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On Models of Gaussian Reciprocal Processes

and the Reconstruction of Periodic Jacobi

Matrices�

Carlos F. Borgesy Ruggero Frezza

Abstract

We consider algorithms to reconstruct models of scalar Gaussian

reciprocal processes from covariance information. These methods

exploit the fact that the covariance matrices of these processes have

structured inverses, either periodic Jacobi or Jacobi matrices. We

develop these relationships and show how to pass back and forth

between the covariance and its inverse both directly and by way

of some knowledge of the eigenstructure. In particular, we show

how to use eigenpairs to reconstruct the matrices. This approach

is markedly di�erent from existing algorithms which use all of the

eigenvalues of the full matrix and its largest principal submatrix.

1 Introduction

We will consider various algorithms for identifying the model of a scalar

Gaussian reciprocal process from some knowledge of the covariance. These

algorithms are developed by exploiting the special structure exhibited by

the inverses of the covariance matrices. In this sense the paper concentrates

most heavily on linear algebra and its methods. The paper is organized

in the following way. We begin by giving a brief introduction to models

of Gaussian reciprocal processes, including a discussion of the structure of

the various matrices we will be interested in examining. Next we give some

results on the relationship between Jacobi and periodic Jacobi matrices

and their inverses. In this section we will derive the basic relationships in

a direct and constructive manner. Next we show how a very few eigenpairs

�Received January 18, 1996; received in revised �nal form November 6, 1996. Sum-

mary appeared in Volume 8, Number 1, 1998.
yThe �rst author gratefully acknowledges support by direct grant from the Naval

Postgraduate School.

1



C.F. BORGES AND R. FREZZA

(generally two) can be used to reconstruct the inverse of a covariance matrix

for such a process. We give some results that show when this can be

done. We emphasize that the methods herein are developed only for scalar

processes. Finally, we look very brie
y at one particular special case, the

stationary case, which is particularly interesting since the eigenvectors are

known a priori.

2 Models of Scalar Gaussian Reciprocal Processes

A stochastic process x(k) de�ned on [1; N ] is reciprocal if for any subin-

terval [l;m] of [1; N ] the process in the interior of [l;m] is conditionally

independent of the process in [1; N ] � [l;m] given x(l) and x(m). For a

more rigorous de�nition see [11]. Reciprocal processes generalize Markov

processes since a Markov process is reciprocal while the converse, in gen-

eral, is not true, see [11] for an example of a process which is reciprocal

and not Markov.

It is known [12, 13, 6] that a discrete time Gaussian reciprocal process

x(k), under the assumption that the covariance of

[ x(k � 1) x(k + 1) ]T

is full rank, satis�es a nearest neighbor model like the following

m0(k)x(k) �m�(k)x(k � 1)�m+(k)x(k + 1) = �(k) (2.1)

where �(k) is a zero mean Gaussian process with covariance

E[�(k)�(k)] = m0(k) (2.2)

E[�(k)�(k + 1)] = �m�(k + 1) = �m+(k) (2.3)

E[�(1)�(n)] = �m�(1) = �m+(N) (2.4)

E[�(k)�(k + l)] = 0 otherwise. (2.5)

In matrix form the model (2.1) can be written as

�x = � (2.6)

where

xT =
�
x(1) x(2) � � � x(N)

�
; (2.7)

�T =
�
�(1) �(2) � � � �(N)

�
; (2.8)

and � is the following periodic Jacobi matrix
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� =

2
6666664

m0(1) �m+(1) �m+(n)

�m+(1) m0(2) �m+(2)

�m+(2)
. . .

. . . �m+(n� 1)

�m+(n) �m+(n� 1) m0(n)

3
7777775

Note that all omitted entries in this matrix are zeros. The covariance

structure (2.3) of the noise process corresponds to

E[��T ] = �: (2.9)

From (2.6) and (2.9) we see that

E[x�T ] = I (2.10)

and, therefore, that

�R = I (2.11)

where R = E[xxT ]. Thus, the noise process � is the conjugate pro-

cess of x, the matrix � characterizing the model of the reciprocal process

x is a periodic Jacobi matrix (i.e., a symmetric tridiagonal with entries

in the Northeast and Southwest corners, these are discussed in detail in

Section 6), and the covariance R of x is its inverse. Moreover, by virtue of

this relationship, these matrices have a related eigenstructure. If (�k ;uk)

are the eigenpairs of � then (1=�k;uk) are the eigenpairs of R.

This leads us to consider the possibility of identifying the reciprocal

model (2.1) of such a process starting from the eigenvectors of its covari-

ance. This is equivalent to reconstructing the matrix � from its eigenstruc-

ture which is a well known problem in the literature see, for example, [9],

[10] and references therein.

We propose an algorithm to reconstruct � from its two extremal eigen-

pairs (�1;u1) and (�n;un). We show that the algorithm is well posed.

The extremal eigenpairs also have the advantage that they can be easily

computed from the covariance R using Krylov sequence methods like the

Lanczos algorithm or power and inverse iteration [8].

The algorithm also serves to identify Markov models. Note �rst that

the Markov processes are a subclass of the reciprocal processes, and the

model corresponds to a Jacobi matrix (a subclass of the periodic Jacobi

matrices). In [13], it was shown that a Markov process x(k) satisfying the

model


x = Bw (2.12)
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where


 =

2
6666664

1

�a(1) 1

�a(2) . . .

. . .

�a(n� 1) 1

3
7777775

(2.13)

B = diag(b(k)) (2.14)

and

w =
�
w(0) w(1) � � � w(N � 1)

�
(2.15)

where w(k) are Gaussian, zero mean, independent random variables with

unitary variance, also satis�es a reciprocal model like (2.6) where

� = 
TQ�1
 (2.16)

with Q = BBT and

� = 
TQ�1w: (2.17)

Therefore, 
 and B can be obtained from � by performing a Cholesky

factorization.

In practice, the covariance R will be corrupted by noise; we will then

need to work with the covariance Ry of the observations

y = Cx+ v (2.18)

where C = diagN�N(c). If v(k) are independent Gaussian random variables

identically distributed with zero mean and variance v, then Ry is related

to R by

Ry = CRCT + vI: (2.19)

One can show that as long as v 6= 0 the covariance Ry does not have a

Jacobi inverse. We can re�ne the algorithm so that given Ry it estimates

v and � such that

�(Ry � vI) = I: (2.20)
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GAUSSIAN RECIPROCAL PROCESSES

3 Jacobi and Green's Matrices

A real symmetric tridiagonal matrix

J =

2
6666664

�1 �1
�1 �2 �2

�2
. . .

. . . �n�1
�n�1 �n

3
7777775

(3.21)

will be called a Jacobi matrix. If, furthermore, �2i > 0 for i = 1; 2; :::; n�
1, then we will call the matrix a simple Jacobi matrix. We note that a

Jacobi matrix can be written as a direct sum of simple Jacobi and diagonal

matrices. Jacobi matrices occur in many applications.

Given u;v 2 <n, the real symmetric matrix G given by

Gi;j =

�
uivj if i � j

ujvi if i > j

is called a Green's matrix (or one-pair matrix) with de�ning pair (u;v).

Note that G depends on only 2n� 1 independent parameters, the same as

a Jacobi matrix, since we can arbitrarily normalize either u or v.

For example, the 6� 6 Green's matrix looks like2
6666664

u1v1 u1v2 u1v3 u1v4 u1v5 u1v6
u1v2 u2v2 u2v3 u2v4 u2v5 u2v6
u1v3 u2v3 u3v3 u3v4 u3v5 u3v6
u1v4 u2v4 u3v4 u4v4 u4v5 u4v6
u1v5 u2v5 u3v5 u4v5 u5v5 u5v6
u1v6 u2v6 u3v6 u4v6 u5v6 u6v6

3
7777775
;

which can be thought of as a symmetrization of the outer-product uvT .

Although Green's matrices are usually represented by a de�ning pair

they may also be represented by the entries from the diagonal and �rst

super-diagonal (or �rst sub-diagonal). This manner of characterizing them

is consistent with that for Jacobi matrices. The remainder of the entries

can be found by applying the relationship

Gi;jGi+1;j+1 = Gi;j+1Gi+1;j ; (3.22)

which holds for all i; j such that ji� jj � 1. It is important to note that for

a second-order scalar discrete Markov process only the variances at each

step, E[x(i)x(i)], and the covariances of adjacent steps, E[x(i)x(i+1)], are

necessary for determining all other second-order information since these

processes also satisfy
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E[x(i)x(j)]E[x(i + 1)x(j + 1)] = E[x(i)x(j + 1)]E[x(i+ 1)x(j)] (3.23)

for all i; j such that ji� jj � 1. This can be seen from (2.12) that for j < i

implies

E[x(i+1)x(j)] = a(i)E[x(i)x(j)]; E[x(i+1)x(j+1)] = a(i)E[x(i)x(j+1)]

while for j > i

E[x(i)x(j+1)] = a(j)E[x(i)x(j)]; E[x(i+1)x(j+1)] = a(j)E[x(i+1)x(j)]:

It follows that the covariance matrix of such a process is a positive

de�nite Green's matrix (positive de�niteness comes directly from the fact

that it is a covariance).

We introduce the following well-known fact.

Theorem 3.1 Let J be an n � n nonsingular simple Jacobi matrix, then

J�1 is a Green's matrix.

Although the proof of this classical result is widely known, it uses deter-

minant relationships and is not particularly constructive. We give a direct

proof of this fact that yields a number of interesting and useful relation-

ships. Throughout, we denote by ei the i'th axis vector (that is, a vector

with a 1 in the i'th position and zeros elsewhere), and for convenience we

use eL to denote the last axis vector (1 in the last position). The sizes of

the various axis vectors should be taken from context. and let

Proof: Since J is non-singular choose u to be the solution of Ju = en and

v to be the solution to Jv = (1=u1)e1 (note that since J is simple it must

be true that u1 6= 0).

We will prove the claim by showing that Jgk = ek where gk is the

k'th column of that G de�ned by (u;v). We begin by showing this for

1 � k < n.

For an arbitrary index 1 � k < n write

J =

�
J1 �keLe

T
1

�ke1e
T
L J2

�
;

and let

v =

�
v1
v2

�
and u =

�
u1
u2

�

where v1;u1 2 <k, all other indices are apparent from the context. Now

Jv =

�
J1v1 + �keLe

T
1
v2

J2v2 + �ke1e
T
Lv1

�
=

�
J1v1 + �kvk+1eL
J2v2 + �kvke1

�
:
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So that

J1v1 + �kvk+1eL =
1

u1
e1; (3.24)

J2v2 + �kvke1 = 0: (3.25)

And, by a similar process

J1u1 + �kuk+1eL = 0; (3.26)

J2u2 + �kuke1 = eL: (3.27)

Next, we note that by virtue of the structure of G we can write

gk =

�
vku1
ukv2

�
:

Therefore

Jgk =

�
vkJ1u1 + �kukeLe

T
1
v2

ukJ2v2 + �kvke1e
T
Lu1

�

=

�
vkJ1u1 + �kukvk+1eL
ukJ2v2 + �kvkuke1

�
:

Substituting from equations 3.25 and 3.26 gives

Jgk =

�
��kvkuk+1eL + �kukvk+1eL
��kukvke1 + �kvkuke1

�
= �k(ukvk+1 � vkuk+1)ek:

Hence JG is diagonal and we only need to show that �k(ukvk+1 �
vkuk+1) = 1 for 1 � k < n to complete the proof. First, if k = 1 then, by

the de�nition of u and v, we have

�1u1 + �1u2 = 0; (3.28)

�1v1 + �1v2 = 1=u1: (3.29)

Scaling these equations by v1 and u1, respectively, and then subtracting

the �rst from the second to eliminate the terms involving �1 gives

�1(u1v2 � v1u2) = 1:

Next, if 1 � k < n we have

�k�1uk�1 + �kuk + �kuk+1 = 0; (3.30)

�k�1vk�1 + �kvk + �kvk+1 = 0; (3.31)

(3.32)
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which leads to

�k�1(vkuk�1 � ukvk�1) = �k(ukvk+1 � vkuk+1):

Hence, by induction �k(ukvk+1 � vkuk+1) = 1 for 1 � k < n.

Finally, we note that gn = vnu which implies that Jgn = vnen. To

complete the proof we need to show that vn = 1. We know that

�n�1un�1 + �nun = 1;

�n�1vn�1 + �nvn = 0:

Whence

�n�1(vnun�1 � unvn�1) = vn:

But we also know from before that

�n�1(vnun�1 � vn�1un) = 1:

Hence vn = 1 and the proof is complete.

4 Inverting a Green's Matrix

Just as the inverse of a simple Jacobi matrix is a Green's matrix, the inverse

of a non-singular Greens matrix is a simple Jacobi matrix. To construct the

inverse we compute the �k using the relationship �k(ukvk+1� vkuk+1) = 1

that was developed in the proof above. In particular

�k =
1

ukvk+1 � vkuk+1
:

To �nd the �k we note that for 1 < k < n we have the following two

equations:

�k�1uk�1 + �kuk + �kuk+1 = 0;

�k�1vk�1 + �kvk + �kvk+1 = 0;

which leads to

�k = ��k�1
uk�1

uk
� �k

uk+1

uk
;

�k = ��k�1
vk�1

vk
� �k

vk+1

vk
:

We note that at least one of these must be well-de�ned for each 1 <

k < n, since setting uk = vk = 0 for any k would give a zero row (and
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column) in G which contradicts the non-singular assumption. We get �1
by noting that

�1u1 + �1u2 = 0:

Whence

�1 = ��1
u2

u1
;

And similarly

�n = ��n�1
vn�1

vn
:

Both of which must be well de�ned, again because either u1 = 0 or vn = 0

would imply that G is singular.

We also note that the following relationships can be derived for the

ratios between successive ui and vi. De�ne


k =
uk

uk+1
=

Gk;k+1

Gk+1;k+1

; (4.33)

�k =
vk+1

vk
=

Gk;k+1

Gk;k

: (4.34)

Then


k =
��k

�k � �k�1
k�1
; (4.35)

�k =
��k

�k+1 � �k+1�k+1
; (4.36)

where


1 =
��1
�1

; (4.37)

�n�1 =
��n�1
�n

: (4.38)

5 The Cholesky Factorization of a Green's Matrix

It is often useful to �nd the Cholesky factorization of a covariance matrix.

We now give two direct algorithms for computing the Cholesky factorization

of a positive de�nite Green's matrix G 2 <n�n. We wish to �nd L 2 <n�n
such that LLT = G. First, we derive an algorithm that uses the de�ning

pair to compute the Cholesky factorization. Consider the following block

partitioning where v̂T =
�
v2 v3 ::: vn

�
and Ĝ is the n � 1 � n � 1

submatrix that remains after deleting the �rst row and column of G. Then,

the block form of the Cholesky factorization is�
u1v1 u1v̂

T

u1v̂ Ĝ

�
=

�

 0T

a L̂

� �

 aT

0 L̂T

�
:

9



C.F. BORGES AND R. FREZZA

We are led to the following equations


2 = u1v1;

a =
1



u1v̂;

L̂L̂T = Ĝ� u2
1

u1v1
v̂v̂

T ;

= Ĝ� u1

v1
v̂v̂

T :

Notice that the Schur complement is itself a Green's matrix with de�n-

ing pair (û� u1
v1
v̂; v̂). We are led to the following algorithm

for j = 1 to n� 1

Lj;j =
p
ujvj

for i = j + 1 to n

Li;j =
q

uj
vj
vi

ui = ui � uj
vj
vi

endfor

endfor

Ln;n =
p
unvn

If we use the fact that the elements of a Green's matrix satisfy equation

3.22 we can develop an algorithm that computes the Cholesky factorization

using only the entries from the diagonal and �rst sub-diagonal (super-

diagonal). We omit the derivation as it is quite tedious, but we note that

it follows from applying the relation 3.22 to the algorithm above.

for j = 1 to n

if j == 1

Lj;j =
p
G1;1

else

Lj;j =

r
Gj;j �

G2
j;j�1

Gj�1;j�1

endif

for i = j + 1 to n

Li;j = Lj;j
Qi�1

k=j �k
endfor

endfor

where the �k are as de�ned in 4.34

It is interesting to note that one step of Cholesky LR on a Green's

matrix preserves the structure. Hence, we can use this algorithm to derive
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a number of quotient-di�erence like algorithms, ala Rutishauser, for �nding

the eigenvalues of a Green's matrix without prior reduction to tridiagonal

form [3]. These processes are analogous to those used for Jacobi matrices

but operate on the inverse. This relationship mirrors the one between the

divide-and-conquer algorithms for the symmetric eigenproblem based on

extension (arrow matrices) and those based on modi�cation (diagonal plus

rank-one) as these structures are also inverses.

6 Periodic Jacobi Matrices

A real symmetric matrix with non-zero entries only on the diagonal, �rst

super-diagonal, �rst sub-diagonal, and northeast and southwest corners,

e.g.,

K =

2
6666664

�1 �1 


�1 �2 �2

�2
. . .

. . . �n�1

 �n�1 �n

3
7777775

(6.39)

is called a periodic Jacobi matrix. We will assume that �2i > 0 for i =

1; 2; :::; n� 1.

It is known that the inverse of the covariance of a scalar discrete recip-

rocal process is a periodic Jacobi matrix. It is not surprising then that the

periodic Jacobi matrices include the Jacobi matrices as a sub-class in just

the same way that the reciprocal processes include the Markov processes

as a sub-class.

It is a useful fact that a periodic Jacobi matrix is a rank-one modi�-

cation of a Jacobi matrix. If we let s = e1 + en then the periodic Jacobi

matrix K above can be written in the form K = J + 
ssT where

J =

2
6666664

�1 � 
 �1
�1 �2 �2

�2
. . .

. . . �n�1
�n�1 �n � 


3
7777775
:

Note that J is the model for a Markov process with the same reciprocal

dynamics as the process represented by K, i.e., the two processes have

the same conjugate process �(i) for 1 < i < n.

To investigate the inverse of a periodic Jacobi we recall the Sherman-

Morrison formula

(A+ uvT )�1 = A�1 � A�1uvTA�1

1 + vTA�1u
:

11
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For the case under consideration we can write

(J + 
ssT )�1 = J�1 � 


1 + 
sT J�1s
(J�1s)(J�1s)T :

Since we know that J�1 is a Greens' matrix, we see that the inverse of

a periodic Jacobi is a Greens' matrix plus a symmetric outer-product. It

is clear from the formula above that

K�1s = �J�1s

where

� = 1� 
sTJ�1s

1 + 
sTJ�1s

=
1

1 + 
sTJ�1s

from which we can see the following:

Theorem 6.1 Let R be the covariance of a reciprocal process u(t) indexed

on t = 1; 2; :::; n and let w = Rs. There exists a unique scalar � such that

R+ �wwT is the covariance of a Markov process with the same reciprocal

dynamics as the process u(:). Moreover, if 1 � i < n and 1 � j < n are

integers such that ji� jj � 1 then

� =
� det(R̂)�

wi+1 �wi

�
R̂

�
wj+1

�wj

�

where

R̂ =

�
Ri;j Ri;j+1

Ri+1;j Ri+1;j+1

�
:

The theorem allows us to �nd the Green's matrix that is the inverse

of J , which is the model of a Markov process with the same reciprocal

dynamics as those of the reciprocal process in question. In order to invert

the covariance matrix R we will need to invert this Green's matrix (this

was discussed in an earlier section) and we need to �nd 
. If we de�ne

� := sTRs then we can show that

� =
1

1 + ��

and further, since 
 = �� we see that


 =
�

1 + ��
:

12
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7 Reconstructing a Jacobi Matrix

We wish to develop an algorithm to reconstruct J from the knowledge of

two of its eigenpairs (�;u) and (�;v). The eigenvector recurrence for Jacobi

matrices is

�i�1ui�1 + �iui + �iui+1 = �ui (7.40)

where (�;u) is any eigenpair of J , ui is the ith element of u, and �0 =

�n = 0. Applying this relation to both eigenpairs gives

�i�1ui�1 + �iui + �iui+1 = �ui;

�i�1vi�1 + �ivi + �ivi+1 = �vi:

Combining these two equations and eliminating �i gives

�i�1(viui�1 � uivi�1) + �i(ui+1vi � vi+1ui) = (�� �)uivi: (7.41)

De�ne �i := ui+1vi � vi+1ui for i = 1; 2; :::; n� 1 then we may rewrite

7.42 in the following form:

�i�i � �i�1�i�1 = (�� �)uivi: (7.42)

Since �0 = �n = 0 we get the following initial and terminal conditions

�1�1 = (�� �)u1v1; (7.43)

�n�1�n�1 = (�� �)unvn: (7.44)

Provided that �i 6= 0 for i = 1; 2; :::; n � 1, we can combine (7.42) with

(7.43) and get a special case of the Christo�el-Darboux identity,

�i�i = (�� �)�i; (7.45)

for i = 1; 2; :::; n� 1 where we de�ne

�i :=

iX
k=1

ukvk:

Note that since u and v are orthogonal it must be true that

��i =
nX

k=i+1

ukvk:

so there is also a backward formula,

�i�i = �(�� �)

nX
k=i+1

ukvk: (7.46)

13
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There are several ways to determine the �i. It is possible to obtain an

equation for the �i using the �i and a single eigenpair by solving the scalar

equation 7.40 to get

�i = �� �i�1
ui�1

ui
� �i

ui+1

ui
: (7.47)

If we do not use the extremal eigenpairs then this formula can break

down since it is possible that ui = 0. In this case we can use the second

eigenpair provided that vi 6= 0. Unfortunately, it is also possible that both

ui and vi are zero. Then we must use one of the two formulas that follow,

at least one of which must be well-de�ned for any two eigenpairs.

�i�i = �ui+1vi � �vi+1ui � �i�1�i (7.48)

�i�i�1 = �uivi�1 � �viui�1 � �i�i (7.49)

where we de�ne

�i := ui+1vi�1 � vi+1ui�1;

for i = 2; 3; 4; :::; n� 1. We can use equation 7.48 to get �1 and equation

7.49 to get �n provided we assume that �0 = �n = 0.

We can use these equations to reconstruct the original matrix from the

two eigenpairs provided that �i 6= 0 for any i = 1; 2; :::; n� 1. Using (7.47),

(7.45), and (7.46) we can reconstruct the original matrix in 13n� 12 
ops.

In order to determine when these formulas can be applied, we need

some additional results. We introduce the following fact from [14].

Theorem 7.1 Let J 2 <n�n be a simple Jacobi matrix with non-negative

o�-diagonal elements and assume that the eigenvalues are ordered so that

�1 > �2 > ::: > �n. Then the number of sign changes between consecutive

elements of the kth eigenvector of J , denoted sk, is k � 1.

We refer the reader to [14] for a proof but note that it can be derived

from the Sturm sequence property for the characteristic polynomials of the

principal sub-matrices. With this fact in hand we can prove the following

theorem.

Theorem 7.2 If J 2 <n�n is a simple Jacobi matrix with non-negative

o�-diagonal elements and if (�;u) and (�;v) are the extremal eigenpairs

of J , that is � = �1 and � = �n, then viui+1 � uivi+1 6= 0 for any i =

1; 2; :::; n� 1.

Proof: The proof follows trivially by noting that the strict interlacing

property for simple Jacobi matrices (see [16] p. 300) guarantees that none

of the numbers ui; ui+1; vi; vi+1 can be zero. And, since ui and ui+1 must

14
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have the same sign and vi and vi+1 must have opposite signs (from fact 1),

it follows that both terms in uivi+1 � viui+1 have opposite signs and are

nonzero so this di�erence is really a sum of two strictly positive (negative)

numbers and hence is not zero.

Hence, if we choose the two extremal eigenpairs of a simple Jacobi

matrix with non-negative o�-diagonal entries we can always reconstruct the

original matrix using the formulas above. Notice that the �i are computed

without cancellation in this case because of the sign pattern. Moreover, if

we use the smallest (largest) eigenpair in (7.47) to get the �i, then these

can be reconstructed from the derived �i and the data without further

cancellation if the matrix is positive (negative) de�nite. If the matrix is

inde�nite then there is only one additional cancellation for each of the �i.

If the matrix is singular then choosing the eigenvector associated with the

zero eigenvalue prevents further cancellation.

Note that any Jacobi matrix has exactly 2n� 1 real degrees of freedom

and that two eigenpairs contain 2n+2 numbers but, in fact, also have 2n�1
real degrees of freedom since there are two arbitrary scaling parameters

for the eigenvectors and a single orthogonality condition. The eigenpairs

contain precisely the right amount of information.

8 Breakdown of the Jacobi Reconstruction

The algorithm can breakdown if one does not use the extremal eigenpairs

since some of the �i may be zero. For an example of this consider the

matrix 2
664

6 2 0 0

2 4 5 0

0 5 4 2

0 0 2 6

3
775 : (8.50)

This matrix is a simple Jacobi matrix with non-negative o�-diagonal entries

and shares no eigenvalues with its principal sub-matrices. The eigenvalues

are 10; (5 +
p
65)=2; 5; (5�

p
65)=2 and the eigenvectors associated with

10 and 5 are [1 2 2 1]T and [�2 1 1 � 2]T , respectively. Using these two

eigenpairs the algorithm breaks down in computing �2. Some manipulation

of the scalar equations shows that the two eigenpairs in question are, in

fact, eigenpairs of any matrix of the form2
664

6 2 0 0

2 9 + ` �` 0

0 �` 9 + ` 2

0 0 2 6

3
775 ; (8.51)

15
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which can be written as a sum in the following way:2
664

6 2 0 0

2 9 0 0

0 0 9 2

0 0 2 6

3
775+ `

2
664

0 0 0 0

0 1 �1 0

0 �1 1 0

0 0 0 0

3
775 : (8.52)

In general, the reconstruction algorithm will break down at any 1 �
k � n � 1 such that �k = 0, that is, uk+1vk � vk+1uk = 0. Notice that

if �k = 0, then both �k�1 6= 0 and �k+1 6= 0 since if either was also zero

it would imply that two distinct eigenvalues share the same eigenvector.

When a breakdown occurs at k it implies that the given input data does

not restrict the value of �k, we can assign �k arbitrarily and proceed with

the reconstruction using equation 7.42. Furthermore, if �k = 0 let H(k) be

H(k) = 0k�1 �
"

uk+1
uk

�1
�1 uk

uk+1

#
� 0n�k�1:

Then u and v are both eigenvectors of the symmetric tridiagonal ma-

trix H(k) associated with the eigenvalue 0. Hence, if J is any symmetric

tridiagonal with eigenpairs (�;u) and (�;v) then so is J + `H(k). There

will be one such matrix for each �k that is zero.

We can modify the algorithm so that it deals gracefully with breakdowns

by proceeding in two steps. First, we build a reducible Jacobi matrix by

running the recurrence and setting �k = 0 any time �k = 0. The following

fragment implements this

s = 0

for i = 1 to n� 1

if �i == 0

�i = 0

s = 0

else

s = s+ uivi

�i =
(���)s

�i

endif

endfor

We will call the output, J , of this step the particular solution. Next, for

each k such that �k = 0 we construct a matrix H(k) as described above, we

will call these homogeneous solutions. Finally, the most general solution

to the problem is given by

J +
X

k3�k=0

`kH
(k);

where the `k may take on any values.
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9 Reconstructing a Periodic Jacobi Matrix

Reconstructing a periodic Jacobi matrix K 2 <n�n is not much di�erent

from reconstructing the Jacobi matrix. If we take (�;u) to be any eigenpair

of K then the eigenvector recurrences are

�i�1ui�1 + �iui + �iui+1 = �ui (9.53)

for i = 2; 3; :::; n� 1 and

�1u1 + �1u2 + 
un = �u1; (9.54)

�nun + �n�1un�1 + 
u1 = �un: (9.55)

Proceeding as before we get the following relationship

�i�i � �i�1�i�1 = (� � �)uivi (9.56)

for i = 2; 3; :::; n� 1.

The initial and terminal conditions are more di�cult in the periodic

case. We have only two equations in the three unknowns

�1�1 = (�� �)u1v1 + 
(u1vn � v1un); (9.57)

�n�1�n�1 = (�� �)unvn + 
(u1vn � v1un): (9.58)

Extend the de�nition of �i to include �0 := u1vn � v1un =: �n. Then

combining (9.56) with (9.57) gives a special case of the Christo�el-Darboux

identity,

�i�i = (� � �)�i + 
�0

for i = 1; 2; :::; n�1. There is a backward formula which follows by orthog-

onality as before.

The �i satisfy equations 7.48 and 7.49 for i = 2; 3; :::; n�1. If we extend
the de�nition of �i to include

�1 := u2vn � v2un;

�n := u1vn�1 � v1un�1:

then the following equations hold for �1 and �n

�1�1 = �u2v1 � �v2u1 � 
�1;

�n�n�1 = �unvn�1 � �vnun�1 � 
�n:
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9.1 Parameterized form for the periodic Jacobi

In reconstructing the periodic Jacobi we have left the corner element 
 as

a free parameter. This is unavoidable with the given data since we do not

have enough information to completely determine the 2n unknowns. As a

result, if the reconstruction proceeds without a breakdown, we will have

a parameterized family of solutions. We can see that the periodic Jacobi

matrix with eigenpairs (�;u) and (�;v) can be written as the sum of a

Jacobi matrix and an arbitrary multiple of a periodic Jacobi matrix in the

form

K = J + 
K̂;

where J is the Jacobi matrix that is found using the reconstruction algo-

rithm described earlier, and K̂ is a periodic Jacobi matrix with ones in the

NE and SW corners and whose remaining elements are given by

�̂i =
�0

�i
;

�̂i = � �0�i

�i�1�i
:

We can save 2n � 1 multiplies at the cost of one additional division

by letting K̂ be the periodic Jacobi matrix with 1=�0 in the NE and SW

corners and whose remaining elements are given by

�̂i =
1

�i
;

�̂i =
��i

�i�1�i
:

9.2 Feasible regions

We have seen that two eigenpairs do not contain enough information to

completely reconstruct a periodic Jacobi matrix. With this limited infor-

mation we can only recover a parameterized form such as the one above.

Fortunately, the parameterization is of such a form that with additional

information it is often possible to derive simple equations that will yield

the unknown parameter 
. For instance, if any of the non-zero elements of

K is known then 
 can be solved for immediately.

Even less direct information can be used in an e�ort to determine or re-

strict the value of 
. For example, recall that our motivation for developing

this algorithm is model identi�cation of reciprocal stochastic processes. In

this case, we are reconstructing the inverse of a covariance matrix and so

there is certain additional information that is at our disposal. In particular,

since covariance matrices are positive de�nite, so are their inverses. It is

18
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well-known that the diagonal elements of a positive de�nite matrix must

be positive. We can use this fact to limit the possible values that 
 may

assume by imposing this constraint. That is, we can determine a feasible

region for 
 by �nding the open interval (l; r) such that the diagonal of

J + 
K̂ has positive diagonal elements for all 
 2 (l; r). In particular, for

each diagonal element of J+
K̂ to be positive we need to impose the linear

constraints

�i + 
�̂i > 0:

It follows that


 > ��i

�̂i
for all i such that �̂i > 0

and


 < ��i

�̂i
for all i such that �̂i < 0.

We note that this is a rather minimal necessary condition and is not

su�cient to guarantee that J + 
K̂ will be positive de�nite. We have

presented it because it leads to a simple algorithm and experience shows

that the interval determined in this manner is often quite small so that

with no further information it may be possible to get a reasonable estimate

for the inverse of the covariance.

Of course, a variety of methods can be used to determine 
 given addi-

tional information. These techniques will depend on the available data.

10 Identi�cation of Stationary Processes

It is known that when a scalar Gaussian reciprocal process is stationary

then the inverse of its covariance must be a circulant periodic Jacobi matrix,

that is

K =

2
6666664

� � �

� � �

�
. . .

. . . �

� � �

3
7777775
: (10.59)

Circulant matrices have a very special structure and are intimately re-

lated to the discrete Fourier transform (DFT). It is well known that if

A 2 <n�n is a circulant matrix then the n � n matrix Ui;j = !(i�1)(j�1),

where ! is the generator for the n'th roots of unity1, diagonalizes A. It is

not di�cult to show that the eigenvalues of K are

�k = �+ �(!k + �!k)

= �+ 2� cos
2�k

n
1This matrix is often called the DFT matrix of order n.
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where k = 0; 1; 2; :::; n � 1. Furthermore, the eigenvector associated with

the eigenvalue �k is

vk =

2
666664

1

!k

!2k

...

!(n�1)k

3
777775 :

In particular, we see that �+2� is an eigenvalue of K whose associated

eigenvector is the ones vector. Furthermore, if n is even then �� 2� is an

eigenvalue, whose associated eigenvector is the sign-permuted ones vector.

Moreover, the remaining eigenvalues each occur with algebraic multiplicity

2. This fact can lead to breakdown since the reconstruction requires that

the eigenvalues be distinct.

Fortunately, this structure leads to a very simple procedure for identi-

fying the model for such a process. In particular, we know that if we are

given the covariance R of such a process, then

Rvk =
1

�+ 2� cos 2�k
n

vk

from which we can derive a number of equations for � and �. As an

example, assume we have a scalar stationary Gaussian reciprocal process

de�ned on t = 1; 2; :::; n where n is even, and assume that its covariance

matrix, R, is known (or has been estimated). Then

Rw =
1

�+ 2�
w;

Rz =
1

�� 2�
z;

where w is the ones vector, and z is the sign permuted ones vector (z =�
1 �1 1 :::

�T
). By performing two matrix vector multiplies (for this

case we need only n� 1 additions and 1 subtraction) we can compute the

left-hand sides of the following two equations

(Rw)1 =
1

�+ 2�
;

(Rz)1 =
1

�� 2�
;

and we see that

� =
1

2

�
1

(Rw)1
+

1

(Rz)1

�
;

� =
1

4

�
1

(Rw)1
� 1

(Rz)1

�
:
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By exploiting the structure of the covariance estimation algorithm it

should be possible to make an estimate of this type directly from observed

trajectories.

11 Conclusions

We have developed some methods for identifying models of scalar Gaus-

sian reciprocal processes. The algorithms we developed exploit the fact

that covariances for these processes have structured inverses, in particular

periodic Jacobi matrices. We point out that although we have not pursued

it here many of these algorithms can be extended to the non-scalar case.
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