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SUMMARY
Optimality Conditions and Synthesis
for the Minimum Time Problem*

P. Cannarsa,’ H. Frankowska', C. Sinestrarif

1 Introduction

In this paper we are concerned with the minimum time optimal control
problem for the system

{ro=soue,  ezo W)

where z € IR" and f : R" x U — IR" are given, U being a complete
separable metric space. We assume that f is continuous and

i) VR>0,3cg > 0such that

YueU f(,u) is cg — Lipschitz on Bg(0)
i) Ik >0 such that

Vz eR", sup,cp|flz,u)] < k(1+|z]).

(1.2)

A measurable function u : [0,+o00[— U is called a control and the
corresponding solution of the state equation (1.1) is denoted by y(-;z,u).

Given a nonempty closed set K C IR" (called the target) and a point
x € K¢, we are interested in minimizing, over all controls u, the time taken
for the solution y(+;z,u) to reach K. The value function, denoted by

T(z) = iréf{t >0:y(t;z,u) € K} (1.3)

as x ranges over R", is called the Minimum Time function of the problem.
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It is well known that 7" may be discontinuous even for very smooth
data. However, if in addition

Vo eR" f(x,U) areclosed and convex, (1.4)

then 7' is lower semicontinuous.

In this paper we focus our attention on necessary and sufficient optimal-
ity conditions. In particular, we are interested in extending to time optimal
control the results of the first two authors ([2]) for the Mayer problem.

2 Optimality Conditions

For any non—empty set S C IR", we denote by S¢ its complement, by S~
its (negative) polar by T's(z) the contingent cone to S at a point z € S,
and by IIg(x) the set of perpendiculars to S at x.

Let ¢ : IR" — IRU{+o00} be an extended function, and let zy € IR"™ be

such that ¢(zp) # too. We set

D*op(o) = {pemn| lim sup P~ #@0) = (b2 —20) 0} ;

T—T0 |~7j - 370|

and, for any vector v € IR",

hv') —
Dyp(zo)(v) = limsup p(zo + ') ‘P(mﬂ)_
h—0+, v/ —v h

Finally, for any Lipschitz arc z : [a,b] — IR"™ and any t € [a, b[ we set

2(s) — =(t)

Dz(t) := Limsup,), ;

where Limsup denotes the Painlevé—Kuratowski upper limit [1].

We begin with a refined version of Pontryagin’s Maximum Principle.
Assume (1.2) and suppose that f is differentiable with respect to z. Let
%@ be an optimal control for problem (1.3) at some point xo and set Ty =
T(xo0), §(t) = y(t;z0,w). Then, for every po € Tke(7§(Tp))~ we show that
the solution p : [0, Tp] — IR™ of the adjoint system

=00 = (Fowaw) s, s = -m @)

satisfies the minimum principle

(p(t),v) = min{p(t), f(y(?), u)) (2.6)

for all t € [0,Tp] and all vectors v € Limsups_,tw.
We also derive a co-state inclusion of the type obtained in [3] and [2]
for the (Lipschitz) value function of Bolza and Mayer problems. We recall

that the Hamiltonian H associated to control system (1.1) is given by
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H(z,p) = sup(p, f(z,u)), Va, pelR". (2.7)
uelU
Let (yo,uo) be an optimal pair at a point o € K¢ and set Ty = T'(zo).
Suppose that v € k< (yo(T0)) is such that

H(yo(To),v) > 0. (2.8)
Then, we prove that the solution p of problem (2.5) with
po = H(yo(To),v) v

satisfies
p(t) € DYT(yo(t)), Vte[0,Ty[. (2.9)
Furthermore, since Mge(yo(Ty)) C Tke(yo(Tp))~, we conclude that, if v €
M ke(yo(To)) and (2.8) holds true, then the solution of the adjoint system
(2.5) with pp = H(yo(T0),v) ‘v satisfies both the minimum principle (2.6)
and the co-state inclusion (2.9).
From the above necessary conditions we derive the following necessary
and sufficient optimality result.

Theorem 2.1 Assume (1.2),(1.4), and suppose that f is differentiable
with respect to x. Let xg € K¢ Ty > 0, and let ug(+) be a fized control such
that the corresponding trajectory yo(-) = y(-;xo,uo) satisfies yo(t) ¢ K for
all t € [0, To], yo(To) € K, and (2.8) for some v € Ilg(yo(T0)). Then, ug
is time optimal if and only if

D T (yo(t))(v) = —1, Vv € Dyo(t), Vt € [0, Tp][.

3 Time Optimal Synthesis

Let us assume that f is differentiable with respect to x and consider the
set—valued maps

Ulz) = { éu eU]| (p, f(w,u)) =—1, Vpe DT (z)} i)fﬂll?e;ﬂ(si) £

and F(z) = f(z,U(z)). It is not difficult to verify that if (1.4) holds true,
then F' has closed convex, possibly empty, images.

Suppose that y is an optimal trajectory at a point © € K¢, set Ty =
T(z), and let H(y(Tp),v) > 0 for some vector v € IIge(y(Tp)). Then, we
show that y is a solution of the differential inclusion

{ le((ég i 5(:1/(25)), a.e. t € [O,Tg] (3-10)

and minye p+p(y(e)) [P < M, Vt € [0,Tp[. for some constant M > 0.
Conversely, we obtain the following result.
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Theorem 3.1 Assume (1.2),(1.4) and let € K¢ Ty > 0. Suppose that
y(+) is a solution of (3.10) satisfying y(t) ¢ K for all t € [0,To[, y(To) € K,
min < M, Vtel0,T 3.11
v iy P < 10, %ol (310
for some constant M > 0. Then y is time optimal.
Moreover, we can drop assumption (3.11) if, instead of an absolutely con-

tinuous solution of (3.10), we consider a contingent solution of it, i.e. a
continuous arc y such that

Dy(t)nF(y(t)) #0, Viel0,Tol.

Finally, we consider another time optimal feedback in the form
G(z) = {f(z,u) |ue€ U, Ipe D T(z) : (p, f(z,u)) =1},
and the differential inclusion
y'(t) € Gy))
3.12
{ y(0) = z. (312)
Theorem 3.2 Assume (1.2),(1.4), and suppose that f is differentiable
with respect to x. Let v € K¢ Ty > 0, and let u(-) be a fized con-
trol. Suppose that trajectory y(-) = y(-;x,u) satisfies y(t) ¢ K for all

t € [0,To[, y(To) € K, and (2.8) for some v € Ilg:(y(To)). Then, u(-) is
time optimal if and only if y is a contingent solution of (3.12) in [0, Tp].

References

[1] J-P. Aubin and H. Frankowska. SET-VALUED ANALYSIS. Basel:
Birkh&auser, 1990.

[2] P. Cannarsa and H. Frankowska. Some characterizations of optimal tra-
jectories in control theory, SIAM J. on Control and Optimization, 29
(1991), 1322-1347.

[3] F.H. Clarke and R.B. Vinter. The relationship between the maximum
principle and dynamic programming, SIAM J. Control Optim., 25
(1987), 1291-1311.

DIPARTIMENTO DI MATEMATICA, UNIVERSITA DI RomMA “TOR VER-

CGATA,” VIA DELLA RICERCA SCIENTIFICA, 00133 RoMa, ITALY

CEREMADE, CNRS, UNIVERSITE PARIS-DAUPHINE 75775 PARIS
CEDEX 16, FRANCE

DIPARTIMENTO DI MATEMATICA, UNIVERSITA DI RomMA “TOR VER-
GATA,” VIA DELLA RICERCA SCIENTIFICA, 00133 RoMA, ITALY

Communicated by Anders Lindquist

126



