BL = ker�L(�; �
�1):

Proof: Suppose that l1; : : : ; lm is a set of generators for L. It is im-

mediate to see that BL � ker�L(�; �
�1). Suppose conversely that �v 2

ker�L(�; �
�1) and let v 2 (Rq)Z be any representative of �v. Then, w :=

�(�; ��1)v 2 (Lq)Z\ im �(�; ��1). Since im �(�; ��1) is regular, then

im �(�; ��1) \ (Lq)Z= Lim �(�; ��1)

and so there exist u1; : : : ; un such that

w =

mX
i=1

li�(�; �
�1)ui:

We can argue that

~v := v �
mX
i=1

liui 2 B

and so �v 2 BL.
As mentioned above, given an R-behavior B � (Rq)Z, it is not always

true that BL is an R=L-behavior since, in general, it is not clear if it is

closed. The direct consequence of the previous result is that if B is a

regular R-behavior, then BL admits a kernel representation, and so, in

particular, it is an (R=L)-behavior.

3 From Kernel to Image Representations

In this section we will consider the problem of verifying whether a cer-

tain �nite memory R-behavior B, given through a kernel representation,

12



PARAMETRIZED LINEAR BEHAVIORS

is controllable and, therefore, whether it can be expressed by an image

representation. Moreover, we will also develop some techniques that allow

to obtain concretely an image representation of B, starting from its ker-

nel representation. Finally, we will consider some important extensions to

non-controllable cases.

3.1 Controllability of behaviors admitting kernel rep-

resentations

We start by analyzing the �rst part of the problem mentioned above, that

is equivalent to �nd techniques that allow to check whether a certain R-

behavior B is controllable starting from its kernel representation. Given a

polynomial matrix � 2 R[u; u�1]g�q , we introduce the following subset of

Max(R)

Uc(�) := fm 2 Max(R) : ker�m(�; �
�1) is controllableg;

Uo(�) := fm 2 Max(R) : �m(�; �
�1) is ontog;

Uco(�) := Uc(�) \ Uo(�):
Moreover, we associate to � two ideals of R[u; u�1]: the ideal J� generated

by all the g � g minors of � (we put J� = (0) if q < g), and the ideal

I� := fp 2 R[u; u�1] j 9 2 R[u; u�1]q�g : � = pIg;

where I is the identity matrix. It is easy to check the following inclusions

J� � I� �
p
J�; (3.1)

where
p� means the radical ideal. Standard linear theory shows that

m 2 Uco(�), I�m = (R=m)[u; u�1], J�m = (R=m)[u; u�1]:

Theorem 3 Let � 2 R[u; u�1]g�q. Then, the following facts are equivalent

1. B := ker�(�; ��1) is controllable and �(�; ��1) is onto.

2. J� = I� = R[u; u�1].

3. Uco(�) = Max(R).

Proof: 1.)3. Fix an m 2 Max(R). The fact that �m(�; �
�1) is onto is

obvious. On the other hand, it is clear that the controllability of B implies

the controllability of Bm and so, since Bm = ker�m(�; �
�1) by Proposition

2, then ker�m(�; �
�1) is controllable.

13
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3.)2. Suppose that I� 6= R[u; u�1]. Then, there exists a maximal

ideal ~m 2 Max(R[u; u�1]) such that I� � ~m. Let m = ~m \ R. Since R is

Jacobson, [2] it follows that m 2 Max(R). Since mR[u; u�1] � ~m, then

I� +mR[u; u�1] � ~m 6= R[u; u�1]:

This implies that I�m 6= (R=m)[u; u�1].

2.)1. The fact that �(�; ��1) is onto is obvious. Let  2 R[u; u�1]q�g
such that � = I . It is immediate to see that

B = im (I �  (�; ��1)�(�; ��1)): (3.2)

Notice that Theorem 3 provides an almost direct way to construct an

image representation, as shown in (3.2). The problem of constructing an

image representation reduces to the problem of �nding  such that � = I .

Notice that, if r1; : : : ; rs 2 R[u; u�1] are the g � g minors of �, then the

problem of �nding  reduces to determining h1; : : : ; hs 2 R[u; u�1] such

that
sX
i=1

hiri = 1: (3.3)

Actually, suppose that Si is the selection matrix (i.e., a matrix in Rq�g

with only zeros and ones) such that ri = det(�Si). Then,

I =

sX
i=1

hiriI =

sX
i=1

hi(det �Si)I = �(

sX
i=1

hiSiAdj (�Si)):

It is clear that we can let  :=
Ps
i=1 hiSiAdj (�Si). Note that, for

a large class of Noetherian rings R, problems like checking if an ideal

I generated by r1; : : : ; rs 2 R[u; u�1] contains 1 and like determining

h1; : : : ; hs 2 R[u; u�1] such that (3.3) holds can be solved e�ciently by

Gr�obner basis techniques [3, 11, 14].

3.2 Observable image representations

The drawback of the image representation (3.2) is that, in general, it is

not observable. As we will see, for some rings, more re�ned constructions

will yield observable image representations. The �rst important case is

given when the ring R[u; u�1] is Hermite. We recall that a ring A is called

Hermite if given any onto � 2 Ag�q , there exists �0 2 A(q�g)�q such that

�
�

�0

�

14
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is invertible in the ring A. Equivalently, A is Hermite if every �nitely

generated R-module V which is stably free (i.e. V � Ag 'A Aq for some

g; q) is then free. The connection between the two de�nitions is given

by considering V = ker� [8]. It is di�cult in general to determine if a

certain ring is Hermite. There are, however, important examples: as a

consequence of the Quillen-Suslin result [8] (Corollary 4.12) we have that,

if R = A[z1; : : : ; zn], where A is a PID, then both R and R[u; u�1] are

Hermite.

We have the following.

Proposition 4 Suppose that R[u; u�1] is Hermite. Let � 2 R[u; u�1]g�q

and let B := ker�(�; ��1). Assume that any of the equivalent conditions
in Theorem 3 holds. Then, there exists  2 R[u; u�1]q�(q�g) such that

B = im  (�; ��1);

where  (�; ��1) is one{to{one and admits a continuous inverse on the
image.

Proof: The assumptions imply that there exists �0 2 R[u; u�1](q�g)�q

such that �
�

�0

�
(3.4)

is invertible in R[u; u�1]. Then, there exists  0 2 R[u; u�1]q�g and  2
R[u; u�1]q�(q�g) such that

�
�

�0

�
[ 0  ] =

�
I 0

0 I

�
:

It is easy to verify that

B = im  (�; ��1)

and that the matrix shift operator  (�; ��1) is one to one. Now observe

that the inverse of  (�; ��1) on the image B is given by �0(�; ��1)jB which

is continuous.

The assumption that R[u; u�1] is Hermite in Proposition 4 is crucial as

we will see shortly. First notice that we can easily prove that if R[u; u�1]

is Hermite, than also R must be Hermite. Actually assume that R is not a

Hermite ring. Then, there exists an onto R-homomorphism

� : Rq ! Rg

such that V = ker� is not free. Clearly I� = R[u; u�1]. Since V is not free,

it easily follows that V Z = ker �(�; ��1) can not have observable image

representation. There are plenty of Jacobson Noetherian rings which are

15
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not Hermite. An example is the ring of real polynomial functions on the

2-sphere: it possesses a stably free R submodule of R3 or rank equal to 2

which is not free [8]. This example will be taken up again in Section 5.

This last example suggests the fact that we might look for more gen-

eral image representations of shift operators which are not necessarily of

matrix type. We are thinking of shift operators induced by elements in

Hom(V;Rq)[u; u�1], where V is a �nitely generated, usually stably free,

R-module. We start with a lemma which will also be used later.

Lemma 5 Let � 2 Hom(V;Rq)[u; u�1], where V is a stably free �nitely
generated R-module, and assume that B := im �(�; ��1) � (Rq)Z is a
regular R-behavior. The following conditions are equivalent:

1. �(�; ��1) is one{to{one;

2. �m(�; �
�1) is one to one for all m 2 Max(R).

Proof: 1.)2. If �v 2 (V=mV )Z is such that �m(�; �
�1)�v = 0 and v 2 V Z

is a representative of �v, then w := �(�; ��1)v 2 m(Rq)Z. Applying Lemma

1 we have that w 2 mB. Therefore, if a1; : : : ; an 2 R generate m, then

there exist v1; : : : ; vn 2 V Z such that

w = �(�; ��1)v =

nX
i=1

ai�(�; �
�1)vi:

Since �(�; ��1) is one to one, then

v =

nX
i=1

aivi 2 mV Z

and so �v = 0.

2.)1. Denote �B := ker�(�; ��1). If v 2 �B, it follows from the assump-

tion 2. that v 2 (mV )Z for all m 2 Max(R). Denote by K the Jacobson

radical of R. Since V is stably free, it easily follows that

�B � (KV )Z: (3.5)

On the other hand, since im �(�; ��1) is regular, it easily follows that also
�B is regular. Therefore, it follows from Lemma 1 that

�B \ (KV )Z= K �B

and, because of (3.5), we thus obtain

�B = K �B:

16
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In particular,

�Bj[0;n] = (K �B)j[0;n] = K( �Bj[0;n]) 8n 2 N :

Since �Bj[0;n] is �nitely generated, then it follows from Nakayama's lemma

that
�Bj[0;n] = 0 8n 2 N :

This clearly yields 1.

We can now state and prove the following result that generalize Propo-

sition 4 to rings that are not Hermite.

Proposition 6 Let � 2 R[u; u�1]g�q and let B := ker�(�; ��1). As-
sume that any of the equivalent conditions in Theorem 3 holds and more-
over that Bf is R-extended (i.e., there exists an R-module W such that
Bf ' W [u; u�1]). Then, there exist a stably free R-module V and a
 2 Hom(V;Rq)[u; u�1] such that

B = im  (�; ��1);

where  (�; ��1) is one{to{one and admits a continuous inverse on the
image. Moreover, we have that V 'W .

Proof: Assume that I� = R[u; u�1] and that Bf ' W [u; u�1] for some

�nitely generated R-module W . We have an exact sequence

0!W [u; u�1]
j
,! R[u; u�1]q

��! R[u; u�1]g ! 0:

Consider the splitting map �0 := j�1(I � ��), where � 2 R[u; u�1]q�g is

such that �� = I . It is easy to see that

�
�

�0

�
2 Hom(Rq; Rg �W )[u; u�1]

is invertible. Write the inverse as [ 0;  ]. It is immediate to check that  

has all the required properties and that W is stably free.

We want to prove now that  (�; ��1) has a continuous inverse on the im-

age. More precisely, we will prove that there exists � 2 Hom(Rq ; V )[u; u�1]

such that � = I . It follows from Lemma 5 and the remark following it that

 m(�; �
�1) is one to one for every m 2 Max(R). Hence, by standard linear

theory, it follows that ( �)m is onto for every m, where  � 2 Hom(V �; Rq)

denotes the dual homomorphism [6]. A standard argument using Jacob-

son property then shows that for every ~m 2 Max(R[u; u�1]), the quotient

homomorphism

( �) ~m : V �[u; u�1]= ~mV �[u; u�1] �! Rq[u; u�1]= ~mRq[u; u�1]

17
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is onto. Hence [2, II.3.3, Prop. 11]  � is onto. Since V �[u; u�1] is projective,

there exists � 2 Hom(V �; Rq)[u; u�1] such that  �� = I . It is now su�cient

to take � = ��. Notice that  yields an isomorphism Bf ' V [u; u�1].

There are interesting examples [8] in which hypotheses of Proposition

6 may be satis�ed without R being Hermite. We will present a couple of

examples in Section 5.

Proposition 6 has another interesting consequence. Assume that R

is such that there exists a stably free R[u; u�1]-module M which is not

R-extended. Consider � 2 R[u; u�1]g�q and  2 R[u; u�1]q�g such that

ker� 'M and � = I . De�ne B := ker�(�; ��1). Notice that B = im (I�
 (�; ��1)�(�; ��1)). It is immediate to check that Bf ' M . Proposition

6 implies that B does not possess observable image representations even of

general type as discussed above. It remains the problem if such rings do

exist and the answer is positive. It can be proven, but it is highly non-

trivial, that if R is the ring of the complex polynomials on the 4-sphere,

then R[u; u�1]3 possesses a stably free submodule of rank 2, which is not

R-extended.

3.3 A remark on regularity in the Hermite case

An interesting consequence of Theorem 3 is the fact that, when R[u; u�1]

is Hermite, then all regular behaviors have order less than or equal to 1.

Surprisingly enough, also the inverse holds true.

Proposition 7 R[u; u�1] is Hermite if and only if every regular R-behavior
B � (Rq)Z has at most order 1.

Proof: Suppose that R[u; u�1] is Hermite and let B � (Rq)Z be a regular

R-behavior. Suppose that

0 �! B i
,! (Rq)Z

�1(�;�
�1)�! (Rq1)Z

�2(�;�
�1)�! � � � �n(�;�

�1)�!! (Rqn)Z�! 0

(3.6)

is the exact sequence associated to B. Denote moreover

Bi := ker�i+1(�; �
�1) = im �i(�; �

�1):

Note that Bn�1 = ker�n(�; �
�1) is controllable and that �n(�; �

�1) is

onto. Therefore, by Theorem 3, there exists a polynomial matrix � n such

that �n � n = I . Since R[u; u�1] is Hermite, this implies that there exists a

polynomial matrix �0n of suitable dimensions such that

�
�n
�0n

�

18
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is a square unimodular polynomial matrix. Let [ n  0n] be its inverse

partitioned in a conform way and let ��n�1 := �0n�n�1.

First note that

Bn�2 = ker ��n�1(�; �
�1): (3.7)

\�" is evident. On the other hand, note that �n�n�1 = 0 and that

 n�n +  0n�
0
n = I: (3.8)

Hence

�n�1 =  n�n�n�1 +  0n�
0
n�n�1 =  0n

��n�1:

From this (3.7) immediately follows.

Moreover, note that

ker�n(�; �
�1) = im  0n(�; �

�1):

The inclusion \�" simply follows from �n 
0
n = 0. On the other hand, let

w 2 ker�n(�; �
�1). Then, applying (3.8), we have that

w =  n(�; �
�1)�n(�; �

�1)w +  0n(�; �
�1)�0n(�; �

�1)w =

=  0n(�; �
�1)�0n(�; �

�1)w

that implies that w 2 im  0n(�; �
�1).

Therefore

im ��n�1(�; �
�1) = �0n(�; �

�1)im �n�1(�; �
�1) =

= �0n(�; �
�1) ker�n(�; �

�1) =

= �0n(�; �
�1)im  0n(�; �

�1) = (Rqn�1�qn)Z:

Therefore it is possible to associate to B the exact sequence

0! B i
,! (Rq)Z

�1(�;�
�1)�! (Rq1)Z � � � (Rqn�2)Z

��n�1(�;�
�1)�!! (Rqn�1�qn)Z! 0;

that is one step shorter than the exact sequence (3.6). By induction, this

proves that it is always possible to associate to B a sequence of length less

than or equal to 1.

Suppose, conversely, that every regular R-behavior B has at most order

1 and let � 2 R[u; u�1]g�q ;  2 R[u; u�1]q�g be polynomial matrices such

that � = I . De�ne the R-behavior B := im  (�; ��1). Then it is easy to

see that

B = ker(I �  (�; ��1)�(�; ��1)):

Let �� := I� �. Then, it is easy to see that the following sequence is exact

0 �! B i
,! (Rq)Z

��(�;��1)�! (Rq)Z
�(�;��1)�!! (Rl)Z�! 0:
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Then, B is regular and so it is regular of order less than or equal to 1.

Suppose that �0 2 R[u; u�1]l0�q such that B = ker�0(�; ��1) and �0(�; ��1)

is onto. If we look at  and �0 as polynomial matrices with entries in the

�eld of fractions of R[u; u�1], then it is easy to verify that the range of  and

the kernel of �0 coincide and so l0 = rank �0 = q�rank  = q�l. Moreover,

since B is controllable, then by Theorem 3, there exists  0 2 R[u; u�1]q�g0
such that �0 0 = I . Moreover �0 = 0. Therefore we have that�

�

�0

�
[  0 ] =

�
I �
0 I

�
:

This implies that �
�

�0

�

is square and unimodular.

3.4 Loss of controllability and partial image represen-

tations

From the point{of{view of parametrized systems, the situation expressed in

Theorem 3 corresponds to systems that remain controllable for all values of

the parameters. In the following, we will deal with a more general situation

in which we may lose controllability for some values of the parameters. We

need some preliminary notations. If A is a ring we will consider on Max(A)

the Zarisky topology whose closed sets are the subsets of Max(A) of the

following kind

V (I) := fm 2 Max(R) j I � mg;
where I is an ideal of A.

First we need to develop some new concepts. Since R is a Jacobson

ring, the inclusion

j : R ,! R[u; u�1]

induces [1, pag. 13] a continuous mapping

j� : Max(R[u; u�1])! Max(R)

where j�( ~m) := ~m \ R. Notice �rst of all that j� is onto: indeed, if

m 2 Max(R), consider an ~m 2 Max(R[u; u�1]) such that m[u; u�1] � ~m.

Clearly, j�( ~m) = m. Moreover, we have a canonical homeomorphism

(j�)�1(m) ' Max((R=m)[u; u�1]) (3.9)

obtained by associating to ~m 2 (j�)�1(m) its projection into (R=m)[u; u�1].

Let � 2 R[u; u�1]g�q . Let us remind that Uco(�) = Uc(�) \ Uo(�) is
the subset of Max(R) consisting of the maximal ideals m yielding I�m =

(R=m)[u; u�1]. We have the following
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Lemma 8 The following relations hold true:

1. Uco(�) = j�(V (I�))
c;

2. (Uco(�))
o = V (I� \ R)c, where ( � )o means the interior;

3. Uo(�) = j�(V (I�)
c).

Moreover, if I� contains a bimonic polynomial (p =
PN
i=n piu

i with pn; pN 2
R�), then

4. Uco(�) = V (I� \ R)c:

Proof: 1. Let ~m 2 Max(R[u; u�1]) and put m = ~m \ R. Consider the

commutative diagram

(R=m)[u; u�1]q
�m�! (R=m)[u; u�1]p

# #

(R[u; u�1]= ~m)q
� ~m�! (R[u; u�1]= ~m)p:

(3.10)

Now, if ~m 2 j�(V (I�)), we have that J� � ~m and, consequently, � ~m is

not onto. This then shows (3.10) that also �m can not be onto and this

yields m 62 Uco(�). On the other hand, if m 62 Uco(�), �m is not onto

and this implies that there exists �m 2 Max((R=m)[u; u�1]) such that the

quotient of �m by �m is not onto. Let ~m 2 (j�)�1(m) be the maximal ideal

corresponding to �m through the identi�cation (3.9). It is clear that � ~m is

not onto and this implies that ~m 2 V (I�). This proves 1.
2. We will prove the equivalent fact that

Uco(�)c = V (I� \R): (3.11)

Clearly,

Uco(�)c = j�(V (I�)) = V (I);

for some ideal I in R. We have that

p
I =

\
m�I

m �
\
~m�I�

( ~m \ R) =
p
I� \ R �

p
I� \ R:

Hence

Uco(�)c � V (I� \R):
On the other hand, it follows from 1 that

Uco(�)c � V (I� \ R)

and this proves (3.11) and hence 2.
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3. Arguing as in the proof of 1, we can easily see that m 2 Uo(�) if and
only if there exists ~m 2 (j�)�1(m) such that � ~m is onto. From this 3 easily

follows.

4. The assumption made easily implies that R[u; u�1]=I� is an integral

extension of R=(I� \ R). This implies [13] that

j�jV (I�) : V (I�)! V (I� \ R)

is surjective.

An example where Uco(�) is not open is not hard to �nd and will be

given in Section 5.

Given a behavior B, we would like to �nd an image representation whose

behavior coincides with the the given one `in as many as possible maximal

ideals'. More precisely, we would like to �nd  2 R[u; u�1]q�g such that

Bm = im  m(�; �
�1)

for all m 2 Uc(�). Of course, this is the best we can hope, but, as it will be

shown in Section 5, this is in general not possible. It will be proven in the

sequel that it is possible if we restrict instead to Uco(�). For the moment,

however, we will limit ourselves to something less ambitious considering

maximal ideals in V (I�\R)c. It follows from Lemma 8 that this constitutes

a consistent part of Uco(�).

Let a1; : : : ; an be a family of generators for the ideal I� \ R and let

 i 2 R[u; u�1]q�g be such that � i = aiI . It is easy to see that

im (aiI �  i(�; �
�1)�(�; ��1)) � ker�(�; ��1);

(V (I� \ R))c =
n[
i=1

V ((ai))
c;

where (ai) is the ideal generated by ai. If m 2 (V (I� \ R))c, then m 2
V ((ai))

c for some i and it easily follows that

ker�m(�; �
�1) = im (aiI �  i�)m(�; �

�1):

The disadvantage of this type of representation is that it has to be

changed according to the open set in which we are considering the maximal

ideals. If R is a PID, however, this will indeed provide a global image

representation over all (V (I� \ R))c. Moreover, this is a possible way to

�nd observable image representations. Indeed, consider the ring

Ri := f r
aki

j r 2 R; k 2 Ng:

The polynomial matrix �, as a matrix in Ri[u; u
�1]q�g , will be denoted by

�i. Put Bi := ker�i(�; �
�1). It follows that I�i = Ri[u; u

�1]. Since Ri is
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still a Jacobson ring [2], it follows that Theorem 3 holds true for �i and Bi.
If m 2 V ((ai))c and we denote by mi the maximal ideal in Ri obtained by

extending m, we have that

(Bi)mi
= Bm (�i)mi

= �m

under the canonical identi�cation Ri=mi = R=m. This shows that if we can

�nd an observable image representation for Bi, we are done. If Ri[u; u�1] is
Hermite, then everything goes through. Notice that if R is a PID, also Ri
is a PID and therefore Ri[u; u

�1] is Hermite. However in general Ri[u; u
�1]

may well not be Hermite even if R[u; u�1] was such. More speci�c consid-

erations will be taken up in Section 5.

3.5 Alternative methods for �nding image representa-

tions

We now present an alternative method that has general validity and which

permits to �nd more general image representations. First we have the

following lemma.

Lemma 9 Let � 2 R[u; u�1]q�g and consider B := ker�(�; ��1). Let
 2 R[u; u�1]q�r be any polynomial matrix whose columns generate the
R[u; u�1]-submodule

ker� = fx 2 R[u; u�1]q : �x = 0g: (3.12)

Then the controllable part of B is given by

Bc = im  (�; ��1):

Proof: Put F := ((Rq)Z)f . Then Bf =  (�; ��1)(F). This yields

Bc = Bf =  (�; ��1)(F) �  (�; ��1)(F) = im  (�; ��1):

On the other hand, since Bc is controllable, there exists [21]  ̂ 2 R[u; u�1]q�s
such that

Bc = im  ̂(�; ��1):

We have that

 ̂(�; ��1)(F) � Bf =  (�; ��1)(F)
and so there exists a polynomial matrix Y of suitable dimensions such that

 ̂ =  Y and so

B = im  ̂(�; ��1) � im  (�; ��1):

The proof is thus complete.

Notice that Gr�obner basis techniques can be of some use also for �nding

 2 R[u; u�1]g�q whose columns generate the submodule (3.12) [10].

This is our more general result regarding image representations.
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Theorem 10 Let � 2 R[u; u�1]g�q and let B = ker�(�; ��1). If  2
R[u; u�1]q�r is such that Bc = im  (�; ��1), then for all m 2 Uo(�)

(Bm)c = (ker�m(�; �
�1))c = im  m(�; �

�1):

Proof: Consider the exact sequence

0! Bf ,! R[u; u�1]q
��! R[u; u�1]g:

Localization at ~m 2 V (I�)c yields another exact sequence

0! (Bf )( ~m) ,! (R[u; u�1]( ~m))
q ��! (R[u; u�1]( ~m))

g ! 0; (3.13)

which implies that (Bf )( ~m) is a projective R[u; u
�1]( ~m)-module, hence free,

of dimension exactly q � g. But,

dimR[u;u�1]( ~m)
(Bf )( ~m) = dimR[u;u�1]= ~m

�
(Bf )( ~m)= ~m(Bf )( ~m)

�
= (3.14)

= dimR[u;u�1]= ~m [Bf= ~mBf ] : (3.15)

It follows from (3.13) that

~m(Bf )( ~m) = (Bf )( ~m) \ ~m(R[u; u�1]( ~m))
q : (3.16)

This implies that

~mBf = Bf \ ~mR[u; u�1]q : (3.17)

Indeed, if v 2 Bf \ ~mR[u; u�1]q, it follows from (3.16) that there exists

a 2 R[u; u�1] n ~m such that av 2 ~mBf . Since Bf= ~mBf is an R[u; u�1]= ~m-

vector space, it follows that v 2 ~mBf . It follows from (3.14) and (3.17)

that

dimR[u;u�1]= ~m

�
Bf=(Bf \ ~mR[u; u�1]q)

�
= q � g: (3.18)

Let now m = ~m \ R. It easily follows from (3.18) that (Bf )m is a free

(R=m)[u; u�1]-module of dimension q � g. Hence, (Bc)m has rank q � g.

Consider now m 2 Uo(�) and let ~m 2 V (I�)
c such that m = ~m \ R. We

have the inclusions

(Bc)m � (Bm)c � (ker�m(�; �
�1))c:

By previous considerations they all have the same rank, hence they are

equal. This clearly proves the result.

4 From Image to Kernel Representations

In this section we will study conditions under which a controllable R-

behavior B, given by an image representation, admits a kernel represen-

tation. Moreover, we will see how to develop a procedure that provides

constructively a kernel representation for B starting from its image rep-

resentation. Many of the results are symmetric to the ones presented in

Section 4. Many proofs are omitted or only sketched.
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4.1 Regularity of behaviors admitting image represen-

tations

First we set some more notation. Given � 2 R[u; u�1]q�g , we de�ne the

ideal Ĵ� generated by all the g � g minors of � (we put Ĵ� = 0 if q < g)

and the ideal

Î� := fp 2 R[u; u�1] j 9 2 R[u; u�1]g�q :  � = pIg:
Clearly, Ĵ� = J�t and Î� = I�t as previously de�ned. De�ne

Ui(�) := fm 2 Max(R) j �m(�; ��1) is one{to{oneg:
Standard linear theory shows again that

m 2 Ui(�), Î�m = (R=m)[u; u�1], Ĵ�m = (R=m)[u; u�1]:

Theorem 11 Let � 2 R[u; u�1]q�g and suppose that B := im �(�; ��1).
Then, the following facts are equivalent

1. B is regular and �(�; ��1) is on{t{one;

2. B is regular of order less than or equal to 2 and �(�; ��1) is on{to{
one;

3. Î� = Ĵ� = R[u; u�1];

4. Ui(�) = Max(R).

Proof: 2.)1. Obvious.

1.)4. Direct consequence of Lemma 5.

4.)3. follows from Theorem 3 since Ui(�) = Uco(�
t).

3.)2. Let  2 R[u; u�1]g�q be such that  � = I . Then, it is clear that

�(�; ��1) is one to one. We have that

im �(�; ��1) = ker(I � �(�; ��1) (�; ��1))

and moreover that

im (I � �(�; ��1) ker(�; ��1)) = im  (�; ��1):

Therefore the following sequence is exact

0 �! B i
,! (Rq)Z

��(�;��1)�! (Rq)Z
 (�;��1)�!! (Rl)Z�! 0;

where �� := (I � � ). This shows that B is regular of order less than or

equal to 2.

Assume that � 2 R[u; u�1]q�g is such that Î� = R[u; u�1] and that

B = im �(�; ��1). Then there exists  2 R[u; u�1]g�q such that  � = I .

It is immediate to see that

B = ker(I � �(�; ��1) (�; ��1)): (4.1)

The problem of �nding  has been already discussed in Section 3.
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4.2 Minimal kernel representations

As it could be expected in analogy with Section 3, if R[u; u�1] is Hermite,

it is possible to construct matrix kernel representations which are onto, as

illustrated in the following result which can be proven as Proposition 4.

Proposition 12 Suppose that R[u; u�1] is Hermite. Let � 2 R[u; u�1]q�g
and let B := im �(�; ��1). Assume that any of the equivalent conditions in
Theorem 11 holds. Then there exists  2 R[u; u�1](q�g)�q such that

B = ker (�; ��1)

where  (�; ��1) is onto and open.

It follows from the proof of Proposition 7 that if R[u; u�1] is not Her-

mite, there exist cases of R-behaviors B = im �(�; ��1), where �(�; ��1)

is one-to-one and B is regular of order strictly greater than 1. This shows

that the assumption that R[u; u�1] is Hermite in Proposition 12 can not

be weakened.

In analogy to Section 4 we now show how a more general result can

be obtained if we allow kernel representations with �nal space which is no

longer free. We have an analogue of Proposition 6 that can be proved along

the same lines.

Proposition 13 Let � 2 R[u; u�1]q�g and let B := im �(�; ��1). As-
sume that any of the equivalent conditions in Theorem 11 holds and that
R[u; u�1]q=Bf is R-extended. Then, there exist a stably free R-module V
and a  2 Hom(Rq ; V )[u; u�1] such that

B = ker (�; ��1);

where psi is such that  � = Ifor some � 2 Hom(V;Rq)[u; u�1]. Moreover,
we have that R[u; u�1]q=Bf ' V [u; u�1].

4.3 Loss of observability and partial kernel represen-

tations

From the point{of{view of parametrized systems, the situation expressed

in Theorem 11 corresponds to families of k-behaviors which admit image

representations that remain observable for all values of the parameters. In

the following, we will deal with a more general situation in which we may

loose observability for some values of the parameters.

Notice that, given � 2 R[u; u�1]q�g , by Lemma 8 we have that Ui(�)
o =

V (Î�\R)c. Analogously to what we did in section 3.4, we show how to �nd

kernel representations for maximal ideals in V (Î� \R)c. Let a1; : : : ; an be
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a family of generators for the ideal Î� \ R and let  i 2 R[u; u�1]q�g such

that  i� = aiI . It is easy to see that

im �(�; ��1) � ker(aiI � �(�; ��1) i(�; �
�1)):

Write

V (Î� \ R)c =
n[
i=1

V ((ai))
c:

If m 2 (V (Î� \R))c, then m 2 V ((ai))c for some i and it easily follows

that

im �(�; ��1)m = ker(aiI � � i)m(�; �
�1):

We now present an alternative method to �nd image representation

which is, in a certain sense, the dual of the one discussed in section 3.5. If

B � (Rq)Z is an R-behavior, consider

B? := fr 2 R[u; u�1]1�q j r(�; ��1)B � 0g

which is clearly a �nitely generated R[u; u�1]-module. Conversely, given

an R[u; u�1]-submodule M of R[u; u�1]1�q , we can consider

M? := fv 2 (Rq)Z j r(�; ��1)v = 0; 8r 2Mg:

SinceM is �nitely generated,M? is a �nite memory R-behavior and indeed

a kernel representation of it can be obtained in the following obvious way.

Fix a set of generators r1; : : : ; rg of M and put

 =

2
4
r1
...

rg

3
5 :

Then,

M? = ker (�; ��1):

Clearly, given an R-behavior B � (Rq)Z, we have that B � B?? and we

have equality if and only if B itself admits a matrix kernel representation.

The following is the most general result regarding kernel representations

we will present.

Theorem 14 Assume that R is a domain. Let � 2 R[u; u�1]q�g and let
B = im �(�; ��1). If  2 R[u; u�1]r�q is a polynomial matrix whose rows
generate B?, then for all m 2 Ui(�),

im �m(�; �
�1) = Bm = ker m(�; �

�1):
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Proof: We only need to prove that, if m 2 Ui(�), then

ker m(�; �
�1) � Bm:

This will be proven by showing that

1. ker m(�; �
�1) is controllable;

2. rk Bm = rk ker m(�; �
�1).

Let us start with 1. It will follow from the following stronger result

rk  ~m = q � g 8 ~m 62 V (Ĵ�):

To see this consider the exact sequence

0! R[u; u�1]g
�
,! R[u; u�1]q ! R[u; u�1]q=im �! 0:

Localization at ~m 62 V (Ĵ�) gives

0! (R[u; u�1]( ~m))
g
�( ~m)

,! (R[u; u�1]( ~m))
q ! (R[u; u�1]( ~m))

q=im �( ~m) ! 0:

By the way we have chosen ~m, �( ~m) splits. Hence

(R[u; u�1]( ~m))
q=im �( ~m) ' (R[u; u�1]( ~m))

q�g :

This implies that

((im �)?)( ~m) ' ((im �)( ~m))
?) = (im �( ~m))

? ' (R[u; u�1]( ~m))
q�g :

Since B = im �, we thus obtain

rk  ( ~m) = q � g;

which also yields

rk  ~m = q � g:

This proves 1. We now come to point 2. Since by previous considerations

rk  m = q � g

and �m(�; �
�1) is injective, it follows that

rk ker m(�; �
�1) = g = rk Bm:

This proves 2.
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5 Parameterized Linear Systems

Let X � kn be an a�ne variety, namely the common zeroes of a set of

polynomials in k[z1; : : : zn]. Denote by I(X) the ideal of all the polynomials

which are zero onX and let R = k[X ] := k[z1; : : : zn]=I(X) be the k-algebra

of polynomial functions on X . On X we will consider the Zarisky topology

whose closed sets are exactly the a�ne varieties inside X . They can be

represented in the following way: let I be an ideal in R. Then de�ne

V (I) := fx 2 X j p(x) = 0 8p 2 Ig:

Notice now that if x 2 X , then

mx := fp 2 R j p(x) = 0g 2 Max(R): (5.1)

If � 2 R[u; u�1]g�q , we recall that �x 2 k[u; u�1]g�q is obtained from � by

evaluating in x all the coe�cients. It is easy to see that under the canon-

ical identi�cation of R=mx and k, we have that �x = �mx
. This clearly

shows how the representation problems for families of linear behaviors are

connected to the problems considered in the previous sections.

Denote by �k the algebraic closure of k and by �X the closure of X inside
�kn. Denote moreover �R := �k[ �X] = R 
k �k. The advantage of working

in the algebraically closed situation is that, in this case, by the Hilbert's

Nullstellensatz all the maximal ideals of �R are of the type mx as above

with x 2 �X. This permits an identi�cation of X with Max( �R) which is a

homeomorphism if both are equipped with the Zarisky topologies. We will

assume this identi�cation in the sequel.

5.1 From families of kernels to families of images

Let � 2 R[u; u�1]g�q . Analogously to what we did in Section 3, we intro-

duce some important sets connected to �:

Uc(�) := fx 2 X j ker�x(�; ��1) is controllableg;

Uo(�) := fx 2 X j �x(�; ��1) is ontog;
Uco(�) := Uc(�) \ Uo(�):

We start with the following result.

Theorem 15 Let X be a k-a�ne variety and let R = k[X ]. Let � 2
R[u; u�1]g�q be such that Uco(��) = �X. Then

1.
ker�x(�; �

�1) = Bx; 8x 2 X;
where B := ker�(�; ��1).
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2. There exists  2 R[u; u�1]q�r such that

ker�x(�; �
�1) = im  x(�; �

�1); 8x 2 X:

Proof: Since �R is a Jacobson Noetherian ring [2], everything immediately

follows from the above considerations and Theorems 2 and 3.

In the case the �eld k is not algebraically closed, the result expressed by

Theorem 15 is not very satisfactory since it can not be applied if we have

only that Uco(�) = X . This drawback will be overcome in a little while.

Next example, on the other hand, shows that the assumption Uc(��) = �X

is not su�cient to obtain an image representation.

Example 3 (cont.): Let k = R, X = R and R := R[z]. Consider

� := ( zu z ) :

Clearly, Uc(��) = C and Uco(��) = C n f0g. Assume by contradiction that

there exists  2 R[u; u�1]q�r such that

ker�x(�; �
�1) = im  x(�; �

�1); 8x 2 R: (5.2)

It then follows from (2.3) that

rk ( 0) = rk (ker�0(�; �
�1)) = 2:

Hence rk ( x) � 2 for x in an open set containing 0. However, this is not

possible since by (5.2) and (2.3) we have that rk ( x) = rk (ker�x(�; �
�1)) =

1, if x 2 R n f0g.
We discuss now the observability. Observable image representations are

guaranteed in certain cases.

Theorem 16 Assume that X = kn. In the same assumptions of Theorem
15, there exists  2 R[u; u�1]q�(q�g) such that

ker�x(�; �
�1) = im  x(�; �

�1); 8x 2 X;

where  x(�; �
�1) is one{to{one for all x 2 X.

Proof: It follows from the assumptions and from Theorem 3 that J�� =
�R[u; u�1]. It is easy to see that this implies J� = R[u; u�1]. The result

then easily follows from Proposition 4 since R = k[X ] = k[z1; : : : ; zn] is

Hermite.

Notice that the construction of the image representation suggested in

Proposition 4 is computable when the Hermite ring is k[z1; : : : ; zn] [9].
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In certain cases more general results can be obtained using Propo-

sition 6, if we allow more general image representations induced by a

 2 Hom(V;Rq)[u; u�1], where V is a stably free R-module. To such a

 we can indeed associate a sort of generalized family of k-images by con-

sidering

im  mx
(�; ��1);

where mx is the maximal ideal (5.1) associated to the point x 2 X . We can

give a nice geometric interpretation of this generalized family of images. In

fact, the module V , being stably free, can be interpreted as the R-module

of global polynomial sections of a certain algebraic vector bundle [12]

� : E ! X:

Namely,

V = k[X;E] := fs : X ! E polynomial with � � s = ijEg;

where i is the identity map on X . E can be constructed in a canonical

way, so that the �bers Ex, with x 2 X , are identi�ed with V=mxV . Let us

write  =
P
 iu

i, with  i 2 Hom(V;Rq). Each  i gives rise to a bundle

morphism

 �i : E ! kq

given, if v 2 Ex, by
 �i (v) = ( i)mx

(v):

Consider  � :=
P
 �i u

i. Then

 �jEx =
X

( i)mx
ui =  mx

:

f mx
(�; ��1)g can be thus interpreted as a family of linear shift operators

polynomially parameterized by x, but whose initial space is not a �x vector

space kg but the �ber Ex of a vector bundle E on X .

Example 1 (cont.): Consider the R-family of kernels introduced in Ex-

ample 1 in the introduction. It is immediate to check that J�� = C [u; u�1]

so that, by Theorem 3, Uco(��) = C
2. According to Theorem 16, the R-

family of kernels ker�(x;y)(�; �
�1) admits an observable image representa-

tion which can easily be found with the techniques of Section 3.2. First

complete � to a square polynomial matrix with determinant equal to 1:

~� :=

0
@ z1u z2 z2 + 1

0 1 1 + z1u

�1 0 z2

1
A :
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The last column of the inverse of ~� is

 :=

0
@ z1z2u� 1

�z1u(1 + z1u)

z1u

1
A :

Hence,

ker�(x;y)(�; �
�1) = im

0
@ xy� � 1

�x�(1 + x�)

x�

1
A 8(x; y) 2 R2:

Example 2 (cont.): Consider the R-family of kernels introduced in Ex-

ample 2 in the introduction. It is immediate to check that Uco(��) = �X . By

Theorem 15, the R-family of kernels ker�(x;y)(�; �
�1) admits a matrix im-

age representation. Actually, it admits an observable one for the following

general argument which is worth illustrating. Put B = ker�(�; ��1). Since

R is a Dedekind domain, it follows from [8] (Corollary 4.12 chapter 2) that

Bf is the R-extension of a stably free R-module M of rank 1. Since M is

stably free of rank 1, it must be free [8] (Theorem 4.11 chapter 1). This

shows, by Proposition 6, that our R-family of kernels, admits an observ-

able matrix image representation which can be obtained as in Example 3

completing the matrix �:

~� :=

�
z1u

2 + z2 z2
�z2 + z1u

�2 z1u
�2

�

and considering the second column of the inverse:

 :=

�
�z2
z1u

�2

�
:

Example 4: Let k = R, X = S2 = f(x1; x2; x3) 2 R
3 j x21 + x22 + x23 = 1g

and R = R[S2] = R[z1; z2; z3]=(1� z21 � z22 � z23). Consider

� := ( z1u+ z2 z2 z3 ) :

Again, Uco(��) = �X . Put B = ker�(�; ��1) and consider the R-module

M = ker ( z1 z2 z3 ) :

We have a natural R[u; u�1]-isomorphism

g :M 
R R[u; u�1]! Bf
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given, if w = (w1; w2; w3)
T 2M , by

g(w 
 uj) :=

0
@ u�1 0 0

�u�1 1 0

0 0 1

1
A
0
@w1u

j

w2u
j

w3u
j

1
A :

It is easy to realize that M is the R-module of sections of the tangent

bundle of S2 which is not trivial (not even topologically). Hence M is not

free [8]. Consequently, it follows from Proposition 6 that we can not �nd

in this case an observable matrix image representation of the R-family of

kernels. At this point there are two alternatives. If we want a matrix image

representation in the class R valid for all points of the sphere, we have to

drop observability and, indeed, we can �nd one with initial space R3 as

follows. Put

 :=

0
@ u�1 0 0

�u�1 1 0

0 0 1

1
A
0
@ z2 z3 0

�z1 0 z3
0 �z1 �z2

1
A : (5.3)

Then, it is straightforward to verify that

ker�(x1;x2;x3)(�; �
�1) = im  (x1;x2;x3)(�; �

�1); 8(x1; x2; x3) 2 S2:

Note that, by using condition (3.2), we would �nd a di�erent  . The

image representation (5.3) can easily be found using Lemma 9, the map

g and observing that the image of the matrix at right in (5.3) is exactly

M . On the other hand, if we do not want to lose observability we are

forced to consider an image representation which has as initial space not

a �xed vector space but the linear �ber of dimension 2 of the tangent

bundle TS2 of S2. Since TS2 can be trivialized on S2 deprived of a point,

it follows that we can �nd observable matrix image representations which

hold on the all sphere minus one point. Using for instance the stereographic

projection from the point (0; 0; 1), a straightforward computation shows

that, if (x1; x2; x3) 6= (0; 0; 1), TS2
(x1;x2;x3)

can be represented as the image

of the matrix0
@ [(1� x3)

2 � x21 + x22] �2x1x2
�2x1x2 [(1� x3)

2 + x21 � x22]

2(1� x3)x1 2(1� x3)x2

1
A :

Hence, if we consider

 :=

0
@ u�1 0 0

�u�1 1 0

0 0 1

1
A
0
@ [(1� z3)

2 � z21 + z22 ] �2z1z2
�2z1z2 [(1� z3)

2 + z21 � z22 ]

2(1� z3)z1 2(1� z3)z2

1
A
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we have that

ker�(x1;x2;x3)(�; �
�1) = im  (x1;x2;x3)(�; �

�1);8(x1; x2; x3) 2 S2nf(0; 0; 1)g:

Something similar can be done outside of (0; 0;�1) so that we can represent
our R-family of kernels with two observable image representations.

Example 5: Let k = R, X = S2 and R = R[S2]. Consider

� := ( u+ 1 z1 z2 z3 ) :

Again, Uco(��) = �X . Put B = ker�(�; ��1). It is easy to verify that

Bf ' (R �M)
R R[u; u�1];

where M is de�ned as in Example 4. On the other hand, it follows from

the de�nition of M that R �M ' R3. Hence, there exists in this case an

observable matrix image representation which can be found with the usual

techniques. Notice indeed that we can explicitly complete � to a square

invertible matrix

� :=

0
B@
u+ 1 z1 z2 z3
�z3 z2 �z1 0

�z1 0 z3 �z2
�z2 z3 0 �z1

1
CA :

From this, by passing to the algebraic adjoint, we can again �nd the desired

image representation. We omit the long but straightforward calculations.

We now pass to examine more general cases when controllability may

be lost for certain values of the parameters. We have the following nice

result.

Theorem 17 Assume that X = k and let R = k[z]. Let � 2 R[u; u�1]g�q
and assume that I� \R 6= f0g. Then

1. V (I� \ R)c = Uco(�);

2. There exists  2 R[u; u�1]q�(q�g) such that

ker�x(�; �
�1) = im  x(�; �

�1) 8x 2 Uco(�); (5.4)

where  x(�; �
�1) is one{to{one for all x 2 Uco(�).

Proof:

1. Since V (I�� \ �R)c is a non-empty open set, it is equal to �k deprived

of a �nite number of points. Since, by Lemma 8, V (I�� \ �R)c is the interior

of Uco(��), it immediately follows that they must be equal. From this, 1

easily follows.
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2. Let f be a generator of I� \ R and let Rf := fr=f i : r 2 R; i 2
Ng. It follows from 1 and the considerations in section 3.4 that there

exists  2 Rf [u; u�1]q�(q�g) satisfying the requirements of the proposition.

Multiplying  by a suitable power of f we obtain the result.

Remark: Notice that, in general, the inclusion

V (I� \ R)c � Uco(�) (5.5)

may be proper. In fact, Uco(�) may well not be open as shown in the

following example. Let X = �X = C
2 and R = C [z1; z2]. Take � =

(z1; 1 + z2u). It is easy to see that

Uco(�)
c = f(x1; x2) 2 X j x1 = 0 x2 6= 0g;

while

V (I� \ R) = f(x1; x2) 2 X j x1 = 0g:

A straightforward application of the results in Section 3 gives the fol-

lowing general result.

Theorem 18 Let X be a k-a�ne variety and let R = k[X ]. Let � 2
R[u; u�1]g�q. Then

1.
(ker�x(�; �

�1))c = (Bx)c; 8x 2 Uo(�);
where B := ker�(�; ��1).

2. There exists  2 R[u; u�1]q�r such that

(ker�x(�; �
�1))c = im  x(�; �

�1); 8x 2 Uo(�):

This has an important consequence which permits to overcome the

drawback of Theorem 15.

Corollary 19 Let X be a k-a�ne variety and let R = k[X ]. Let � 2
R[u; u�1]g�q be such that Uco(�) = X. Then

1.
ker�x(�; �

�1) = Bx 8x 2 X;
where B := ker�(�; ��1).

2. There exists  2 R[u; u�1]q�r such that

ker�x(�; �
�1) = im  x(�; �

�1); 8x 2 X:
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Example 6 Let k = R, X = R and R = R[z]. Consider

� :=

�
(1� z)u 1 0

0 zu z(z � 1)

�
:

It is easy to check that Uco(�) = R n f0; 1g. Working in the ring ~R :=

fp=(z(z � 1))i : p 2 R[z]; i 2 Ng = R[z; z�1; (1 � z)�1], we complete � to

an invertible matrix

~� :=

0
@ (1� z)u 1 0

0 zu z(z � 1)

z�1(1� z)�1 0 0

1
A :

Taking the last column of the inverse and simplifying, we obtain that

ker�x(�; �
�1) = im  x(�; �

�1); 8x 2 R n f0; 1g;

where

 :=

0
@ 1

�(1� z)u

u

1
A :

Example 7 Let k = R, X = R and R = R[z]. Consider

� := ( z + u zu� 1 ) :

It is immediate to verify that Uco(�) = R, while Uco(��) = C n fi;�ig. An
observable matrix image representation for x 2 R can be obtained in this

case, by considering

 :=

�
1� zu

z + u

�
:

Indeed, it is clear that, if x 2 R,

im  x(�; �
�1) � ker�x(�; �

�1)

and equality holds by standard rank considerations.

Example 8 Let k = R, X = R
2 and R = R[z1; z2]. Consider

� := ( z1u
2 + u� 2 z1u+ z2 ) :

It is easy to see that Uo(�) = R
2. We want to characterize Uco(�). It is

clear that (x; y) 2 Uco(�) if and only if xu2 + u � 2 and xu + y do not

have non-trivial common factors and this can be easily checked by using

elimination theory. Indeed, consider the resultant of the two polynomials

� := det

0
@�2 1 z1
z2 z1 0

0 z2 z1

1
A = �z1[�2z1 + z2(1� z2)]:
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Hence

Uco(�) := ((f0g � R) [ f(x; y) j 2x = y(1� y)g)c:
Consider now

 :=

�
�z1u� z2
z1u

2 + u� 2

�
:

Arguing like in Example 7, it follows that

im  (x;y)(�; �
�1) = ker�(x;y)(�; �

�1); 8(x; y) 2 Uco(�):

Example 9 Let k = R, X = R
3 and R = R[z1; z2; z3]. Consider

� := ( z1u+ z2 z2 z3 ) :

Formally, it is the same polynomial matrix than in Example 4. We have

that Uco(�) = R
3nf(0; 0; 0)g. A matrix image representation out of (0; 0; 0)

is exactly given by (5.3) and it is clear, by the arguments developed in

Example 4 that there are not observable matrix image representations.

5.2 From families of images to families of kernels

An analogous application of the results in Section 4 provides a number of

results on the representation of a family of images as a family of kernels.

We here present them without further comments.

If � 2 R[u; u�1]q�g , de�ne

Ui(�) := fx 2 X j �x(�; ��1) is one to oneg:

The following theorems are immediate consequences of Theorem 11 and

Propositions 12 and 13.

Theorem 20 Let X be a k-a�ne variety and let R = k[X ]. Let � 2
R[u; u�1]q�g be such that Ui(��) = �X. Then there exists  2 R[u; u�1]r�q

such that
im �x(�; �

�1) = ker x(�; �
�1); 8x 2 X:

Theorem 21 Let X = kn. In the same assumptions of Theorem 20, there
exist  2 R[u; u�1](q�g)�q such that such that

im �x(�; �
�1) = ker x(�; �

�1); 8x 2 X;

where  x(�; �
�1) is onto for all x 2 X.

If Ui(��) 6= �X we have partial kernel representations.

Theorem 22 Assume that X = k and let R = k[z]. Let � 2 R[u; u�1]q�g
and assume that Î� \R 6= f0g. Then,
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1. V (Î� \ R)c = Ui(�).

2. There exists  2 R[u; u�1](q�g)�q such that

im �x(�; �
�1) = ker x(�; �

�1); 8x 2 Ui(�);

where �x(�; �
�1) is onto for all x 2 Ui(�).

Theorem 23 Let X be an irreducible k-a�ne variety and let R = k[X ].
Let � 2 R[u; u�1]q�g. Then, there exists  2 R[u; u�1]r�q such that

im �x(�; �
�1) = ker x(�; �

�1); 8x 2 Ui(�):

This allows us to improve Theorem 20.

Corollary 24 Let X be an irreducible k-a�ne variety and let R = k[X ].
Let � 2 R[u; u�1]q�g be such that Ui(�) = X. Then, there exists  2
R[u; u�1]r�q such that

im �x(�; �
�1) = ker x(�; �

�1); 8x 2 X:

Completely analogous examples to the ones developed in previous sub-

section can be easily presented in this context. Here instead we illustrate

a simple application to a more classical system theoretic setting.

Example 10: Consider a k-a�ne variety X and put R = k[X ]. Consider

then matrices A 2 Rn�n, B 2 Rn�q1 , C 2 Rq2�n, D 2 Rq2�q1 to which we

can associate, as x varies in X , the family of classical input/state/output

system 8<
:

�l = Axl+Bxu

y = Cxl+Dxu:

(5.6)

We wonder if it is possible to `eliminate' the variable l and to get di�erence

equations involving u and y only, whose coe�cients are still polynomials

in x 2 X . This can be interpreted in the behavioral context as follows.

Consider

Bx := f(u; y) 2 (kq1+q2)Z j 9l 2 (Rn)Z : (u; l; y) satis�es (5:6)g:

Clearly, (5.6) is a latent variable representation of Bx. To use the results

of this section, we �rst rewrite (5.6):

�
Bx 0

Dx �I

��
u

y

�
=

�
�I �Ax
�Cx

�
l:

Consider now

� :=

�
uI �A

�C

�
2 R[u; u�1](n+q2)�n:
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If Ui(��) = �X, then there exists  2 R[u; u�1]r�(n+q2) such that

im �x(�; �
�1) = ker x(�; �

�1); 8x 2 X:

Then,

Bx = ker x(�; �
�1)

�
Bx 0

Dx �I

�
; (5.7)

which is the desired di�erence equation representation of Bx. Note that the
condition that Ui(��) = �X is equivalent to the fact that the pair (Ax; Cx)

is observable for every x 2 �X.
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