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Abstract

We show that, given any pair of solutions of the matrix Riccati

di�erence equation, it is possible to construct a whole family of solu-

tions via projective superposition laws. This extends known results

for the discrete-time algebraic Riccati equation.
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1 Introduction

In this paper, we study the matrix Riccati di�erence equation in the form

which arises in the least squares optimal estimation problem for linear,

time-varying, stochastic systems, namely

X(t+ 1) = A(t)X(t)A�(t)

�A(t)X(t)Ĉ�(t)(R(t) + Ĉ(t)X(t)Ĉ�(t))�1Ĉ(t)X(t)A�(t) +Q(t):

Here A(t); Q(t) = Q�(t) � 0, of dimensions n�n, Ĉ(t), of dimensions q�n,
and R(t) = R�(t) > 0, of dimensions q � q, are complex, matrix-valued

functions, de�ned on an interval [t0; t1 � 1] of the integers Z. In view of

the positive de�niteness of R(t), the previous equation can be equivalently

rewritten as

X(t+ 1) = A(t)X(t)A�(t) (1.1)

�A(t)X(t)C�(t)(I + C(t)X(t)C�(t))�1C(t)X(t)A�(t) +Q(t);

where we have set C(t) = R�
1

2 (t)Ĉ(t). Hence, in what follows, we shall

deal with the Riccati di�erence equation (RDE) in the form (1.1).
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The matrix Riccati di�erence equation possesses a large literature due

to its crucial role in optimal �ltering and control of linear systems, see e.g.

[1]. Of particular interest here are the results on the parametrization of

the equilibrium solutions of the discrete time algebraic Riccati equation

(DARE)

X �AXA� +AXC�(I + CXC�)�1CXA� �Q = 0: (1.2)

G. Ruckebusch [11], [12], H.K. Wimmer [15] - [17], A.C.M. Ran and H.L.

Trentelman [10] have established, under system theoretic assumptions, a

one{to{one correspondence between solutions of the discrete-time algebraic

Riccati equation and the invariant subspaces of a certain feedback matrix.

These results also allow to express each solution of the DARE as a certain

projective combination of two particular solutions (see Theorem 1.1 of [16]

and Theorem 3.3 of [10]). This represents the discrete-time counterpart of

the parametrization of solutions of the continuous-time algebraic Riccati

equation due to J.C. Willems [14], W.A. Coppel [3] and M.A. Shayman

[13].

In this paper, we prove that there exists a time-varying counterpart of

some of these results for the RDE. In particular, our main result, Theorem

3.2 below, shows that an appropriate projective combination of any pair of

solutions is still a solution of the RDE. These results are the discrete-time

counterpart of those presented in [8] for the Riccati di�erential equation.

As for several other aspects of the Riccati equations, the discrete- time case

is more involved, and, consequently, the derivation is nontrivial.

2 Preliminary Results

We collect in this section, which is largely expository, some elementary

results on Riccati di�erence equations that will be needed in the rest of the

paper.

A Hermitian, n � n, complex, matrix-valued function X(t) = X�(t),

de�ned on [t0; t1], will be referred to as a solution of the RDE if, on the

same time interval, SX(t) := I + C(t)X(t)C�(t) is nonsingular, and X(t)

satis�es the RDE. We associate to each solution X(t) of the RDE on

[t0; t1] the feedback matrix AX(t) de�ned as

AX(t) := A(t) �A(t)X(t)C�(t)(I + C(t)X(t)C�(t))�1C(t)

= A(t)(I +X(t)C�(t)C(t))�1: (2.1)

Notice that AX(t) is nonsingular on [t0; t1 � 1] if and only if A(t) is. Let

X(t), Xi(t), i = 1; 2, be solutions of the RDE, and let AX(t), AXi
(t), i =

1; 2, be the corresponding feedback matrices. We then have the following

useful identities.
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Lemma 2.1 Given two arbitrary solutions X1(t) and X2(t) of the RDE

on [t0; t1], let �21(t) := X2(t) � X1(t). Then, the corresponding feedback

matrices satisfy the following identities:

AX2
(t) = AX1

(t)
�
I ��21(t)C

�(t)S�1
X2

(t)C(t)
�
; (2.2)

AX2
(t) = AX1

(t)
�
I +�21(t)C

�(t)S�1
X1

(t)C(t)
��1

: (2.3)

Proof: Formula (2.2) is known for the DARE [16, p.125], and it can be

derived for the RDE in the same fashion. To establish (2.3), write (2.2) as

AX2
(t) = AX1

(t)
�
I ��21(t)C

�(t) (SX1
(t) + C(t)�21(t)C

�(t))
�1
C(t)

�
;

and then apply the well-known matrix identity

I � F (D +GF )�1G = (I + FD�1G)�1: (2.4)

�

Given two arbitrary solutions of the RDE on [t0; t1], X1(t); X2(t), we

de�ne �21(t) := X2(t)�X1(t).

Proposition 2.2 [6, 15] Let X1(t); X2(t) be two arbitrary solutions of the

RDE on [t0; t1]. Then, �21(t) := X2(t)�X1(t) is a solution of the follow-

ing homogeneous matrix Riccati equation:

�21(t+ 1) = AX1
(t)�21(t)A

�

X1
(t) (2.5)

�AX1
(t)�21(t)C

�(t)(I + C(t)X2(t)C
�(t))�1C(t)�21(t)A

�

X1
(t):

Using (2.2) in (2.4), we obtain

�21(t+ 1) = AX1
(t)�21(t)A

�

X2
(t) = AX2

(t)�21(t)A
�

X1
(t); t 2 [t0; t1 � 1]:

(2.6)

This relation generalizes a similar formula for the DARE, cf. [9, p.197].

Let us introduce the transition matrix 	(t; s) associated to the matrix

function AX (t), t 2 [t0; t1 � 1] de�ned by

	(t+ 1; s) := AX (t)	(t; s); t0 � s < t � t1 � 1;

	(s; s) := I; t0 � s � t1:

Proposition 2.3 Consider two arbitrary solutions X1(t); X2(t) of the

RDE on [t0; t1], and let �21(t) := X2(t)�X1(t). Let 	i(t; s); i = 1; 2 be the

transition matrices of the corresponding feedback matrices AXi
(t); i = 1; 2.

Then, for t0 � s � t � t1, we have

�21(t) = 	1(t; s)�21(s)	
�

2(t; s) = 	2(t; s)�21(s)	
�

1(t; s): (2.7)
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Proof: Relation (2.6) follows at once from (2.5) and the de�nition of

	i(t; s): �

This result has some immediate consequences.

Corollary 2.4 If A(t) is nonsingular on [t0; t1 � 1], the di�erence of two

solutions of the RDE has constant rank on [t0; t1].

Corollary 2.5 Let A(t) be nonsingular on [t0; t1 � 1], and consider three

arbitrary solutions X1(t); X2(t); X(t) of the RDE. De�ne �21(t) := X2(t)�
X1(t) and �(t) := X(t) � X1(t). If Ker�21(s) � Ker�(s), for some

s 2 [t0; t1], then Ker�21(t) � Ker�(t); for all t, s � t � t1:

Proof: Let x be such that �21(t)x = 0. It follows from (2.6) that

	2(t; s)�21(s)	
�

1(t; s)x = 0:

Using the invertibility of 	2(t; s) and the hypothesis on Ker�(s), we get

	(t; s)�(s)	�1(t; s)x = 0:

Using (2.6) again, we get �(t)x = 0. �

3 Families of Solutions of the RDE

Consider two arbitrary (Hermitian) solutions X1(t); X2(t) of the

RDE on [t0; t1]. Let �21(t) := X2(t)�X1(t), let AX1
(t); AX2

(t) be the cor-

responding feedback matrices, and let 	1(t; s) and 	2(t; s) the associated

transition matrices.

Lemma 3.1 Let M0 and N0 be subspaces of C n such that

M0 _+N0 = C
n;

where _+ denotes direct sum. Suppose that the sequences of subspaces

fM(t)g; fN(t)g, t 2 [t0; t1], satisfy for t0 � s � t � t1

M(t0) =M0; N(t0) = N0; (3.1)

M(t) _+N(t) = C
n; (3.2)

	1(t; s)M(s) �M(t); (3.3)

	2(t; s)N(s) � N(t): (3.4)

Let �(t), t 2 [t0; t1], be the matrix representing the oblique projection onto

M(t) along N(t). Let us de�ne

X(t) = (I ��(t))X1(t) + �(t)X2(t); t 2 [t0; t1]: (3.5)

The matrix valued function (3.5) is Hermitian on [t0; t1] if and only if

�21(t0)M
?

0 � N0: (3.6)
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Proof: Clearly, X(t) is Hermitian if and only if �(t) := X(t) � X1(t) =

�(t)�21(t) is. Moreover, �(t) is Hermitian on [t0; t1] if and only if

�(t)�21(t)(I ���(t)) = 0; t 2 [t0; t1]:

This is equivalent to

�21(t)M
?(t) � N(t); t 2 [t0; t1];

which, for t = t0, gives (3.6). Conversely, suppose that (3.6) holds. Using

(2.6), (3.3), (3.4), we obtain

�21(t)M
?(t) = 	2(t; t0)�21(t0)	

�

1(t; t0)M
?(t) (3.7)

� 	2(t; t0)�21(t0)M
?

0 � 	2(t; t0)N0 � N(t);

where we have used the fact that (3.3) implies that 	�1(t; t0)M
?(t) �M?

0 .

�

Notice that in the special case of A(t) nonsingular for all t in [t0; t1�1],

equality must hold in the inclusions (3.3) and (3.4).

We are now ready to establish our main result.

Theorem 3.2 Under the assumptions of Lemma 3.1, and in the same

notation, let X(t) be de�ned by (3.5). If SX(t) := (I + C(t)X(t)C�(t))

is nonsingular for all t in [t0; t1 � 1], then X(t) is a solution of the RDE

on [t0; t1].

Proof: In view of Proposition 2.2, it su�ces to show that �(t) = �(t)�21(t)

satis�es equation (2.4). First of all, notice that (3.3) and (3.4) give

(I ��(t))	1(t; s)�(s) = 0; t0 � s � t � t1;

�(t)	2(t; s)(I ��(s)) = 0; t0 � s � t � t1:

These yield

�(t+ 1)AX1
(t)�(t) = AX1

(t)�(t); t0 � t � t1 � 1; (3.8)

�(t+ 1)AX2
(t) = �(t+ 1)AX2

(t)�(t); t0 � t � t1 � 1: (3.9)

In the remaining calculations, the omitted time argument is always t. Let

us multiply both terms of (2.5) on the left by �(t+1). Using (3.9), we get

�(t+ 1)�21(t+ 1) = �(t+ 1)AX2
��21A

�

X1
:

Due to identity (2.2), the latter gives

�(t+ 1)�21(t+ 1) = �(t+ 1)
�
AX1

�AX1
�21C

�S�1
X2
C
�
��21A

�

X1
;
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and, from (3.8), it follows that

�(t+ 1)�21(t+ 1) = AX1
��21A

�

X1
�

�(t+ 1)AX1
�21C

�S�1
X2
C ��21A

�

X1
: (3.10)

We now claim that

�(t+ 1)AX1
�21C

�S�1
X2

= AX1
��21C

�S�1
X
;

or, equivalently,

�(t+ 1)AX1
�21C

�(SX1
+ C�21C

�)�1 =

AX1
��21C

�(SX1
+ C��21C

�)�1: (3.11)

Using both (3.8) and (3.9), we get

AX1
��21C

� = �(t+ 1)AX1
��21C

� +�(t+ 1)AX2
(I ��)�21C

�

+�(t+ 1)AX1
�21C

�

��(t+ 1)AX1
�21C

�:

Rearranging the terms, we obtain

AX1
��21C

� = �(t+ 1)AX1
�21C

� ��(t+ 1)(AX1
�AX2

)(I ��)�21C
�:

Using (2.2), the latter turns into

AX1
��21C

� = �(t+ 1)AX1
�21C

�

��(t+ 1)
�
AX1

�21C
�(SX1

+ C�21C
�)�1C

�
(I ��)�21C

�;

which can be rewritten as follows

AX1
��21C

� = (3.12)

�(t+ 1)AX1
�21C

�
�
I � (SX1

+ C�21C
�)�1C(I ��)�21C

�
�
:

A straightforward calculation also shows that

I � (SX1
+ C�21C

�)�1C(I ��)�21C
� =

(SX1
+ C�21C

�)�1(SX1
+ C��21C

�): (3.13)

Plugging (3.13) into (3.12), we get (3.11). Plugging in turn (3.11) into

(3.10), we �nally get

�(t+1)�21(t+1) = AX1
��21A

�

X1
�AX1

��21C
�(I+CXC�)�1C��21A

�

X1
:

Thus, �(t) = �(t)�21(t) satis�es (2.4), and the proof is complete. �
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Notice that the previous proof used neither the symmetry of the RDE

nor the de�niteness of Q. In fact, it is possible to extend the previous result

to general, possibly asymmetric, Riccati di�erence equations [5]. How large

is a family of solutions generated through (3.5) depends crucially on the

pair (X1(t); X2(t)). For instance, if X1(t) = X2(t), by (3.5) we cannot

generate any new solution.

There are two assumptions in the previous theorem. First, the se-

quences of subspaces fM(t)g, fN(t)g, satisfying (3.1)-(3.4) must exist.

Second, for each t 2 [t0; t1 � 1], the matrix SX(t), must be nonsingu-

lar. The phenomenon of having SX(t) singular, at a certain t 2 [t0; t1� 1],

is the discrete time analogous of the occurrence of a �nite escape time for

the Riccati di�erential equation [7], [4]. In the special case when A(t) non-

singular for all t in [t0; t1 � 1], the previous two hypotheses are equivalent.

Indeed, we have the following result.

Proposition 3.3 Assume that the matrix-valued function A(t) is nonsin-

gular on [t0; t1�1], and consider subspaces M0 and N0 such thatM0 _+N0 =

C
n. Consider the sequences of subspaces M(t) = 	1(t; t0)M0 and N(t) =

	2(t; t0)N0, t 2 [t0; t1]. De�ne X(t) = (I � �(t))X1(t) + �(t)X2(t) as in

Theorem 3.2. Then

detSX(t) 6= 0; 8t 2 [t0; t1 � 1];

if and only if (3.2) holds for all t 2 [t0; t1].

Proof: For any t 2 [t0; t1� 1], we calculate explicitly detSX(t). Denote by

UM?(t) and UN?(t) a basis of M?(t) and N?(t), respectively. We have,

omitting the argument t,

detSX := det(I + CXC�) = det (I + C�C(X1(I ���) +X2�
�))

= det
�
I + C�C (X1(UM? j0) +X2(0jUN?)) (UM?UN?)

�1
�

= det
�
A�A�� ((I + C�CX1)UM? j(I + C�CX2)UN?) (UM? jUN?)

�1
�
:

From this, using (3.3), (3.4) and (2.1), we have

detSX(t) = detA�(t)det(UM? (t+ 1)jUN?(t+ 1))det(UM?(t)jUN?(t))
�1:

Since A(t) is assumed to be nonsingular, detSX(t) 6= 0 if and only if

M? _+N? = C
n for all t. It remains to observe that the latter condition is

equivalent to (3.2). �

A simple case where SX(t) is nonsingular, when X(t) is a solution of

the form (3.5), is described by the following proposition.

Proposition 3.4 Consider two solutions of the RDE, X1(t) and X2(t)

on [t0; t1]; with X2(t0) � X1(t0) � 0. Let X(t) be a Hermitian solution of
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the RDE of the form (3.5). Then, X(t) is such that detSX(t) > 0; for all

t 2 [t0; t1].

Proof: It is straightforward to verify [2], using (2.4), that, under the

present assumptions, �21(t) � 0, for each t 2 [t0; t1]. From this also

�(t)�21(t) = �21(t)�
�(t) � 0 follows. Hence,

detSX(t) := det(I + C(t)X(t)C�(t))

= det(I + C(t)X1(t)C
�(t) + C(t)�(t)�21(t)C

�(t)) > 0:

�

4 Equilibrium Solutions

Suppose the Riccati di�erence equation RDE (1.1) has constant coe�-

cients.

Theorem 4.1 Let X1 and X2 be equilibrium solutions of the RDE (1.1),

and let �21 := X2�X1. Let M and N be subspaces such that M _+N = C
n

and �21M
? � N . De�ne � to be the matrix which projects onto M along

N . If M , N are invariant subspaces of AX1
, AX2

, respectively, and if

SX := I + CXC� is nonsingular, X = (I � �)X1 + �X2 is a solution of

the DARE (1.2).

Proof: For t 2 [t0; t1], de�ne the sequences of subspaces fM(t) :=Mg and
fN(t) = Ng. These satisfy all the assumptions of Theorem 3.2. Hence,

X is a solution of the RDE (1.1). Since it is time invariant, it solves the

DARE (1.2). �

For the purpose of immediate comparison we state below, in our con-

text, a result of [10], which provides a parametrization of all the solutions

of the DARE. This result establishes in particular that, under suitable

hypotheses, two extreme solutions of the DARE exist. Choosing these as

reference solutions, we obtain all the solutions of the DARE.

Theorem 4.2 Consider the DARE with A nonsingular and de�ne the

function

 (z)
:
= C(Iz�1 �A)�1Q(Iz �AT )�1CT + I:

Suppose that  (�) > 0, for a certain � on the unit circle, and that (A;C)

is an observable pair. Then there exist maximal and minimal solutions of

DARE, X1 and X2, such that

X2 � X � X1;

for each solution X. Furthermore all the solutions X of the DARE may

be obtained by

X = (I ��)X1 +�X2;
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where M is a AX1
-invariant subspace, (�21M

?) is invariant with respect

to AX2
, and � projects onto M along (�21M

?).
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