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SUMMARY

Optimality Conditions and Synthesis

for the Minimum Time Problem�

P. Cannarsa,y H. Frankowskay; C. Sinestrariy

1 Introduction

In this paper we are concerned with the minimum time optimal control

problem for the system�
y0(t) = f(y(t); u(t)); t � 0;
y(0) = x;

(1.1)

where x 2 IRn and f : IRn � U ! IRn are given, U being a complete
separable metric space. We assume that f is continuous and8>><

>>:

i) 8 R > 0; 9 cR > 0 such that
8 u 2 U; f(�; u) is cR � Lipschitz on BR(0)

ii) 9 k > 0 such that
8 x 2 IRn; supu2U jf(x; u)j � k(1 + jxj):

(1.2)

A measurable function u : [0;+1[! U is called a control and the
corresponding solution of the state equation (1:1) is denoted by y(�;x; u).

Given a nonempty closed set K � IRn (called the target) and a point
x 2 Kc, we are interested in minimizing, over all controls u, the time taken
for the solution y(�;x; u) to reach K. The value function, denoted by

T (x) = inf
u
ft � 0 : y(t;x; u) 2 Kg (1.3)

as x ranges over Rn, is called the Minimum Time function of the problem.
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It is well known that T may be discontinuous even for very smooth
data. However, if in addition

8 x 2 IRn; f(x; U) are closed and convex, (1.4)

then T is lower semicontinuous.
In this paper we focus our attention on necessary and su�cient optimal-

ity conditions. In particular, we are interested in extending to time optimal
control the results of the �rst two authors ([2]) for the Mayer problem.

2 Optimality Conditions

For any non{empty set S � IRn, we denote by Sc its complement, by S�

its (negative) polar by TS(x) the contingent cone to S at a point x 2 �S,
and by �S(x) the set of perpendiculars to S at x.

Let ' : IRn 7! IR[ f�1g be an extended function, and let x0 2 IRn be
such that '(x0) 6= �1. We set

D+'(x0) =

�
p 2 IRn j lim sup

x!x0

'(x) � '(x0)� hp; x� x0i

jx� x0j
� 0

�
;

and, for any vector v 2 IRn,

D#'(x0)(v) = lim sup
h!0+; v0!v

'(x0 + hv0)� '(x0)

h
:

Finally, for any Lipschitz arc z : [a; b]! IRn and any t 2 [a; b[ we set

Dz(t) := Limsups#t
z(s)� z(t)

s� t

where Limsup denotes the Painlev�e{Kuratowski upper limit [1].
We begin with a re�ned version of Pontryagin's Maximum Principle.

Assume (1:2) and suppose that f is di�erentiable with respect to x. Let
�u be an optimal control for problem (1:3) at some point x0 and set T0 =
T (x0); �y(t) = y(t;x0; �u). Then, for every p0 2 TKc(�y(T0))

� we show that
the solution p : [0; T0]! IRn of the adjoint system

� p0(t) =

�
@f

@x
(�y(t); �u(t))

�?
p(t); p(T0) = �p0 (2.5)

satis�es the minimum principle

hp(t); vi = min
u2U

hp(t); f(�y(t); u)i (2.6)

for all t 2 [0; T0] and all vectors v 2 Limsups!t
�y(s)��y(t)

s�t
:

We also derive a co{state inclusion of the type obtained in [3] and [2]
for the (Lipschitz) value function of Bolza and Mayer problems. We recall
that the Hamiltonian H associated to control system (1.1) is given by
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H(x; p) = sup
u2U

hp; f(x; u)i ; 8 x; p 2 IRn : (2.7)

Let (y0; u0) be an optimal pair at a point x0 2 Kc and set T0 = T (x0):
Suppose that � 2 �Kc(y0(T0)) is such that

H(y0(T0); �) > 0: (2.8)

Then, we prove that the solution p of problem (2:5) with

p0 = H(y0(T0); �)
�1�

satis�es
p(t) 2 D+T (y0(t)) ; 8t 2 [0; T0[ : (2.9)

Furthermore, since �Kc(y0(T0)) � TKc(y0(T0))
�; we conclude that, if � 2

�Kc(y0(T0)) and (2.8) holds true, then the solution of the adjoint system
(2:5) with p0 = H(y0(T0); �)

�1� satis�es both the minimum principle (2.6)
and the co{state inclusion (2.9).

From the above necessary conditions we derive the following necessary
and su�cient optimality result.

Theorem 2.1 Assume (1:2); (1:4), and suppose that f is di�erentiable

with respect to x. Let x0 2 Kc; T0 > 0; and let u0(�) be a �xed control such

that the corresponding trajectory y0(�) = y(�;x0; u0) satis�es y0(t) =2 K for

all t 2 [0; T0[; y0(T0) 2 K; and (2:8) for some � 2 �Kc(y0(T0)): Then, u0
is time optimal if and only if

D#T (y0(t))(v) = �1; 8v 2 Dy0(t); 8t 2 [0; T0[:

3 Time Optimal Synthesis

Let us assume that f is di�erentiable with respect to x and consider the
set{valued maps

U(x) =

�
fu 2 U j hp; f(x; u)i = �1 ; 8p 2 D+T (x)g if D+T (x) 6= ;
; otherwise

and F (x) = f(x; U(x)). It is not di�cult to verify that if (1.4) holds true,
then F has closed convex, possibly empty, images.

Suppose that y is an optimal trajectory at a point x 2 Kc; set T0 =
T (x), and let H(y(T0); �) > 0 for some vector � 2 �Kc(y(T0)): Then, we
show that y is a solution of the di�erential inclusion�

y0(t) 2 F (y(t)) ; a.e. t 2 [0; T0]
y(0) = x

(3.10)

and minp2D+T (y(t)) jpj �M; 8t 2 [0; T0[: for some constant M > 0.
Conversely, we obtain the following result.
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Theorem 3.1 Assume (1:2); (1:4) and let x 2 Kc; T0 > 0: Suppose that

y(�) is a solution of (3:10) satisfying y(t) =2 K for all t 2 [0; T0[; y(T0) 2 K;

min
p2D+T (y(t))

jpj � M ; 8 t 2 [0; T0[ (3.11)

for some constant M > 0. Then y is time optimal.

Moreover, we can drop assumption (3.11) if, instead of an absolutely con-
tinuous solution of (3.10), we consider a contingent solution of it, i.e. a
continuous arc y such that

Dy(t) \ F (y(t)) 6= ; ; 8 t 2 [0; T0[ :

Finally, we consider another time optimal feedback in the form

G(x) =
�
f(x; u) j u 2 U; 9 p 2 D+T (x) : hp; f(x; u)i = �1

	
;

and the di�erential inclusion�
y0(t) 2 G(y(t))
y(0) = x :

(3.12)

Theorem 3.2 Assume (1:2); (1:4), and suppose that f is di�erentiable

with respect to x. Let x 2 Kc; T0 > 0; and let u(�) be a �xed con-

trol. Suppose that trajectory y(�) = y(�;x; u) satis�es y(t) =2 K for all

t 2 [0; T0[; y(T0) 2 K; and (2:8) for some � 2 �Kc(y(T0)): Then, u(�) is

time optimal if and only if y is a contingent solution of (3:12) in [0; T0]:
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