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Abstract

The recent solution of the output regulation problem for non-

linear control systems gives necessary and su�cient conditions for

the local existence of a feedback/feedforward law in terms of the

solvability of an \o�-line" system of partial di�erential equations,

the \regulator equations." The regulator equations are the nonlin-

ear analogue of the \Sylvester" equations of linear systems theory

and in this sense represent an initiation of the study of nonlinear

enhancements of the important set of equations arising in linear sys-

tems and control which are central in the modern theory, practice

and computations of linear systems. While Lyapunov equations are

a special case of Sylvester equations which have been used quite a

bit in nonlinear control, conspicuous in its absence is the Riccati

equation|both in its di�erential and algebraic forms. The structure

of the controller derived in the solution of the regulator problem is,

of course, quite reminiscent of that of an LQ or LQR controller, ex-

pressed in terms of the \o�-line" solution of a Riccati equation. This

similarity leads to the question as to whether there exists a corre-

sponding Riccati Partial Di�erential Equation, which would play a

fundamental role not only in optimal control but also in a broader

context, for example, in a theory of spectral factorization for non-

linear systems. This now seems to be the case. In this paper, we

provide the details for results we announced in 1989 concerning the

solution of certain optimal control problems by the use of an o�-line

Riccati Partial Di�erential Equation. Independently, Helton and

Ben-Artzi discovered a similar Riccati Partial Di�erential Equation

in their investigation into factoring nonlinear systems. Since that

time, several other uses of Riccati Partial Di�erential Equations in

�nite dimensional nonlinear systems have been discovered.
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Of course, in a subject with such classical origins as optimal con-

trol, there are antecedents to virtually every concept. To the best

of the author's knowledge, the earliest form of the Riccati PDE was

discovered in the application of invariant imbedding methods to the

two-point boundary value problems which arise in the application of

the Pontryagin Maximum Principle. As cited in the introduction,

other forms of Riccati equations have been derived in a variety of

other settings. Most notably, the Riccati PDE is also equivalent to

the Hamilton-Jacobi-Bellman (HJB) equation, when the value func-

tion is su�ciently smooth. One contribution in this paper lies in the

development of a geometric existence theory, inspired by our earlier

work on the regulator problem, for classical, weak and generalized

solutions of the Riccati Partial Di�erential Equation. For �nite and

in�nite time horizon problems, we also investigate the relationship

of such solutions to optimal control laws. Indeed, as corollaries of

certain of our existence results, we obtain smoothness results for the

value function of the corresponding optimal control problem.

Key words: �nite time horizon optimal control, in�nite time horizon optimal

control, nonlinear control systems, stable manifold, Riccati Partial Di�erential

Equation

1 Introduction

The recent solution (see [1]{[2]) of the output regulation problem for non-

linear control systems gives necessary and su�cient conditions for the lo-

cal existence of a feedback/feedforward law in terms of the solvability of

an \o�-line" system of partial di�erential equations, the \regulator equa-

tions." There are several aspects of this approach which have been the

starting point for further investigations.

First, in [1] an existence theory is developed for solvability of the regula-

tor equations which is geometric in its nature, reducing to Hautus' existence

criterion in terms of transmission zeroes in the linear case and involving

zero dynamics in the nonlinear case. However, the key tools for verify-

ing the geometric conditions come from nonlinear dynamics; viz., invariant

manifold theory (e.g., the existence and properties of center, stable and

unstable manifolds). The systematic development of such geometric con-

ditions for the existence of solutions of partial di�erential equations, in a

control theoretic context, form part of the starting point for this investiga-

tion in nonlinear optimal control.

Second, there was some optimism, at least by the authors of [1]-[2],

that the \o�-line" nature of the regulator equations would facilitate the

development of computational methods for nonlinear control. Indeed, the

regulator equations are the nonlinear analogue of the \Sylvester" equations

of linear systems theory and the development of computational tools for
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solving such equations would be one of the more important steps in devel-

oping a set of computational methods for nonlinear control which would

be comparable in scope to those available for linear systems. The paper [3]

began an investigation into techniques for solving the regulator equations,

expressing the linear equations for the Taylor coe�cients of the solutions

and giving independent \resonance" criteria for the term by term solution

of these linear equations. More recently, Krener [4] has expressed these

resonance conditions and the linear equations in terms of the homologi-

cal equations of Poincar�e and has successfully extended his numerical tool

box for nonlinear control, also called \Poincar�e", to include the regulator

equations|solved out to cubic order.

There are, of course, other important equations arising in linear systems

and control which are also quite central to the theory, to practice and to

the computations. Lyapunov equations are a special case of Sylvester equa-

tions and have been extensively used and researched in nonlinear control.

However, conspicuous in its absence is the Riccati equation|both in its

di�erential and algebraic forms. The structure of the controller derived in

the solution of the regulator problem is, of course, quite reminiscent of that

of an LQ or LQR controller, expressed in terms of the \o�-line" solution

of a Riccati equation. This striking similarity leads to two questions. Can

one derive a solution of the regulator equations from an optimal control

problem? Is there a corresponding Riccati Partial Di�erential Equation,

which would play a fundamental role not only in optimal control but also

in a broader context, for example in spectral factorization?

Concerning the �rst question, it is important to note that solutions of

the regulator equations are often unique up to a choice of a stabilizing state

feedback law, despite their derivation via center manifold methods. With

this in mind, the �rst question has been answered in the a�rmative in

[4], for those solutions of the regulator equations derived from an optimal

stabilizing state feedback law.

Concerning the second question question, in 1989 we announced ([5]

and more recently, [6]-[7]) the solution of certain optimal control problems

by use of an o�-line Riccati Partial Di�erential Equation. Also in 1989,

I learned from Bill Helton that he and Ben-Artzi ([8]) had discovered a

similar Riccati Partial Di�erential Equation in their investigation into fac-

toring nonlinear systems. Since that time, several other uses of Riccati

Partial Di�erential Equations in �nite dimensional nonlinear systems have

been discovered.

Of course, in a subject with such classical origins as optimal control,

there are antecedents to virtually every concept|especially in the calculus

of variations. Indeed, in 1935, Caratheodory discovered a predecessor of

the Riccati PDE in his study of su�cient conditions for the calculus of

variations. Referring to this new system of �rst order partial di�erential
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equations as the \fundamental equations of the calculus of variations, "

he also derived the well-known necessary conditions of Euler-Lagrange and

Weierstrass. To the best of the author's knowledge, the earliest form of the

Riccati PDE in modern control was discovered in the application of invari-

ant imbedding methods, pioneered by Bellman, to the two-point boundary

value problems arising in the formulation of the transversality conditions

in the Pontryagin Maximum Principle (see, for example, the classic text [9]

by Melsa). In this context, for example, a form of the \dual" Riccati PDE

was also proposed by Nihitala (see, e.g. [10]) for nonlinear �ltering.

From one point of view, the Riccati PDE may be regarded as an attempt

to eliminate the costate from the expression for the maximizing control in

the statement of the Pontryagin Maximum Principle. Since the costate is

also constrained to evolve under the adjoint equation, this would require

an elimination procedure in the sense of di�erential algebra. Indeed, a

di�erential algebraic derivation of a higher order system of PDE's for the

costate was carried out in this case in [11], using the techniques of di�er-

ential algebra. However, under suitable rank conditions, the higher order

system becomes �rst order and coincides with the Riccati PDE considered

here.

A Riccati Equation, typically realizable by a PDE, is also standard in

the theory of optimal control for linear distributed parameter systems and

has even been developed for certain classes of nonlinear DPS (see, e.g. [12]{

[13]). Finally, the Riccati PDE is also equivalent to the Hamilton-Jacobi-

Bellman (HJB) equation, when the value function is su�ciently smooth.

One of our contributions lies in the development of a geometric existence

theory, inspired by our earlier work on the regulator problem, for classical

and non-classical solutions. Indeed, our geometric derivation of the Riccati

PDE is independent of the HJB equation and thus, as corollaries of certain

of our existence results, we obtain smoothness results for the value function

of the corresponding optimal control problem.

For the matrix Riccati equation, the key analytic question is whether

or not there exists a �nite escape time for solutions with a given initial

or �nal condition. For the Riccati PDE, one has to analyze both the ex-

istence of \classical blow-ups"|i.e., �nite escape time|where the time

derivative becomes in�nite and the existence of \shock waves," where the

spatial derivative becomes in�nite. The general result in LQ theory is that,

for those matrix Riccati equations and terminal conditions arising from op-

timal control problems, �nite escape time does not exist. In the nonlinear

case, this is closely related to the existence of optimal controls. Indeed,

Pontryagin's Maximum Principle rules out the formation of classical blow-

ups. There is great evidence (see, e.g., Sections 5, 6 and [16]) that an

analogous situation prevails, relating uniqueness of optimal controls to the

nonexistence of shock waves, for at least certain classes of nonlinear prob-
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lems. This relationship, which is suggested by the geometry, provides a link

between the existence of shock waves and its �nite dimensional \shadow",

the existence of bifurcations of optimal controls.

Examples show that generalized solutions to the Riccati PDE can also

be used to synthesize optimal controls. This theme has recently been pur-

sued more generally in the forthcoming thesis of N. Caro� [29] which in-

vestigates the relationship between set-valued analytic methods, multival-

ued geometric methods and more analytic approaches to the shock waves,

particularly to quantities (such as entropy) preserved throughout the oc-

currence of shocks.

In this paper, we focus on the development of a geometric existence

theory for classical, weak and generalized solutions of the Riccati Partial

Di�erential Equation. For �nite and in�nite time horizon problems, we also

investigate the relationship of such solutions to optimal control laws. In this

context, classical solutions are, of course, smooth solutions. Weak solutions

are characterized geometrically, but turn out to be continuous everywhere

and smooth almost everywhere, leading to the synthesis of continuous op-

timal feedback control laws. Our development of generalized solutions was

inspired by the use of Lagrangian submanifolds as an analogue of \gen-

eralized functions" in the geometric theory of nonlinear PDE's (see, e.g.,

[14], [15]). Thus, generalized solutions are multi-valued but with a smooth,

closed, connected Lagrangian submanifold as its graph.

More explicitly, a smooth function determines an exact and hence a

closed one form. Geometrically, the graph of a closed one form is a La-

grangian submanifold of the state-costate space, so that Lagrangian sub-

manifolds represent a class of generalized functions|a classical yet pow-

erful point of view. Most recently, in joint work with H. Frankowska (see

[16]), we have combined this geometric formalism with techniques from

nonsmooth analysis to prove global existence results for solvability of the

Riccati Partial Di�erential Equation. In particular, it is shown, under

certain assumptions about the variational problem, that absence of shocks,

and hence solvability of the Riccati Partial Di�erential Equation, are equiv-

alent to uniqueness of optimal trajectories. The paper [16] also includes

some new results for the existence of classical solutions, which have as a

corollary a nonlinear enhancement of the classical LQ design theory for

linear systems.

In Section 2, we set notation and conventions in the course of reviewing

preliminaries involving the Pontryagin Maximum Principle and consequent

properties for extremals for smooth problems of Bolza type. In particular,

we give a concise formulation of the canonical Hamiltonian system and a

geometric statement of the transversality conditions.

Starting from this formulation, in Section 3 we derive the Riccati Partial

Di�erential Equation from geometric considerations, quite independent of
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the Hamilton-Jacobi-Bellman equation. In particular, we give a geometric

interpretation of the existence of classical (i.e., smooth) solutions to the

Riccati PDE in terms of one parameter family of smooth submanifolds of

the state-costate space. That these submanifolds turn out to be Lagrangian

is important in our characterization of the existence of classical solutions

in terms of higher order smoothness properties of the value function.

In Section 4, we discuss the existence of classical, weak and generalized

solutions to the Riccati PDE. Indeed, we begin Section 4 with a discus-

sion of a simple one-dimensional example, consisting of a linear system,

quadratic integral performance measure and a non quadratic terminal con-

straint. For this problem, the Riccati equation reduces to the classical

inviscid Burgers' equation, with initial data given by the transversality

conditions. This is analyzed for general terminal constraints in Exam-

ple 7.1, where an optimal control interpretation of Burgers' equation is

given, explaining the existence and nonexistence of shock waves in a varia-

tional context. In Example 4.1, a case where the terminal constraint is non

convex is considered and, as the time horizon is increased, the onset and

propagation of shock waves illustrates the concepts of classical, weak and

generalized solutions and a corresponding hierarchy of regularity conditions

for the value function. It is worth noting that, even as the shock waves

propagate, the generalized solutions have an interesting and useful inter-

pretation in terms of the analysis and synthesis of optimal control laws.

Following a discussion of Example 4.1, an analysis of the continuity and

smoothness properties of weak solutions is given in a series of results which

also describe the regularity of the corresponding value function for general

classes of Bolza problems. The remainder of Section 4 is devoted to con-

ditions for weak solutions to be classical and the derivation of consequent

su�cient conditions, in terms of the system and the cost criteria, for the

existence of classical solutions.

Section 5 applies these results on solvability of Riccati PDE's to the

construction of optimal control laws in feedback form. From our main the-

orem, we can deduce that if a global solution of the Riccati PDE exists

then there exists a unique optimal control, expressible as a globally de�ned

feedback law. As another corollary we obtain under weaker \local" hy-

potheses a general local existence result for Bolza problems. From this we

are also able to deduce a result previously obtained by Willemstein [17] un-

der much stronger hypotheses; e.g., requiring analyticity as well as positive

de�niteness of the integral performance measure.

Section 6 addresses the corresponding Lagrange, or in�nite time, prob-

lem under the same \local" hypotheses. In this case, a formal application

of Dynamic Programming would suggest that the one parameter family

of generalized solutions, integrated backwards in time, should \converge"

to the stable manifold of the canonical Hamiltonian system. In the linear
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case, the stable manifold is the graph of the (the negative of) the positive

semide�nite solution of the algebraic Riccati equation, a relationship which

persists, mutatis mutandis, in the nonlinear case. It is worth noting that

in [18], Brunovsky announced a sketch based on stable manifold theory

of a proof of smoothness of the value function for certain nonlinear opti-

mal stabilization problems. In [19], Lukes gave a complete proof of this

fact under rather strong hypotheses requiring positive de�niteness of the

integral performance measure. For the sake of completeness and for com-

parison with the �nite time horizon case, we derive conditions for the local

solvability of the steady-state Riccati Partial Di�erential Equation and the

local optimality of the corresponding control law, for positive semi-de�nite

performance measures.

There are, of course, two extreme cases of Bolza or Lagrange problems

which may be considered: A nonlinear system with fairly general nonlinear

performance criteria and one very well understood special case, consisting

of a linear system with quadratic criteria. In Section 7, we specialize the

results obtained in this paper to two intermediate cases which should also

be of particular interest; viz., linear systems with more general criteria and

nonlinear systems with quadratic criteria. A special case of the former is

often referred to as the \simplest problem in the calculus of variations."

When our hypotheses apply to a problem of this type, the Riccati Par-

tial Di�erential Equation reduces to the Euler-Lagrange Equation. This is

illustrated in Example 7.1 for a problem with general nonlinear terminal

constraints where, as we mentioned above, the Riccati Partial Di�erential

Equation reduces to the inviscid Burgers' equation, with fairly general ini-

tial conditions. Moreover, this derivation of Burgers' equation allows for

a variational interpretation of the existence and nonexistence of shocks for

general initial conditions. In Section 7.2, we specialize the Riccati Partial

Di�erential Equation to the case of nonlinear systems with quadratic inte-

gral performance measures, obtaining a PDE which closely resembles the

matrix Riccati ODE except for a \nonlinear correction term." It is then

shown that for LQ problems linear solutions to the Riccati PDE are, not

surprisingly, characterized by the matrix Riccati ODE, from which opti-

mality of the classical solutions can be obtained by the general machinery

developed in this paper.

It is a pleasure to thank a number of colleagues and friends for help-

ful suggestions and comments, especially J.-P. Aubin, R.W. Brockett, M.

Fliess, H. Frankowska, J.W. Helton, A. Isidori, M. Jacobs, A.J. Krener,

S.A. Marcus, D. Mayne and J.C. Willems.
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2 Preliminaries on the Pontryagin Maximum Princi-
ple and Extremals for Bolza Problems with Smooth
Data

Consider a control system having the form

_x = f(x) + g(x)u(t) (2.1)

where x 2 Rn , and where for each t; u(t) 2 Rm . We assume that the vector

�elds f; gi are C
r in x, r � 1 and that the ui(t) are piecewise continuous

functions. In particular, for each pair (x(0); u(t)), the system (2.1) has

a unique solution for t << 1. Furthermore, we assume that f(0) = 0.

For the system (2.1) we shall consider the problem of minimizing the cost

functional

JT (x(0); u) =

Z T

0

L(x; u)dt+Q(x(T )) (2.2)

for both the cases T < 1 and, in Section 6, for T = 1 and Q(x) � 0. In

Sections 5 and 6 we shall present some explicit solutions, in feedback form,

to such optimal control problems, thereby providing constructive existence

results. In this section, we review some well-known consequences of the

existence of optimal control laws for (2.1){(2.2) in the case, T <1.

Our initial assumptions concerning (2.2) are that Q(x) is Cq+1; q � 1

and that L(x; u) is Cs+1; s � 1, and satis�es:

H1: for each �xed x; @L
@u
(x; �) is a di�eomorphism;

H2: for each �xed x, L(x; u) has a minimum at u = 0.

In particular, we note that @2L
@u2

(x; u) > 0 for all (x; u) and, therefore,
that (H1){(H2) imply that L(x; u) is strictly convex in u.

H3: 0 is a critical point of Q.

In Sections 5 and 6 we shall study the case when Q has a local minimum

at 0 in more detail.

Remark 2.1. Without loss of generality, we shall normalize L(x; u) so
that L(0; 0) = 0. We shall also assume that Q(0) = 0.

Finally, we set k = min(q; r; s). Fixing notation, we reinterpret (2.1){

(2.2) as a problem in Mayer form by de�ning

_xn+1 = L(x; u); xn+1(0) = 0
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and considering an augmented state variable

~x =

�
x

xn+1

�
2 Rn+1 :

The corresponding penalty-constraint function

' : Rn+1 � R
n+1 � R

2 ! R
n+4 (2.3)

is, therefore, a function of e =
�
~x0; ~x1; t0; t1

�
where ~x0 =

�
x0

x0n+1

�
is an

initial state, ~x1 =

�
x1

x1n+1

�
a terminal state, t0 an initial time and t1 a

terminal time. In particular, the Mayer problem corresponding to (2.1){

(2.2) is to minimize

'1(e) = x1n+1 +Q(x1)

subject to the n+ 3 constraints

'2(e) = x0n+1 = 0 (2.4)

'2+i(e) = x0i � xi(0) = 0; i = 1; : : : ; n (2.5)

'n+3(e) = t1 � T = 0 (2.6)

'n+4(e) = t0 = 0: (2.7)

Following the Pontryagin Maximum Principle, we �rst form an augmented

Hamilton function

~H(~x; ~p; u) = hp; f(x) + g(x)ui+ pn+1L(x; u)

and consider the system on R2n+2

_~x =
@ ~H

@~p
(2.8)

_~p =
�@ ~H

@~x
: (2.9)

According to the Maximum Principle, for x(0) �xed a necessary condi-

tion for u�(t) to be an optimal control is that there exist an initial condition

~p(0) such that if ~x(0) =

�
x(0)
0

�
, the corresponding solution (~x(t); ~p(t)) of

(2.4){(2.5) exists and satis�es the following conditions:

max
u2Rn+1

~H(~x(t); ~p(t); u) = ~H (x(t); p(t); u�(t)) a:e: (2.10)

~p(t) 6� 0: (2.11)
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Furthermore, there must also exist a multiplier � 2 Rn+4 with �1 � 0 such

that the transversality conditions

~p(t0)T = ��T'~x0(e) (2.12)

~p(t1)T = �T'~x1(e) (2.13)

~H
�
~x(t0); ~p(t0); u�(t

0)
�
= �T't0(e) (2.14)

~H
�
~x(t1); ~p(t1); u�(t

1)
�
= ��T't1(e) (2.15)

are satis�ed.

De�nition 2.1. Suppose, for some initial condition ~x(0), that u(t) is a
control for which there exists a solution ~p(t) of the adjoint system and a
\multiplier" � 2 R

n+4 such that the conditions of the Pontryagin Maxi-
mum Principle (2.6){(2.12) are satis�ed. Then, we shall say that u(�) is
an extremal control, that the corresponding trajectory x(�) is an extremal
trajectory and that the pair (x(�); p(�)) is a canonical pair.

In the remainder of this section, we shall simplify (2.4){(2.11) in the

light of assumptions (H1){(H2) and the form of (2.1){(2.2). We �rst note

that this minimization problem is \normal"; i.e. that pn+1 < 0. Indeed,

from (2.10) it follows that

~p(T )T = �1 (rQ(x(T )); 1) (2.16)

so that pn+1 = �1 � 0. If pn+1 = 0, then from (2.12) we must have

~p(T ) = 0. Since ~H is linear in p if pn+1 = 0, (2.5) is linear in p and it

would therefore follow that

~p(t) = 0 0 � t � T

contrary to (2.7). In particular, we conclude pn+1 < 0 as claimed. Since

the Maximum Principle is invariant under a scaling of ~H by any positive

constant, we may take pn+1 = �1, leading to the augmented Hamiltonian

H(x; p; u) = hp; f(x) + g(x)ui � L(x; u):

We next note that, by (H1), for each (x; p) there is a unique u�(x; p),
Ck in (x; p), which satis�es

0 =
@H

@u
ju=u� = hp; g(x)i �

@L

@u
(x; u�):

Moreover, in the light of (H2), for each �xed pair (x; p), the value u�(x; p)
in fact maximizes H(x; p; u), since

@2H

@u2
ju=u� = �

@2L

@u2
(x; u�) < 0: (2.17)
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In particular, if u�(t) is an optimal control for an initial condition x(0),
giving rise to an optimal trajectory x�(t) and some nontrivial solution p(t)
of the adjoint equation satisfying the conditions of the Maximum Principle,

we must have

u�(t) = u�(x�(t); p(t)): (2.18)

There is an important converse to this conclusion. De�ne a Hamiltonian

function, H�(x; p), via

H�(x; p) = H(x; p; u�(x; p))

where u�(x; p) is the unique solution of (2.14). From (2.14) one sees

@H�
@x

(x; p) =
@H

@x
(x; p; u)ju=u�(x;p)

and
@H�(x; p)

@p
=
@H

@p
(x; p; u)ju=u�(x;p):

Therefore, (2.4){(2.5) can be written as

_x =
@H�
@p

(2.19)

_p = �
@H�
@x

(2.20)

together with

_xn+1 = L(x; u) xn+1(0) = 0 (2.21)

_pn+1 = 0 pn+1(0) = �1: (2.22)

We can now re�ne the observation implicit in (2.15), which follows from a

specialization of the Maximum Principle to the current problem.

Proposition 2.1. Assume hypotheses (H1){(H2) hold and consider the
\canonical system" (2.16){(2.17), with the �nal value condition

p(T ) = �rQ(x(T )): (2.23)

For any initial condition x(0), consider any extremal control u(t) and a cor-
responding p(t) for which (x(t); p(t)) is a canonical pair. Then, (x(t); p(t))
is a solution of the canonical system satisfying the �nal value condition
(2.20). Moreover, u(t) is given by the formula (2.15). Conversely, for any
solution of the canonical system satisfying the �nal value condition (2.20)
the control u(t) de�ned by (2.15) is an extremal control with extremal tra-
jectory x(t) and having (x(t); p(t)) as a canonical pair.
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Proof: In the light of (2.14){(2.15), all that remains to be checked is

the claim implicit in the converse assertion concerning the existence of a

multiplier � 2 R
n+4 , with �1 � 0, such that the transversality conditions

(2.8){(2.11) are satis�ed. To this end, we de�ne

�1 = �2 = �1; (2.24)

(�3; : : : ; �n+2) = p(0)T ; (2.25)

and (2.26)

�n+3 = ��n+4 = H�(x(T ); p(T )) (2.27)

It is straightforward to check that, with this de�nition of �, the transver-
sality conditions are satis�ed.

3 Riccati Partial Di�erential Equations for the Bolza
Problem

According to Proposition 2.1, for the Bolza Problem every extremal control

u�(t) for any initial condition x(0) gives rise to a trajectory, or canonical

pair, (x(t); p(t)) satisfying

_x(t) =
@H�
@p

(3.1)

_p(t) = �
@H�

@x
(3.2)

and

p(T ) = �rQ(x(T )): (3.3)

Furthermore, u�(t) may be expressed as

u�(t) = u�(x(t); p(t)) (3.4)

where u�(x; p) is the unique solution of (2.14). Conversely, any solution

(x(t); p(t)) of (3.1){(3.3) generates, via (3.4), an extremal control u(t) with
extremal trajectory x(t). In this section, we are interested in developing

a closed-loop expression for extremal controls, deferring a discussion of

optimality of extremals to Sections 5 and 6. To this end, we develop a

nonlinear analogue of the Riccati equation for the \state-costate" equations

(3.1){(3.2) with a nonlinear, but smooth, terminal constraint (3.3). More

explicitly, motivated by Dynamic Programming, we shall attempt to �nd

an expression

p(t) = ��(x(t); t) (3.5)

12
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by integrating the smooth constraint (3.3) backwards in time. If this were

possible, one could then rewrite (3.4) in feedback form

u(t) = u�(x(t);��(x(t); t)

or more simply as

u = u�(x;��(x; t)) (3.6)

as in LQ Theory. We shall �rst impose a further simplifying assumption

on (2.1){(2.2).

H4: The canonical system (3.1){(3.2) is complete.

Equivalently, we assume that the 
ow

�

�
t;

�
x(0)
p(0)

��
=

�
x(t)
p(t)

�
;

which is always de�ned for small t, is in fact de�ned for all t. In particular,

we note that

� : R � R
2n ! R

2n

is jointly Ck and, for each t, the map

�t(�) = �(t; �)

is a Ck di�eomorphism

�t : R
2n ! R

2n : (3.7)

Now consider the closed, connected Ck submanifold of R2n de�ned via

MT = f(x; p) : p = �rQ(x)g : (3.8)

MT is of course the submanifold of terminal constraints given by the

transversality conditions. We note that for t 2 [0; T ]

Mt = �t�T (MT ) (3.9)

is a closed, connected Ck submanifold of R2n consisting of those pairs

(x(t); p(t)) which satisfy (3.1){(3.3), with initial time t0 = t. In particular,

for s 2 [t; T ]
u(s) = u�(x(s); p(s))

is an extremal control for the Bolza problem (2.1){(2.3) with initial time

t0 = t. Moreover, to say

Ms = graph(��(x; s)); t � s � T

13
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is to say that all extremal controls for t � s � T can be given in feedback

form

u(s) = u�(x(s);��(x(s); s)); t � s � T:

We �rst derive conditions on �(x; t) so that the geometric condition (3.10)

will be satis�ed.

Theorem 3.1. Necessary and su�cient conditions for the existence of a
C` function �(x; t); 1 � ` � k, such that

Mt = graph(��(x; t))

for t 2 [t0; T ]; x 2 R
n is that �(x; t) satisfy the following \Riccati" partial

di�erential equation, for (x; t)�Rn � (t0; T )

@�

@t
=
@H�
@x

(x;��)�
@�

@x

@H�
@p

(x;��) (3.10)

�(0; t) = 0; �(x; T ) = rQ(x): (3.11)

In particular, the Riccati partial di�erential equation has a Ck solution if,
and only if, it has a C1 solution.

Proof: Suppose (x; p) 2Ms for s 2 (t0; T ) so that p = ��(x; s). To say

Mt = graph (��(x; t))

with � being C1 is to sayMt is a regular submanifold, at least C
1, which is

transverse to each vertical �ber, fxg � R
n � R

2n . By Dynamic Program-

ming, Mt is of course a C
k submanifold. Consider the subset

N � R
n � (t0; T )� R

n

de�ned via

N = f(x; t; p) : (x; p) �Mtg ; (3.12)

or equivalently

N = f(x; t; p) : p = �� (x; t)g : (3.13)

From (3.14) it follows that N is a closed, connected C1 submanifold.

Since the map

proj2 : N ! (t0; T )

de�ned via

proj2 (x; t; p) = t

14
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is a submersion with each preimage being a Ck submanifold (see (3.13)),

N is in fact a closed, connected Ck-submanifold. Furthermore, the map

P : N ! R
n � (t0; T )

de�ned via

P (x; t; p) = (x; t)

is a submersion, since � is C1. Therefore, N is the graph of Ck function,

viz, �. In particular, to say that � is C1 is to say that � is Ck.

We now show that �(x; t) must satisfy the Riccati PDE. Choose any �-
nal condition (x(T ); p(T )) 2MT . The corresponding trajectory (x(t); p(t)) 2
Mt is, by hypothesis, of the form (x(t);��(x(t); t)) so that (x(t);��(x(t); t))
must be a solution of the canonical equations

_x(t) =
@H�

@p
(x(t);��(x(t); t)) (3.14)

_�(x(t); t) =
@H�
@x

(x(t);��(x(t); t)): (3.15)

Since � is C1 one can also compute the latter equality by the chain rule,

using the former equation to obtain

@�

@t
(x(t); t) =�

@�

@x
(x(t); t)

@H�
@p

(x(t);��(x(t); t)) (3.16)

+
@H�

@x
(x(t);��(x(t); t): (3.17)

Since for each t 2 [t0; T ] Mt is a graph, for each x 2 R
n there exists some p

such that (x; p) 2Mt. Since all points (x; p) 2Mt have the form (x(t); p(t))
for some �nal condition (x(T ); p(T )), the pair (x(t); t) can be taken to be an
arbitrary pair (x; t) 2 Rn � [t0; T ]. Therefore, � satis�es the Riccati PDE

(3.11) on Rn � [t0; T ]. Since (0; 0) is an equilibrium of (3.1){(3.2) lying on

MT by (H3), (0; 0) 2 Mt for all t. In particular, if Mt = graph(��(x; t))
then �(0; t) = 0.

Furthermore, since

graph(��(x; T ) =MT = graph(�rQ(x))

one has

�(x; T ) = rQ(x):

Conversely, suppose �(x; t) is a solution, C` with ` � 1, of the \Riccati

PDE" on Rn � (t0; T ). We claim

(x;��(x; t)) 2Mt:

15
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If this were true, then

graph(��(�; t) �Mt

would be a closed, n-dimensional submanifold of Mt. Moreover, since the

map

x 7! (x;��(x; t))

is a submersion of Rn into Mt, graph(�(x; t)) is open in Mt. Since Mt is

connected,

graph(��(x; t)) =Mt:

We now turn to the proof of the claim. Let (x0; s) 2 R
n � (t0�; T ) and

consider the trajectory x�(t) de�ned, at least for t 2 (s � "; s + ") with
" <<1, as the solution of

_x = f(x) + g(x)u�(x;��(x; t)); x(s) = x0

and de�ne

p�(t) = ��(x�(t); t):

Lemma 3.1. (x�(t); p�(t)) is a trajectory of the canonical system (3.1){
(3.2), for t 2 (s� "; s+ ").

Proof: By construction

_p�(t) =� _�(x�(t); t) (3.18)

=�
@�

@t
�
@�

@x

@H�
@p

(x�(t);��(x�(t); t)) (3.19)

=�
@H�
@x

(x�(t);��(x�(t); t)) (3.20)

�
@H�
@x

(x�(t); p�(t)): (3.21)

Furthermore, for this p(t)

_x�(t) = f(x�(t) + g(x�(t))u�(x�(t); p�(t)) (3.22)

=
@H�
@x

(x�(t); p�(t))k (3.23)

Since (x0; s) 2 R
n�(t0; T ) is arbitrary and the canonical system is com-

plete, x�(t) exists for all t 2 (t0; T ) and (x�(t);��(x�(t); t)) is a trajectory
of (3.1){(3.2). By (3.12),

(x�(T );��(x�(t); T ) 2 graph(�rQ) =MT :

Therefore,

(x�(t);��(x�(t); t)) 2Mt:

16
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Since x0 2 R
n is arbitrary,

graph(��(�; t)) �Mt:

Remark 3.1. There are corresponding results which are more local in the
spatial variable and which follow from this proof. First suppose there exists
an open subset U1 � R

n containing 0 and that on U1� [0; T ] there exists a
Ck solution � of the Riccati PDE (3.11), also satisfying the side conditions
(3.12). Choose a perhaps smaller neighborhood, U2,

0 2 U2 � U1 � R
n ;

such that trajectories of the system

_x = f(x) + g(x)u�(x1 � �(x; t))

for t 2 [0; T ] having initial conditions in U2 remain in U1. Then, if proj1
is de�ned on R2n via

proj1(x; p) = x;

then
Mt \ proj�11 (U2) � gr(��(�; t))

if U2 is taken{as it may{to be connected. Indeed, denoting by M0
t (U2) the

connected component of Mt \ proj�11 (U2) containing 0, we must have

M0
t = gr(��(�; t)jU2 ) t 2 [0; T ]:

Conversely, if there exists an open neighborhood U1 of 0 in Rn for which

M0
t = graph(��(�; t)jU1); t 2 [0; T ]

then � satis�es the Riccati PDE (3.11) on U1 � [0; T ]. Moreover, choosing
U2 as above, � will also satisfy the side conditions (3.12) on U2 � [0; T ].

Theorem 3.2. Suppose 1 � ` � k. For t0 satisfying 0 � t0 < T and
G � R

n an open neighborhood of 0, the following statements are equivalent:

i. There exists a C` function �(x; t), satisfying the Riccati PDE on
G� (t0; T ) and the conditions

�(0; t) = 0; �(x; T ) = rQ(x); x 2 G; t 2 (t0; T ):

ii. There exists a C`+1 function V (~x; t) satisfying the Hamilton-Jacobi-
Bellman equation for x 2 G; t 2 (t0; T )

@V

@t
+ hrxV (~x); f(x) + g(x)u�(x;�rxV (~x))i (3.24)

+ L(x; u�(x;�rxV (~x)) = 0; (3.25)

17
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and the conditions

V (0; t) = 0; V (x; T ) = Q(x) + xn+1; x 2 G:

iii. Condition (i), and hence (ii), holds for ` = k.

Corollary 3.1. There exists a Ck+1 solution of the Hamilton-Jacobi-Bellman
equation (3.13) satisfying the side conditions

V (0; t) = 0; V (x; T ) = Q(x) + xn+1

if, and only if, there exists a C2 solution.

Remark 3.2. Theorem 3.2 does not assert that V (x; t) satis�es the con-
ditions of the \veri�cation principle" of Dynamic Programming; i.e., that
V (x; t) satis�es the Hamilton-Jacobi-Bellman inequality for all admissible
controls u(t). This is shown to hold in Section 5 for \weak solutions," which
are discussed in Section 4. Nonetheless, according to Theorem 3.2, smooth-
ness results for value functions for Bolza or Lagrange problems would imply
the existence of classical solutions to the Riccati PDE. On the other hand,
the general existence theory for weak and classical solutions of Riccati Par-
tial Di�erential Equations yields smoothness results for value functions for
Bolza and Lagrange problems (see Sections 4{6). For example, Corollary
3.1 already shows that if one assumes that the value function V of such
a problem is C2, it follows that V is in fact Ck+1. This also holds for
k =1 and k = !. The C1 case is not similar and is discussed in Section
4. In addition, this general approach provides a geometric framework for
an analysis of nonsmooth behavior of value functions and we expect such a
framework to provide a more detailed comparison between continuous vis-
cosity solutions of the Hamilton-Jacobi-Bellman equation and the geometry
of generalized solutions of the Riccati PDE.

Proof: That (ii) implies (i) follows from the next two lemmas.

Lemma 3.2. Suppose V (~x; t) is a C`+1 function which satis�es the Hamilton-
Jacobi-Bellman equation (3.13). Then,

V (~x; t) = xn+1 +W (x; t) (3.26)

for a (necessarily) unique C`+1 function W which satis�es

W (0; t) = 0; W (x; T ) = Q(x): (3.27)

Proof of Lemma 3.2: To see this, note that to say V satis�es (3.13) is

to say that _V (~x(t); t) vanishes along the trajectories of (2.17), (2.19) with
p(t) de�ned via

p(t) = �rxV (~x; t):

18
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As in the proof of Theorem 3.1, one can show that (x(t); p(t)) is a canonical
pair, since V (~x; t) is a solution of (3.13), and therefore that ~x(t) exists for
all time t. In particular,

V (~x(t); t) = V (~x(T ); T ) = xn+1(T ) +Q(x(T )): (3.28)

We can now turn to a proof of Lemma 3.2. To say that (3.14) holds is to

say
@V

@xn+1
(~x; t) = 1:

Since V is C`+1, with ` � 1, we compute

d

dt

�
@V

@xn+1
(~x(t); t)

�
=

@

@xn+1

�
d

dt
V (~x(t); t)

�
= 0

along trajectories constructed above. In particular, along any such curve

~x(t) we have
@V

@xn+1
(~x(t); t) = constant

for t 2 (t0; T ]. Moreover, by (3.18) we can evaluate this constant for t = T ,
obtaining (3.19) and hence (3.16).

Lemma 3.3. �(x; t) = rxW (x; t) is a C` solution of the Riccati PDE.

Proof of Lemma 3.3: By the equality of mixed partials, we may compute
@�
@t

from the Hamilton-Jacobi-Bellman equation, obtaining

@�

@t
+
@�

@x

@H�
@p

(x;��(x; t)) �
@H�
@x

(x;��(x; t)) = 0

where

�(x; t) = rxQ(x); �(0; t) = 0:

We begin the proof that (i) implies (ii) with an important observation,

viz. that Mt is a Lagrangian submanifold, for t� [0; T ]. More explicitly,

since (3.1){(3.2) is a Hamiltonian system, with respect to the standard

symplectic form

! = dx ^ dp;

the di�eomorphism (3.7) preserves !; i.e. �t is a symplectomorphism (see

[14]). We note that ! is the standard symplectic form on R2n , thought of

as T �(Rn ) with x�Rn and with p�Tx(R
n ) being regarded as a cotangent

vector. With this identi�cation, any Lagrangian submanifold M which is

transverse to the \vertical" �ber, T �x0(R
n ), is locally (in a neighborhood

of x0) the graph of a closed 1-form, (see e.g. [14]). In particular, as the
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graph of a gradient (or closed 1-form on Rn ), MT is in fact a Lagrangian

submanifold of (R2n ; w).
Since �t is a symplectomorphism andMT is a Lagrangian submanifold,

Mt is also Lagrangian for all t by construction. In particular, if Mt is the

graph of a C` function, �(x; t) then Mt is transverse to every vertical �ber

and consequently

�(x; t) = rxW (x; t) (3.29)

for some C`+1 functionW (x; t), by the Poincar�e Lemma. We shall normal-

ize W by setting

W (0; t) = 0: (3.30)

Consequently, since Q(0) = 0,

W (x; T ) = Q(x): (3.31)

Now consider the function

V (~x; t) = xn+1 +W (x; t) :

By construction,

V (0; t) � 0:

De�ning the quantity

F (~x; t) =
@V

@t
+ hrxV; f(x) + g(x)u� (x;�rxV )i+ L (x; u� (x;�rxV ))

we �rst note that, for i = 1; : : : ; n

@F

@xi
(~x; t) = 0:

Indeed, as in the proof of Lemma 3.3

@F

@x
=
@�

@t
+
@�

@x

@H�
@p

(x;��(x; t))�
@H�
@x

(x;��(x; t))

which vanishes identically since � is a solution of the Riccati PDE. Fur-

thermore, since F (~x; t) is independent of xn+1 we also have

@F

@xn+1
(~x; t) = 0

so that

F (~x; t) = F (0; t) = L (0; u�(0; 0))
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Since u�(x; p) is the unique solution of (2.14), we must have

u�(0; 0) = 0

since with x = p = 0, (2.14) reduces to the critical point equation

@L

@u
(0; u) = 0:

which has u = 0 as a solution, by hypothesis (H2). Matters being so, the

normalization of L(x; u) (cf. Remark 2.1) implies that

F (~x; t) = L (0; u�(0; 0)) = 0:

Therefore, V (~x; t) is a Cr+1 solution of the Hamilton-Jacobi-Bellman

equation, satisfying

V (0; t) = 0; V (~x; T ) = xn+1 +Q(x):

Finally, since (i); (ii) are equivalent, (iii) follows from the fact (Theorem

3.1) that if �(x; t) is a C1 solution of the Riccati PDE, then �(x; t) is

necessarily Ck.

4 Classical, Weak and Generalized Solutions of Riccati
Partial Di�erential Equations

Theorem 3.1 gives a geometric criterion for the existence of a smooth so-

lution of the Riccati PDE, viz

Mt = graph(��(�; t)) (4.1)

where Mt is the set of initial conditions (x(t); p(t)) for initial time t =

t0, which are feasible or compatible with the conditions of the Maximum

Principle. On the other hand, Dynamic Programming would suggest that

any function �, C1 or not, satisfying (4.1) would lead to an optimal control

law in feedback form

u�(t) = u�(x(t);��(x(t); t)):

Of course, � may fail to C1 in several ways, among these being either

a \classical blow-up" (or �nite escape time), where @�
@t

becomes in�nite,

or the existence of \shock waves," where @�
@x

becomes in�nite. In neither

case, would � be considered to be a classical solution of the Riccati PDE.

Rather, in this sense �, or even Mt would be a weak solution of the Riccati

PDE with considerable importance for the analysis, design or synthesis of

optimal control laws. We begin this section by illustrating this point using

a simple example.
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Example 4.1. Consider the one-dimensional dynamical system

_x1 = u; x; u 2 R

with the following cost function:

J(x1(0); u) =
1

2

Z T

0

u2dt+
1

2
(x41(T )� x21(T ))

where x1(0); x1(T ) are initial and �nal conditions of the system respec-

tively. Setting the system in Mayer form, we introduce the running cost as

a new variable,

_x2 =
1

2
u2 with x2(0) = 0:

As before the augmented Hamiltonian is

H�(x; p; u) = p1u�
1

2
u2

and Pontryagin Maximum Principle implies that

u = p;

which must be constant since the canonical system has the form

_x = p (4.2)

_p = 0: (4.3)

In particular, for this system, the Riccati PDE for p = ��(x; t) reduces to
the well known inviscid Burgers' equation:

@�

@t
=
@�

@x
�

with the side conditions

�(T; x) = 2x3 � x and �(t; 0) = 0:

The fact that this Burgers' equations, with a non-monotone nondecreasing

�nal condition, does not have a solution for all time t < T is classical (see

e.g. [20]). Indeed, it is easy to see, either from the method of characteristics

or by integrating the canonical equations, that this problem has a classical

solution on [0; T ] if, and only if, T < 1. The weak solution for T = 1

has an in�nite vertical slope at x = 0 corresponding to the existence (or

development) of a shock wave; i.e. a point when @�
@x

becomes in�nite. The

simulations in Figure 4.1 illustrate the fact that as we extend the time

interval [0; T ] for T > 1, this shock wave propagates with the vertical

22



NONLINEAR BOLZA AND LAGRANGE PROBLEMS

tangent bifurcating into two shocks, one traveling to the right and one

traveling to the left. These shock waves are depicted for the times: T =

:2; :5; :95; 1:5, and 2. We also note that, if T > 1, Mt is no longer of the

form

Mt = graph(��(x; t)):

Indeed, Mt is a \generalized" solution of the Riccati PDE, consisting of the

graph of a multivalued function. Nonetheless, Mt remains a smooth curve

and the \branches" of this curve as well as the vertical tangents, or shock

waves, have an interesting interpretation in terms of the optimal control

problem. Brie
y, from the Pontryagin Maximum Principle it follows that

any optimal control u�(t) is necessarily constant, u�(t) = p. Integrating

the canonical equations, we can explicitly determine the cost functional, as

a function of p, yielding

JT (x0; p) =
p2T

2
+

1

2
(x0 + pT )4 �

1

2
(x0 + pT )2:

The extrema of JT (x0; p) occur at solutions of

T (p+ 2(x0 + pT )3 � (x0 + pT )) = 0

which is, of course, just the transversality condition of the Maximum Prin-

ciple. One can, therefore, compute the Hessian of JT (x0; �) obtaining

T (1 + 6T (x0 + pT )2 � T ):

The zeroes of @2J
@p2

are therefore the points at which Mt; T � t > 1; has
a vertical tangent. That is, the onset of shock waves for solutions of the

Riccati PDE coincides with the
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Figure 4.1: U as function of X0

existence of degenerate critical points of the cost functional. Indeed, ex-

plicit calculation, for �nal times T > 1, shows that deleting the two points

of vertical tangency fromMt, when T � t > 1; leaves 3 connected branches,
two semi-in�nite branches and one �nite branch containing 0. On each

of the semi-in�nite branches we have @2J
@p2

> 0 while on the �nite branch

we have @2J
@p2

< 0, representing a bifurcation of the extremal minimizing

controls to a family of 3 extremal controls. One can, of course, develop

a synthesis of an optimal control for this problem, using these geometric

constructions (see [21]{[22] for further discussion of the example). We em-

phasize, however, that smoothness of the generalized solution Mt is quite

helpful in this analysis.

The existence of shock waves for the Riccati PDE, and the analysis

in Example 4.1 in particular, serve to underscore the importance of our

�rst basic result for the existence of weak, or generalized, solutions of the

Riccati PDE, a result which in fact was buried in the proof of Theorem 3.2.

Proposition 4.1. Assume (H1){(H4) hold. 8t 2 R, Mt exists and is
uniquely de�ned as a connected, closed, Lagrangian Ck-submanifold of R2n .
Moreover

(0; 0) 2Mt; 8t 2 R
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and
MT = graph(�rQ):

Convention 4.1. Motivated by Proposition 4.1, we shall refer to the 1-
parameter family (Mt : t 2 R) of Lagrangian submanifolds as a generalized
solution of the Riccati PDE.

The basic existence and uniqueness result for generalized solutions of

the Riccati PDE provided by Proposition 4.1 yields a starting point for

the investigation of the existence and uniqueness of weak and classical

solutions.

De�nition 4.1. If, for all t 2 [0; T ] Mt = graph(��(�; t)) for some func-
tion �{not necessarily C1, then we shall refer to � as a \weak" solution
of the Riccati PDE on R

n . If � is Ck, k � 1, then we say that � is a
classical solution. Suppose, for N � R

n an open neighborhood of 0, we
have (x; �(x; t) 2 Mt for x 2 N; t 2 [0; T ]. If, in addition, � satis�es the
side conditions on N , then we shall say � is a weak solution of the Riccati
PDE in N � [0; T ]. If, in addition, � is Ck; k � 1, then we say � is a
classical solution.

Theorem 4.1. Suppose Mt = graph(��(�; t)). Then

i. �(x; t) is Ck a.e., and continuous everywhere;

ii. �(x; t) = �rxW (x; t), for W a C1 function, which is Ck+1 a.e.

Moreover, the set of regular points for � is open and dense.

Proof: Consider the function

P :Mt ! R
n

de�ned via

P (x; p) = x for (x; p) 2Mt:

SinceMt is C
k, P is Ck for k � 1. Since p = ��(x; t); P is also a surjection.

By Sard's Theorem, almost every value of P is regular. We claim that the

set R � R
n , of regular values is open and dense. Density follows, of course,

from Sard's Theorem. Suppose x0 2 R
n is a regular value of P . Note there

is a unique p0,
p0 = ��(x0; t);

such that (x; p) 2 Mt. Since Mt is n-dimensional, the implicit function

theorem asserts that � is Ck in x, for x near x0, and that the set of points

f(x; �(x; t))g �Mt

is a (relatively) open neighborhood of (x0; p0) in Mt.
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Therefore, x0 is an interior point of R, as was to be shown. In particular,
�(�; t) is a Ck function on R � R

2n . Moreover, since Mt is closed, �(�; t) is
continuous everywhere.

We now prove (ii).

Lemma 4.1. For x 2 R; �(x; t) = rW (x; t) for some globally de�ned, C1

function W (�; t) on Rn , which is Ck+1 on R.

If � were C1 everywhere, this would be a consequence of the Poincar�e

Lemma, as in the proof of Theorem 3.2. Our proof is an adaptation of

this classical argument to the case of 1-forms with continuous coe�cients,

smooth on an open dense set.

Proof of Lemma 4.1: We �rst de�ne a continuous function of x 2 R
n

via

W (x; t) =

Z 1

0

< �(sx; t); x > ds:

Suppose x 2 R, so that �(�; t) is C1 in a neighborhood of x. Computing

the Newton quotient,

W (x+ "v; t)�W (x; t)

"
=

Z 1

0

[h�(s(x + "v); t);x+ "vi � h�(sx; t); xi]

"
dt

we see that the limit, as " ! 0, exists for all v and is continuous at v so

that W (�; t) is in fact C1 at x. We claim that

DvW (x; t) = �(x; t) � v:

By linearity, it su�ces to check this for the unit tangent vectors, v = ej .
Thus, the claim follows from the explicit calculation

@W

@xj
(x; t) =

nX
i=1

Z 1

0

@�i
@xj

(sx; t) � xi ds (4.4)

+

Z 1

0

�j(sx; t)ds (4.5)

However, since Mt is Lagrangian, at any x 2 R we have

@�i
@xj

(x; t) =
@�j
@xi

(x; t)

so that

@W

@xj
(x; t) =

Z 1

0

nX
i=1

s
@�j
@xi

(sx; t) � xids+

Z 1

0

�j(sx; t)ds (4.6)

=

Z 1

0

d

ds
(s�j(sx; t))ds = �j(x; t): (4.7)
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Remark 4.1. We have de�ned W (x; t) as the path integral of the 1 formPu

i=1 �i(x; t)dxi along the straight line from 0 to x. One could as well have
chosen a di�erent base point, say y 2 Rn , leading to the function

Wy(x; t) =

Z t

0

h�(s(x � y) + y; t); x� yids:

A similar calculation would show that, for x 2 R,

rWy(x; t) = �(x; t): (4.8)

From (4.2) and Lemma 4.1, it then follows that

r(Wy(x; t)�W (x; t)) � 0; x 2 R: (4.9)

Indeed, we claim that for x 2 Rn

Wy(x; t) =W (x; t) + c (4.10)

where c is constant, which can be evaluated at x = y yielding

c =W (y; t): (4.11)

In particular, we claim that the only e�ect of the choice of a base point is
the addition to W of a constant of integration. This would be trivial if W
were di�erentiable everywhere, a fact we shall derive from (4.4){(4.5). On
the other hand, the claim itself follows from an analysis of the function

D(x; t) =Wy(x; t) �W (x; t);

which has zero total derivative on R. Therefore,

R = [�U�

where � 2Range(DjR) and U� is the open subset of R

U� = fx 2 R : D(x; t) = �g:

Let y 2 Rn be a boundary point of U� in Rn ; y 2 �Ua. Of course, D(y; t) =
� by continuity, so that y 62 �U� for any � 6= �. Therefore, �U� is open in
R
n and the decomposition

R
n = [� �U�

is a decomposition of Rn into disjoint open subsets. By connectivity,

R
n = U�

for some unique �; i.e.

D(x; t) � � for x 2 Rn :
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We can now conclude the proof of Theorem 4.1.

Lemma 4.2. W (x; t) is C1 on Rn with total derivative rW (x; t) = � (x; t).

Proof: From (4.4){(4.5), we have

W (x+ "v; t)�W (x; t)

"
=
Wx(x+ "v; t)

"
:

Therefore

lim
"!0

W (x+ "v; t)�W (x; t)

"
(4.12)

= lim
"!0

Z 1

0

h� (s ("v) + x; t) ; "vi

"
ds (4.13)

=

Z 1

0

h�(x; t); vids = �(x; t) � v: (4.14)

Theorem 4.1 gives information on the regularity properties of a function

whose graph coincides with the submanifold Mt of extremal initial condi-

tions for initial time t0 = t. A similar analysis, applied to the submanifold

N � R
2n+1 and the map

P : N ! R
n � (t0; T )

introduced in the proof of Theorem 3.1, shows that a weak solution exists

on Rn � [t0; T ] if, and only if,

graph (��(x; t)) =Mt; x 2 Rn ; t 2 [t0; T ]

for a continuous function � which is Ck on an open, dense subset R �
R
n�[t0; T ]. In fact, R\R

n�ftg is (relatively) open and dense for t 2 [t0; T ].
We want to complete this circle of ideas by characterizing weak solutions

in terms of the Riccati equation and in terms of regularity properties for

\candidate" value functions.

Theorem 4.2. The following statements are equivalent:

1. A weak solution of the Riccati equation exists on Rn � [t0; T ]:

2. There exists a continuous function �(x; t) de�ned on R
n � [t0; T ],

satisfying the side conditions (3.12), and an open dense subset R �
R
n � [t0; T ] on which � is C1 and satis�ed the Riccati PDE.

3. There exists a C1 function W (x; t) de�ned on R
n � [t0; T ], which is

C2 on an open dense subset R, and for which the function V (~x; t) =
xn+1+W (x; t) satis�es the Hamilton-Jacobi-Bellman (3.15) equation,
together with the associated side conditions.
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Proof: As we have remarked, to say (1) is to say

Mt = graph(��(x; t))

for x 2 Rn ; t 2 [t0; T ], for a continuous function � which is Ck on an open

dense subset, R � R
n � [t0; T ], of regular points. Sine R\R

n �ftg is open
and dense for all t 2 [t0; T ],

R \ Rn � fTg

is open and dense in Rn . Choosing �nal data (x(T ); p(T ); T ) for (x(T ); T )� 2
R\Rn �fTg and integrating backwards along trajectories of the canonical

system, we �nd, as in the proof of Theorem 3.1, that � satis�es the Riccati

PDE on an open dense subset of Rn � [t0; T ], so that (2) must be satis�ed.
Conversely, if � is C1 on an open dense subset R of Rn � [t0; T ] and

satis�es the Riccati PDE on R, then{as in the proof of Theorem 3.1{we

know that for (x; t) 2 R; (x;��(x; t)) 2Mt. By continuity of �, we deduce
that

Mt � graph (��(�; t)); for each t 2 [t0; T ]:

Finally, by Brouwer's Principle of Invariance of Domain [23], graph(��(�; t))
is an open submanifold of Mt, which is also closed in Mt. Since Mt is con-

nected,

Mt = graph(��(�; t)) for t 2 [t0; T ]

and therefore � is a weak solution of the Riccati PDE.

That (1) implies (3) follows from the fact that any weak solution is Ck

in time, since

�(x(t); t) = �p(t)

where (x(t); p(t)) is a trajectory of the canonical system, and that on the

subset R of regular points

�(x; t) = rw(�; t)

as in the proof of Lemma 4.1. Therefore, W is C2 Rx[t0; T ] � R
n � [t0; T ].

Since � satis�es the Riccati equation on R � [t0; T ], W{or equivalently

V {satis�es the Hamilton-Jacobi-Bellman equation, by Theorem 3.2. Con-

versely, if W is C1 everywhere and at least C2 on R� [t0; T ], the function
� de�ned via

�(x; t) = rW (x; t)

is a continuous function on Rn� [t0; T ], at least C
1 on R� [t0; T ], satisfying

the Riccati PDE on R� [t0; T ] by Theorem 3.2.

Remark 4.2. In the hierarchy of classical, weak and generalized solutions
of the Riccati PDE, we have shown that there is a corresponding hierarchy
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of regularity for the value function: To say the value function is C2 is to
say it is Ck, which is to say a classical solution of the Riccati PDE exists.
To say the value function V is C1 but not C2 is to say V is Ck on an open
dense subset and that a weak solution of the Riccati PDE exists. To say
that V is not C1 is to say the unique generalized solution of the Riccati
PDE is not a weak solution but is instead multi-valued.

We now turn to su�cient conditions for a weak solution to be classical.

Example 4.1 demonstrates the evolution of a classical solution (T � t0 < 1)

to a weak solution (T � t0 = 1) to a generalized solution (T � t0 > 1) which

is coexistent with the onset and propagation of shock waves for the Riccati

equation.

Proposition 4.2. If Mt0 is transverse to the \vertical �ber" fx0g�R
n �

R
2n at the point (x0; p0) 2Mt0 , then there exists " > 0 such that

Mt \ B"(x0; p0) = graph(��(�; t)) for jt� t0j < "

for a Ck function �(x; t), satisfying the Riccati PDE. Moreover, �(x; t) =
rxW (x; t) where

V (~x; t) = xn+1 +W (x; t)

is a Ck+1 solution of the Hamilton-Jacobi-Bellman equation.

Proof of Proposition 4.2: Consider the Ck submanifold N � R
2n+1

de�ned via

N = f(x; t; p) : (x; p) 2Mtg :

SinceN is transverse to the �ber fx0g�ft0g�R
n at the point (x0; t0; p0) ; N

is also transverse to the �bers fxg�ftg�Rn , for (x; t) in a su�ciently small
neighborhood of (x0; t0), at all points onN in a neighborhood of (x0; t0; p0).
Therefore, there exists an " > 0 such that, for jt� t0j < ", Mt is transverse

to the vertical �ber fxg�Rn at all points (x; p) in Mt\B"(x0; p0). By the
implicit function theorem,

Mt \ B"(x0; p0) = graph(��(�; t))

for a Ck function �(x; t). As in the proof of Theorem 3.1, � is locally a

solution of the Riccati PDE. By the Poincar�e Lemma

�(x; t) = rxW (x; t)

for a Ck+1 function W . Finally, from Theorem 3.2 it follows that

V (~x; t) = xn+1 +W (x; t)

is a Ck+1 solution of the Hamilton-Jacobi-Bellman equation.
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Corollary 4.1. Suppose Mt0 = graph(��(�; t0)) and is transverse to the
vertical �bers fxg � R

n , for all x 2 Rn . Then, � is a Ck function, de�ned
in a neighborhood of Rn�ft0g � R

n+1 . In particular, in this neighborhood,
� satis�es the Riccati Partial Di�erential Equation.

Proof of Corollary 4.1: By the proof of Theorem 4.1, �(�; t) is Ck on the

set of regular points R � R
n , which coincides with Rn since each vertical

�ber is transverse toMt. In particular, �(�; t) is Ck everywhere. According

to Proposition 4.2, there exists a neighborhood of Rn � ft0g � R
n+1 on

which Mt is transverse to each vertical �ber. Consequently, � is Ck on

this neighborhood and, as in the proof of Theorem 3.1, satis�es the Riccati

PDE.

Taking t0 = T and using a standard compactness argument, we deduce

Corollary 4.2. Suppose K � R
n is a relatively compact open neighborhood

of 0. There exists a t0 such that for (x; t) 2 K � [t0; T ] there exists a Ck

solution � of the Riccati Partial Di�erential Equation, satisfying

�(x; T ) = rQ(x); for x 2 K:

Early work by Barbu and Da Prato [12]{[13] establishes a result for

certain systems which, in �nite dimensions, is an improvement of Corol-

lary 4.2, wherein the relatively compact set K may be replaced by R
n .

Explicitly, they consider the system

_x = f(x) + u

and the integral performance measure

L(x; u; t) = `(t; x) +
1

2
kuk2

where the drift vector �eld is either monotone [12] or is the gradient of

a function [13] and derive a Riccati PDE in [12], [13] which, of course,

coincides with the one derived here. Essentially, they show that the Riccati

equation has, for some T > 0, a global solution on Rn � [0; T ]. While these

results and Corollary 4.2 is an existence result which is local in time, the

next existence result is local in the spatial variable but valid for t 2 [0; T ].

Theorem 4.3. Assume (H1)-(H4) hold and suppose L and Q are nonneg-
ative and at least C3. Then, there exists an " > 0 such that

Mt \ B" (0; 0) = graph (�� (�; t))

for t 2 [0; T ], where � is a Ck function satisfying the Riccati Partial Dif-
ferential Equation. In particular, in a neighborhood of x = 0

� (x; t) = rxW (x; t)
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where
V (~x; t) = xn+1 +W (x; t)

is a Ck+1 solution of the Hamilton-Jacobi-Bellman equation.

Lemma 4.3. In a neighborhood of (x; u) = (0; 0),

L(x; u) = xTSx+ uTRu+ 0(kxk3 + kuk3)

where S = ST and R = RT > 0.

Proof of Lemma 4.3: First note that, from the fact that L(0; 0) = 0 and

L(0; u) has a minimum at u = 0, we must have

L(x; u) = xTSx+ xTLu+ uTRu+R(x; u) (4.15)

where

R(x; 0) = 0;
@R

@u
(x; 0) = 0;

@2R

@u2
(x; 0) = 0

and

R (x; u) = 0
�
jjxjj

3
+ jjujj

3
�
:

By (H2) u = 0 is a nondegenerate minimum of L(x; u) in u, so that

R = RT > 0. Fixing x, (4.6) also gives an expansion of L(x; u) in u.
In particular, since L(x; �) has a critical point at u = 0 by (H2) we must

have

xTL = 0

for all x in a neighborhood of x = 0. By equality of mixed partials, S = ST .
Recapitulating,

L(x; u) = xTSx+ uTRu+R(x; u)

where R(x; u) = 0(kxk3 + kuk3):
We now turn to the corresponding expansion for the reduced Hamilto-

nian. Recalling that H�(0; 0) = 0 and that, from (2.14), we must have

@H�
@x

(0; 0) = 0;
@H�
@p

(0; 0) = 0

it follows that H�(x; p) admits an expansion

H�(x; p) = (xT pT )H(x; p) + 0(kxk2 + kpk3) (4.16)

where H is a 2n� 2n symplectic matrix.

Expanding the critical point equation (2.14) to terms of order 2, we

obtain

BT p�R�u = 0;

32



NONLINEAR BOLZA AND LAGRANGE PROBLEMS

where u�(x; p) = �u+ 0

 




�
x
p

�




2
!
. In particular,

�u(x; p) = R�1BT p: (4.17)

Therefore, developing a Taylor expansion for the Hamiltonian H� we obtain

H�(x; p) =hp;Ax+BR�1BT pi �
1

2
xTXx (4.18)

�
1

2
pTBR�1BT p+ 0

 




�
x
p

�




2
!

(4.19)

so that (xT ; pT )H(x; p) is the Hamiltonian of the linear optimal control

problem

min
u

J(x0; u)

where

J(x0; u) =
1

2

Z T

0

(xTSx+ uTRu)dt+ xT �Qx

subject to the dynamic constraint

_x = Ax+Bu; x(0) = x0 (4.20)

y = Cs (4.21)

and where Q(x) = xTQx. Classical LQ theory asserts that this problem

has a solution �u given by (4.8) with p = �P (t)x for P (t) the unique solution
on [0; T ] of the Riccati equation

_P = �ATP � PA+ PBR�1BTP � S (4.22)

with �nal condition

P (T ) = �Q:

In particular, for each t 2 [0; T ]

P (t; x) = P (t)x

satis�es the Riccati PDE to second order. Therefore,

T0(Mt) = graph(�P )

so that Mt is transverse to the vertical �ber, x = 0, in R2n . Consequently,

proj1jMt
:Mt ! R

n
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de�ned via

proj1(x; p) = x

is a submersion at (0,0). Now consider the submanifold N , constructed in

(3.13){(3.14), and the map P de�ned via

P (x; t; p) = (x; t);

which was analyzed in the proof of Theorem 3.1. Since proj1 is a submer-

sion at (0,0), there exists � > 0 such that P is a submersion at (0; 0; t), for
all t 2 (��; T +0). In particular, there exists a neighborhood U of 0 in Rn

such that

Mt � gr(��)

for � a Ck function on U � [0; T ]. Equivalently, there exists an " > 0 such

that

Mt \B"(0; 0) = gr(��(�; t)jB"(0)):

It now follows (cf. Remark 3.1) that, on a perhaps smaller neighborhood,

� is a Ck solution to the Riccati equation.

5 Feedback Synthesis of Optimal Controls for the Bolza
Problem

In this section, we return to the basic optimal control problem (2.1){(2.2)

which we analyze under the hypotheses (H1){(H4). Our goal is to develop

explicit solutions to such control problems, in the form of a feedback law

which can be determined o�-line by solving a Riccati PDE. We �rst show

how weak solutions give rise to optimal control laws.

Theorem 5.1. Consider an open neighborhood N of 0 in R
n and a time

t0 < T . Suppose a weak solution of the Riccati PDE, satisfying the side
conditions, exists on N� [t0; T ]. Then there exists a possibly smaller neigh-

borhood G so that the closed-loop control law

u�(t) = u�(x(t);��(x(t); t))

satis�es, for any initial condition x�(t0) 2 G

Z T

t0

L(x�(t); u�(t))dt+Q(x�(T )) �

Z T

t0

L(x(t); u(t))dt +Q(x(T )) (5.1)

for any control law u(t) for which the corresponding trajectory x(t) lies in
N for t0 � t � T . Moreover, u� is unique in the sense that if u(t) 6= u�(t)
for an open interval of time, the inequality is strict for each initial condition
in G.
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De�nition 5.1. We refer to a control law satisfying the above conditions
as the locally optimal control de�ned on N .

Proof: To say a weak solution to the Riccati PDE exists on N is to say

Mt \ (N � R
n ) � graph(�(x; t)); x 2 N (5.2)

where �(�; t) is a continuous function, Ck almost everywhere, which neces-

sarily vanishes at x = 0 and satis�es

�(x; T ) = rQ(x); x 2 N: (5.3)

According to Theorem 4.1 we also have, for x 2 N; t 2 [t0; T ]

�(x; t) = rW (x; t)

where W (�; t) is C1 in x, Ck+1 almost everywhere. Since for an arbitrary

point, (�x; �t) 2 N � (t0; T ), the pair

(�x(t);��(�x(t); t) (t� t0) <<1

is a trajectory of the Hamiltonian system (3.1){(3.2) with initial condition

�x(�t) = �x; p(�t) = ��(�x; �t), it follows that p(t) = ��(�x(t); t) is a solution of

the adjoint system. In particular, �(x; �) and hence W (x; �) is C1 in t, for
each x 2 N .

Therefore, the function

V (~x; t) = xn+1 +W (x; t)

is C1 on N � (t0; T ). Consider the C
k submanifold M � R

2n+1

M = f(x; t; p) : (x; p) 2Mtg

and the Ck map

P :M ! R
n+1

de�ned via

P (x; t; p) = (x; t):

Using Sard's Theorem as in the proof of Theorem 4.1, we deduce that �(x; t)
is in fact Ck on an open dense subset of N � (t0; T ). Therefore, V is a C1

function on N�(t0; T ) which is C
k on an open dense subset. Following the

proof of Theorem 3.2, V satis�es the Hamilton-Jacobi-Bellman equation

@V

@t
+ h

@V

@x
; f(x) + g(x)u�(x;��(x; t))i + L(x; u�) = 0 (5.4)

(x; t) 2 N � (t0; T ) (5.5)
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almost everywhere. However, since V is C1, we see that, in fact, V is a

solution of (5.2) everywhere on N � (t0; T ). Moreover, it follows from (5.3)

that V satis�es the side condition

V (x; T ) = rQ(x) + xn+1; x 2 N:

Now choose a neighborhood 0 2 G � N so that for any initial data

x0 2 G, the trajectory

x�(t); t0 � t � T

of the closed loop system

_x = f(x) + g(x)u�(x; t); x(0) = x0

remains in N . We shall check that the function V , and the control u�,
satisfy the conditions of the veri�cation principle of Dynamic Programming,

viz., that for initial data in G, V is nondecreasing along any trajectory

which remains in N and that V is constant along the trajectory x�(t). In
particular, we shall show, that on G, V (x; t) is the value function of the

optimal control problem and that, locally, u� is the unique optimal control
in the sense of De�nition 5.1.

That V is constant along the trajectories x�(t) is expressed by the

Hamilton-Jacobi-Bellman equation (5.4). Now consider an admissible con-

trol u(t). Compute

_V (x(t); t) =
@V

@t
(x(t); t) + h

@V

@x
; (x(t); t)); f(x(t)) + g(x(t))u(t)i (5.6)

+ L(x(t); u(t)) (5.7)

in the standard manner and observe that, since

@V

@x
=
@W

@x
= �(x; t)

and

��(x(t); t) = p(t)

where p(t) is a solution of the adjoint equation corresponding via the Max-

imum Principle to u�(t), we have

�h
@V

@x
(x(t); t); f(x(t)) + g(x(t))u(t))i + L(x(t); u(t)) (5.8)

= H(x�(t); p(t); u(t)) � H(x�(t); p(t); u�(x�(t); t)) (5.9)

= �h
@V

@x
(x(t); t); f(x(t)) + g(x(t))u�(x(t); t)i (5.10)

+ L(x(t); u�(x(t); t)) (5.11)
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for almost all t. Consequently,

_V �
@V

@t
(x(t); t) + h

@V

@x
(x(t); t); f(x(t)) + g(x(t))u�(x(t);��(x(t); t))i

(5.12)

+ L(x(t); u�(x(t); t)) (5.13)

or, by (5.4)

_V (x(t); t) � 0: (5.14)

Since by hypotheses (H1){(H2) u�(x(t);��(x(t); t)) is a nondegener-

ate, unique minimum of H(x; p; u) (see e.g. (2.13){(2.14) and the ensuing

discussion), the inequality in (5.4) is strict whenever

u(t) 6= u�(t)

holds on an open subinterval of (t0; T ). Consequently, the inequality (5.5),
and hence (5.1), is also strict on the subinterval.

Remark 5.1. Example 4.1 shows that this result is sharp, in the following
sense. For T > 1, Mt is of course no longer the graph of a function;
rather, in this case, Mt contains 3 branches, with the unique �nite branch
containing 0. For T > 1, this branch is the graph of an extremal so that for
each �xed t, t 2 [0; T ], Mt is a graph in a su�ciently small neighborhood
of 0. Yet as we have noted, for T > 1 this extremal we have noted locally
maximizes the cost functional. This is in harmony with Theorem 5.1, as it
should be. Indeed, while for each �xed t, there exists an "t > 0 such that
Mt \ B"t(0; 0) is the graph of a function, there is no �xed " > 0 such that

Mt \ B"(0; 0) = graph (�(�; t)); t 2 [1; T ]

for �(�; t) de�ned on a su�ciently small neighborhood of 0.

Remark 5.2. As discussed in Remark 4.2, the proof of Theorem 5.1 shows
that a weak solution of the Riccati PDE exists on N� [t0; T ] if, and only if,
the value function of the Bolza problem is C1 on N � [t0; T ]; see Example
4.1 for t0 = T � 1. In general, the value function is C2, and hence Ck, a
shock wave. At the �rst onset of a shock until the onset of r, V is still
C1 everywhere and C2, and hence Ck, almost everywhere. If a shock wave
bifurcates then a generalized solution appears, corresponding to nondi�er-
entiation of the value function.

Theorem 5.1 has several corollaries. First, we note that from the def-

inition of G and from hypothesis (H4), we know that if N = R
n , then G

may also be taken as G = R
n , yielding global optimal control laws.
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Corollary 5.1. Consider a time t0 < T . Suppose a weak solution �(x; t)
of the Riccati PDE, satisfying the side conditions, exists on R

n � [t0; T ].
Then, the control law

u�(t) = u�(x(t);��(x(t); t))

is, for any initial condition x(t0) 2 R
n , the unique optimal control. In

particular, the unique optimal control law can be expressed as a feedback
control law:

u�(x) = u�(x;��(x; t)):

We now turn to some local consequences of Theorem 5.1. Just as some

of the more local aspects, e.g. the construction of the neighborhood G,
of this theorem were unnecessary in the global case, some of the global

hypotheses are super
uous in the local case.

For example, since we shall work in a neighborhood of the equilibrium,

0, hypothesis (H4) is super
uous. Indeed ([16]), for any �xed control law

u(t) and any �nal time T > 0, there exists a neighborhood N of 0 such

that for x0 2 N the unique solution x(t) of (2.1) exists for t 2 [0; T ]. In

addition, in the proof of Lemma 4.3, we have noted that, in the light of

(H1), hypothesis (H2) implies that L(x; �) has a nondegenerate minimum

at u = 0. Conversely, the assumption that L(0; �) has a nondegenerate

minimum at u = 0 will imply a local version of (H1), viz.

(H1)0: for all x in a neighborhood of 0, @L
@u
(x; �) is a di�eomorphism.

More formally, we assume L is Cs+1, s � 2, and note that (H1)0 is

implied by

(H2)0: For all x in a neighborhood of 0, L(x; �) is nonnegative de�nite and
has a nondegenerate minimum at u = 0.

As before, we shall normalize L by setting L(0; 0) = 0, We shall also

assume

(H3)0: Q is nonnegative de�nite and Cq+1; q � 2, in a neighborhood of 0,

with Q(0) = 0.

We continue our assumption that the vector �elds f , gi are at least C
r,

for r � 1, and retain the notation k = minfq; r; sg.

Corollary 5.2. Assume hypotheses (H2)0, (H3)0 hold. Then there exists a
neighborhood N of 0 in Rn such that a solution of the Riccati PDE exists on
N � [0; T ]. Furthermore, for initial data in a possibly smaller neighborhood
of 0, the control law

u�(t) = u�(x(t);��(x(t); t))

is the (locally) unique optimal control, in the sense of De�nition 5.1.
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Proof: According to Theorem 4.3 there exists an open neighborhoodN of 0

is Rn� so that the solution of the Riccati PDE satisfying the side conditions

exists on N � [0; T ]. Optimality of the corresponding control law on a

possibly smaller neighborhood of 0 follows from Theorem 5.1.

One consequence of Corollary 5.2 is a local result, proved under stronger

assumptions byWillemstein [17], who extended the local analysis developed

by Lukes [19] for of the steady-state problem (also see Section 6).

Corollary 5.3. (Willemstein [17]) Suppose that f , gi, L and Q are ana-
lytic functions in a neighborhood of their respective origins and suppose

L(x; u) = xT sx+ uTRu+ `(x; u); (5.15)

Q(x) = xTQx+ q(x) (5.16)

where `(x; u) and q(x) represent the remainder consisting of highest order
terms. Then there exists a locally unique optimal feedback control law.

Remark 5.3. Willemstein's proof rests very heavily on analyticity through
the exploitation of power series expansions and does not prove that the
control law, which happens to be representable as an analytic state feedback
law, is locally optimal among all open loop control laws admissible in the
sense of De�nition 5.1. Rather, it is shown in [17] that this feedback law
is locally optimal among all admissible analytic feedback laws.

6 The Riccati Partial Di�erential Equation for In�nite
Horizon Lagrange Problems

In this section, we consider a class of in�nite time Lagrange problems for

control systems (2.1){(2.2) with criterion

min
u

J(x0; u);

where

J(x0; u) =

Z 1

0

L(x; u)dt: (6.1)

We show that the in�nite time problem can be regarded as a limit of the

�nite-time problem, in the sense that an optimal control can be shown to

be a Ck function u�(x) having the form

u�(x) = u�(x; p); p = ��(x) (6.2)

where �(x) satis�es the steady-state Riccati PDE:

@H�
@x

(x;��(x)) �
@�

@x

@H�
@p

(x;��(x)) = 0: (6.3)
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We shall also show that � satis�es the constraints

�(0) = 0 and
@�

@x
(0) =

@�

@x
(0)T � 0: (6.4)

The question of whether an optimal closed-loop law exists locally for

such nonlinear problems with analytic data has been extensively researched,

beginning with [24], [25], [18], [19]. In particular, the work of Al'brecht [24]{

[25] focused on developing series expansions for an optimal state feedback

law using Lyapunov functions. At that time, it was unknown whether this

series would converge or would even be the Taylor series of some analytic

or smooth function. Under the hypothesis that L(x; u) is positive de�nite
and that all vector �elds and functions are smooth, Brunovsky [18] gave a

sketch of a proof that an analytic optimal closed-loop control law exists. It

is worth emphasizing the fact that his proof reposed quite heavily on the

existence of a stable manifold for hyperbolic Hamiltonian systems.

In [19] Lukes gave a detailed existence theory, under the same hypothe-

ses as Brunovsky, including a proof of an appropriate version of the stable

manifold theorem, implicitly proving that the stable manifold W s(0) is

Lagrangian by demonstrating that

W s(0) = graph(�rxW )

for a smooth function W . Since that time, the development of LQ the-

ory has provided a complete existence theory under much weaker positive

semide�niteness conditions on L(x; u), so that one expects to be able earlier
to improve the pioneering existence results of [18]{[19]. Indeed, following

the earlier announcements, [5]{[7], in this section we give a proof of the

local existence of an optimal feedback control law of the form

ux(x) = �g(x)T�(x)

where �(x) is a solution of the steady-state Riccati equation (6.3){under

weaker conditions on L(x; u). Brie
y, the Riccati equation (6.3) is the

invariance condition for the Ck submanifold

M1 = graph(��)

and the side condition (6.4) re
ects the fact that

M1 =W s(0):

Thus, our existence theory for the Riccati equation (6.3){(6.4) is just the

stable manifold theorem, as in [18] but under weaker conditions. And, the

fact thatW s(0) is Lagrangian allows us to deduce, from the stable manifold

theorem, a smoothness result for the value function, as a solution of the

Hamilton-Jacobi-Bellman equation.
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We now turn to a study of the asymptotic properties of the canonical

system. As in the proof of Proposition 4.3, we have an expansion

L(x; u) =
1

2
xTSx+

1

2
uTRu+ 0(kxk3 + kuk3)

where S = ST , R = RT > 0. If L is positive semide�nite we may also

factor S as

S = CTC

forming an output y for the system (2.1), de�ned via

y = Cx: (6.5)

Proposition 6.1. Assume (H2)0 and suppose L is of class Cs+1, for s �
2. Suppose the system (2.1), (6.5) is locally exponentially stabilizable and
locally exponentially detectable. Then, the canonical system has (x; p) =
(0; 0) as a hyperbolic equilibrium, with an n-dimensional stable manifold
having the form

W s(0) = graph(��)

for some Ck function, de�ned via p = ��(x). In particular, � satis�es the
\steady-state Riccati PDE" (6.3) and the side constraint (6.4).

Proof: As in the proof of Proposition 4.3, our starting point is the expan-

sion of the reduced Hamiltonian

H�(x; p) = (xT pT )H(x; p) + 0(kxk3 + kpk3) (6.6)

where H is a 2n� 2n symplectic matrix. Our �rst claim is the following.

Lemma 6.1. If (2.1){(6.5) is locally exponentially stabilizable and detectable,
H has no purely imaginary eigenvalues. In particular, the canonical system
has a Ck, n-dimensional stable manifold W s(0) and a Ck, n-dimensional
unstable manifold, Wn(0).

Proof of Lemma 6.1: As in the proof of Proposition 4.3, expanding the

Hamiltonian H� we obtain

H�(x; p) = hp;Ax+BR�1BT pi �
1

2
xTCTCx (6.7)

�
1

2
pTBR�1BT p+ 0

 




�
x
p

�




3
!

(6.8)

so that (xT pT )H(x; p) is the Hamiltonian of the linear optimal control

problem,

min
u
J(x0; u)
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where

J(x0; u) =
1

2

Z 1

0

(xTCTCx+ uTRu)dt

subject to the dynamic constraint

_x = Ax +Bu; x(0) = x0 (6.9)

y = Cx: (6.10)

On the other hand, to say (2.1){(6.5) is locally exponentially stabilizable,

resp. locally exponentially detectable, is to say that (A;B) is stabilizable,
resp. (A;C) is detectable. Consequently, it is classical that H has no purely

imaginary eigenvalues. Since � is an eigenvalue of H is, and only if, ��
is, we see that H has an n-dimensional stable subspace V s and an n-
dimensional unstable subspace V u. More explicitly, if � is an eigenvalue of

H , denote by V� the generalized eigenspace for H with eigenvalue �. Then,
the subspaces

V s =
M

�2�(H)

Re(�)�0

V�;

V u =
M

�2�(H)
Re(�)>0

V�

have dimension n. Since

T0W
s(0) = V s (6.11)

and

T0W
u(0) = V u (6.12)

we see that

dimW s(0) = dimW u(0) = n:

Returning to the proof of Proposition 6.1, we note that under the same

hypotheses on (A;B;C), it is also classically known that

V s = graph(�P ) (6.13)

where p = �Px for P the unique positive semide�nite solution of the

algebraic Riccati equation

ATP + PA� PBR�1BTP + CTC = 0=

According to the stable manifold theorem, W s(0) is locally a Ck subman-

ifold of R2n , which is locally invariant under the canonical system, while

42



NONLINEAR BOLZA AND LAGRANGE PROBLEMS

from (6.7) and (6.9) it follows thatW s(0) is transverse to the vertical �ber,

x = 0, in R2n . In particular,

proj1jW s(0) :W
s(0)! R

n

de�ned via

proj1(x; p) = x

is a submersion so that, by the implicit function theorem, in a neighborhood

of 0 we have

W s(0) = graph(��)

for some Ck function, p = ��(x). Moreover,

�(0) = 0 and
@�

@x
(0) = P � 0:

Finally, we note that to say W s(0) is locally invariant under the canonical

system is to say

r(p� �(x)) �

�
@H�

@x

�@H�

@p

�
jp=��(x) = 0 (6.14)

(6.10) is, of course, just the steady-state Riccati equation.

De�nition 6.1 (19). Fix a neighborhood G1 of 0 in Rn . A family of con-
trol laws u(t;x0) is said to be locally optimal on G1 if there exists a neigh-
borhood G2,

0 2 G1 � G2

such that the closed loop trajectories x�(t) for initial data in G1 remain in
G2 and, for any initial condition x0 2 G1 and any control u(t) for which

i. x(t) 2 G2; t � 0;

ii. J(x0; u) is �nite;

iii. x(t)! 0 as t!1;

we have
J(x0; u�) � J(x0; u):

Theorem 6.1. Assume (H2)0 and suppose L is of class Cs+1, s � 2. Sup-
pose also that the system (2.1), (6.5) is locally exponentially stabilizable
and locally exponentially detectable. Then, there exists an " > 0 such that
the steady state Riccati PDE has a positive semide�nite solution �(x) on a
neighborhood B"(0) of 0 and for which the feedback control law

u�(x) = u�(x;��(x))

de�ned via (6.2) is locally optimal on B"(0).
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Proof: As above, the stable manifold theorem and a �rst-order analysis

show that there exists an "1 such that for kxk < �1 a stable manifold of

the canonical equations exists and has the form

W s(0) = graph (��(�); �(0) = 0); and
@�

@x
(0) � 0;

verifying the local existence of a solution of the steady-state Riccati PDE.

Moreover, since the stable manifold of a Hamiltonian is isotropic (see [26]

for an elegant proof of this fact), W s(0) is a Lagrangian submanifold and

therefore

�(x) = rV (x); (6.15)

where we normalize V (x) by setting V (0) = 0. We now show that

u�(x) = u�(x;��(x)) (6.16)

is optimal. We �rst remark that, from the proof of Proposition 6.1, it

follows that the restriction of the canonical system to W s(0) is given by

the closed-loop system

_x = f(x) + g(x)u�(x): (6.17)

In particular, for x(0) su�ciently small, the trajectory x�(t) of (6.13) exists
for all time, t � 0.

Lemma 6.2. H�(x; p) vanishes on W s(0) is a neighborhood of (0,0).

Proof: Locally, on W s(0), all trajectories of the canonical system, in par-

ticular trajectories of (6.13), tend exponentially to (0,0). Since

H�(x; p) = hp; f(x) + g(x)u�i � L(x; u�)

is constant along trajectories of the canonical system and H� vanishes at
(0,0), it follows that H� vanishes on W s(0).

If (x(0); p(0)) 2 W s(0), we denote by (x�(t); p�(t)) the corresponding

trajectory. We note that by (6.11) we have

p�(t) = ��(x�; t) = �rV (x�)(t):

Since H�jW s(0) = 0, we then have

� _V (x�(t)) = L(x�(t); u�(t)) (6.18)

along the extremal trajectory with initial condition x�(0) = x0. Integrating
(6.14) we obtain Z s

0

L(x�(t); u�(t))dt = �

Z s

0

_V (x�(t))dt (6.19)

= �V (x�(s)) + V (x0): (6.20)
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Since x�(s)! 0 as s!1 and V (0) = 0, we deduce thatZ 1

0

L(x�(t); u�(t))dt = lim
s!1

Z s

0

L(x�(t); u�(t))dt = V (x0):

In particular, the extremal cost is �nite for any trajectory on W s(0).

Summarizing, a stable manifold argument shows that �(x) is de�ned for
x 2 B"1(0), that the closed-loop system (6.13) is locally asymptotically

stable on a possibly smaller neighborhood of 0 and that the cost-to-go for

initial data in this domain of a tradition is �nite and given by V (x0). Since
(6.13) is, in particular, Lyapunov stable there exists ", "2 such that

0 < " < "2

and

i. � exists on B"2(0) = G2;

ii. trajectories of (6.13) initialized in B"(0) = G1 stay in B"2(0) and

tend to 0.

We claim that u� is locally optimal on G1. Now suppose u(t) is any
control which renders J(x0) �nite and for which the corresponding tra-

jectory tends to 0 and remains in G2 = B"2(0). Lemma 6.3 V (x0) �R1
0
(L(x; u))dt.

Proof: Consider Wu(x; xn+1) = V (x) + xn+1 where

_xn+1 = L(x; u); xn+1(0) = 0:

We have noted above that _Wu� � 0. If u = u� + v, then

_Wu = hrV; f(x) + g(x)ui+ L(x; u) (6.21)

= hrV; f(x) + g(x)u�i+ hrV; g(x)V i+ L(x; u) (6.22)

= L(x; u� + v)� L(x; u) + hrV; g(x)vi (6.23)

=
@L

@u
ju=u� � v + hrV; g(x)vi + vT

@2L

@u2
(��)v (6.24)

= vT
@2L

@u2
(��)v � _Wu� = 0: (6.25)

Therefore, along (x(t); u(t)), we must have

L(x; u) � � _V (x(t)
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with strict inequality if u(t) 6= u�(t) for t is an open interval. Integrating

this inequality, we �nd

Z T

0

L(x; (t); u(t))dt � �V (x(T )) + V (x(0))

and thus, in the limit as T !1Z 1

0

L(x(t); u(t))dt � V (x0);

with strict inequality, if u 6= u�.

Remark 6.1. These results were announced at the conference Nonlinear
Synthesis in Sopron, Hungary in June 1989 (see [5]); at the 2nd Con-
ference on Computation and Control in Bozeman, Montana in August,

1990 (see [6]); and at the 1st European Control Conference in Grenoble in
July 1991 (see [7]). While [5] and [7] treat these results for the standard
quadratic functional, [6] sketches a derivation of our main result for in�-
nite time horizon problems under the present hypotheses on L(x; u). At the
1st European Control Conference, we learned from van der Schaft that he
had recently independently discovered a similar treatment of the steady-state
aspect of our theory, (see [27]).

7 Examples and Illustrations

7.1 Classical calculus of variations

There are, of course, two extreme cases of Bolza problems which may be

considered: A fairly general problem, with a nonlinear system (1.1) and a

general nonlinear criteria and one very well understood special case, con-

sisting of a linear system and quadratic criteria. There are, therefore, two

intermediate cases which should also be of particular interest; viz., nonlin-

ear systems with quadratic criteria and linear systems with more general

nonlinear criteria. One particularly interesting special case of the latter is

what is often referred to as the simplest problem in the calculus of varia-

tions. More explicitly, consider the system

_x = u (7.1)

and the criterion

J(x0; u) =

Z T

0

L(x; u)dt+Q(x(T )):
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This problem, with Q � 0, is of course equivalent to the problem of mini-

mizing the functional

J(x; _x) =

Z T

0

L(x; _x)dt:

Not all of the simplest problems of the classical calculus of variations satisfy

the hypotheses (H1){(H3); for example, the isoperimetric problem does not

satisfy (H1). However, for those problems which do satisfy these hypothe-

ses, the corresponding Riccati PDE is, in fact, equivalent to the Euler-

Lagrange equation.

To see this, recall from Section 3 that the Riccati PDE

@H�
@x

=
@�

@t
+
@�

@x

@H�
@p

is equivalent, indeed is derived from, the identity

p = ��(x; t)

and the consequent equation

_p = � _�(x; t) (7.2)

computed along solutions (x(t); p(t)) of the canonical equation. Moreover,

from the Pontryagin Maximum Principle applied to the Hamiltonian of the

problem,

H(x; p; u) = hp; ui � L(x; u)

it follows that

@L

@u
(x�; u�) = p = ��(x�; t) (7.3)

and that

_p =
�@H

@x
=
@L

@x
: (7.4)

Substituting (7.3){(7.4) into (7.2), we deduce the Euler-Lagrange equation

@L

@x
=

d

dt

�
@L

@u

�
(7.5)

as an equivalent form of the Riccati Partial Di�erential Equation together

with the side conditions

@L

@u
(x(0); _x(0)) = 0 (7.6)

@L

@u
(x(T ); _x(T )) = �rQ(x(T )): (7.7)
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For systems of the form (7.1), many approaches to optimal control

simplify considerably. For example, in this case the di�erential-algebraic

elimination theoretic techniques of Fliess et al [11] give a �rst order system

of equations identical to the Riccati PDE, from which the Euler-equations

(7.5) can also be easily derived [11].

Remark 7.1. Since the Riccati PDE turns out for such simple problems
as (7.1), to be equivalent to the Euler-Lagrange equations, it is therefore
not surprising that many of the systems of partial di�erential equations of
mathematical physics can arise as Riccati Partial Di�erential Equations.
One such example is the inviscid Burgers' equation, as we shall now illus-
trate.

Example 7.1. For the scalar system

_x = u; x; u 2 R (7.8)

we want to minimize the cost functional

JT (x0) =
1

2

Z T

0

u(t)2dt+Q(x(T )) (7.9)

for some arbitrary but �xed Ck function, Q(x). From the Pontryagin

Maximum Principle it follows that any optimal control u�(t) is necessarily
constant,

u�(t) = p:

In particular, integrating the canonical equations gives

JT (x0) =
p2T

2
+Q(x0 + pT ):

If k � 1, as a function of p JT (x0) has extrema at solutions of

fT (p; x0) = p+Q0(x0 + pT ) = 0; (7.10)

which of course is the transversality condition arising in the Maximum

Principle. Continuing in this elementary approach, it is important to know

when (7.8) has a solution p, p = p(x0). If k � 2, an implicit function

theorem argument will imply existence of a smooth solution provided

1 + TQ00(x) 6= 0; for x 2 R: (7.11)

If one assumes, as is natural, thatQ00(x0) > 0 for some x0 then the su�cient
condition (5.4) implies of course that Q(x) is strictly convex. However, in

order to understand the more general case, say of a convex penalty function
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Q(x), one needs to analyze the possible bifurcation of solutions to (7.9) at

points x0 where
Q00(x0) = 0:

Indeed, near such bifurcation points there may be multiple optima or even

no optimum.

On the other hand, an analysis of (5.1)-(5.4) via the methods described

in Sections 3{5 and boil down to the existence of solutions to the Riccati

PDE (4.3){which, in this case, is just the well-known inviscid Burgers'

equation

@�

@t
=
@�

@x
� � (7.12)

�(0; t) = 0; �(x; T ) = Q0(x(T )): (7.13)

Since the canonical equations are linear and hence complete, we need only

analyze the onset of shock waves, i.e. points where @�
@x

becomes in�nite,

in the construction of �(x; t) by integrating the transversality condition

backwards in time. On the other hand, it is well-known (see e.g. [20])

that for this Burgers equations, integrated backwards in time, an initial

condition

�(x; T ) = F (x)

gives rise to a global solution if, and only if, F (x) is monotone nondecreas-
ing. That is, an analysis of the Riccati PDE shows that global existence

of an optimal feedback law for (5.1)-(5.4) is equivalent to convexity of the

penalty function Q(x). As a special case of the general results obtained

in [16] we can also assert that convexity of the penalty function Q(x) is
equivalent to the absence of shocks for the Riccati PDE and also to the

uniqueness of optimal control laws.

7.2 Nonlinear quadratic (NLQ) problems

For the sake of comparison with the linear case and as an illustration of the

results developed in Sections 3{6, consider the �nite time horizon optimal

control problem for the system

_x = f(x) + g(x)u; y = h(x) (7.14)

with performance measure

JT (x0; u) =
1

2

Z T

0

(ky(t)k2 + ku(t)k2)dt+Q(x(T )); 0 � t � T (7.15)

Since L(x; u) = 1
2
(kuk2 + kyk2), it is clear that hypotheses (H1)-(H2) are

satis�ed. Moreover, the de�ning equation for u�(x; p) is simply

hp; g(x)i � u� = 0:
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In this case the Riccati PDE also takes a perhaps more familiar form,

@�

@t
= �

�
@f

@x

�T
�(x; t) �

@�

@x
(x; t)f(x) �

@h

@x
(x)Th(x) (7.16)

+
@�

@x
g(x)g(x)T�(x; t) +

�
@g

@x
� gT�

�T
�(t; x): (7.17)

�(0; t) = 0; �(x; T ) = +rxQ(x)

And, u�(x; t) = �g(x)T�(x; t) is an optimal control for the unconstrained

minimization problem,!
u
minJT (x0; u). In this case, Theorem 3.1 provides

a basic local existence result for the Riccati PDE.

For general NLQ problems, however, the Riccati PDE contains a new

\nonlinear correction term",

�(x; t)T
@g

@x
g(x)T�(x; t);

which vanishes in the linear case.

Similar calculations apply to in�nite time problems such as (7.10) where

the cost to be minimized over u is

J(x0; u) =

Z 1

0

ky(t)k2 + ku(t)k2dt: (7.18)

Again, one computes that an optimal feedback control has the form

u� = g(x)T p: (7.19)

Moreover one can take p = ��(x) where �(x) is a solution to the steady-

state Riccati PDE:�
@f

@x

�T
�(x) +

@�

@x
f(x)�

@�

@x
g(x)g(x)T�(x) +

@hT

@x
h(x) (7.20)

+

�
@g

@x
� gT�

�T
�(x) = 0 (7.21)

�(0) = 0 (7.22)

and where � also satis�es the constraint

@�

@x
(0) =

@�

@x
(0)T � 0: (7.23)

In this case, Proposition 6.1 provides a basic local existence result for this

steady-state Riccati PDE and, according to Theorem 6.1, leads to a unique

local optimal control u� which takes the form

u� = �g(x)T�(x): (7.24)
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Example 7.2. Suppose the system (7.10) is linear, i.e.,

_x = Ax+Bu; y = Cx;

and in (7.11) the penalty on the terminal state is quadratic

Q(x(T )) =
1

2
x�(T )TQx(T ):

In this case, the function

�(x; t) = P (t)x

is a solution of the Riccati PDE if, and only if, the equation

_P (t)x =�ATP (t)x� P (t)Ax� CTCx (7.25)

+ P (t)BBTP (t)x; (7.26)

P (T )x = Qx (7.27)

is satis�ed. After eliminating x in (7.10), this results in the standard Riccati
ordinary di�erential equation of Linear Quadratic Theory. According to

Theorem 5.1 (see also Remark 5.2) and the global existence theory for this

Riccati Ordinary Di�erential equation, , the control law

u = �BTP (t)x

is the globally unique optimal control, in feedback form.

The in�nite horizon problem also has a familiar classical interpretation.

Again, the function

�(x) = Px

is a solution of the steady state Riccati PDE if, and only if, the algebraic

Riccati equation

ATP + PA� PBBTP + CTC = 0

has a solution. In this case, the side condition (6.4) boils down to the exis-

tence of a positive semide�nite solution P� which is known to exist provided
(A;B) is stabilizable and (A;C) is detectable. In this case, Theorem 6.1

yields the familiar result that

u� = �BBTP�x

is an optimal control law in feedback form.
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