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Robust Di�usion Approximation for Nonlinear

Filtering�

Robert Liptsery Ofer Zeitouniz

Abstract

In this paper, we consider the �ltering of di�usion processes ob-

served in non-Gaussian noise, when di�usion approximations for the

system apply. Standard continuity results show then that the �lter-

ing error using the optimal �lter for the limit model is close to the

error for the limit system. However, this procedure is known to be

in general suboptimal. We show that for a certain class of models

where the observation is in discrete time and corrupted by i.i.d. (non

Gaussian) noise, a pointwise pre-processing is enough to recover op-

timality. This strengthens some recent results of Goggin. We further

exhibit the role of the \signal-to-noise" ratio in the analysis of the

performance of the system, and prove monotonicity (in this ratio) of

the �ltering error. Finally, we provide a �ltering lower bound for a

class of wide bandwidth observation processes.

1 Introduction

There are only a few stochastic �ltering models of Kalman's and Kushner-

Zakai's types for which the optimal �ltering estimates have a convenient

form for computer implementation. A lot of e�ort has therefore been put

into developing approximation techniques for �ltering models which are

close in some sense to the above mentioned models, the general goal being

to construct nearly optimal �lters for the original model, based on the

solution to the simpler model.

Here, we consider the �ltering problem for the nonlinear model in which

the unobservable signal Xt is a di�usion process. It can be observed at
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R. LIPTSER AND O. ZEITOUNI

times tnk ; k = 0; 1::: (tnk+1 � tnk � �n) so that the observation process Ytn
k
is

de�ned as:

Ytn
0

= 0; Ytn
k
� Ytn

k�1
= h(Xtn

k�1
)�n +

p
�n�k (1.1)

where h(x) is some continuous function and (�k)k�1 is an i.i.d. sequence of

random variables with E�1 = 0 and E�21 = B2:

The attractiveness of this model is based on the following fact. In-

dependently of the distribution for �1, the sequence of random processes

(Y n
t )t�0; n � 1, where Y n

t = Ytn
k
; tnk < t � tnk+1, converges in the distribu-

tion sense, as �n ! 0, to a di�usion type process with respect to a Wiener

process Wt independent of the Xt process:

Yt =

Z t

0

h(Xs)ds+BWt :

This allows us to apply Kushner-Zakai's �ltering equation corresponding

to the limit model for the prelimit observation. Speci�cally, for some con-

tinuous function f(x), consider the limit pair (f(Xt); Yt), for which one

can compute the functional �t(y) de�ned on continuous functions ys; s � t

such that P -a.s., �t(Y ) = E
�
f(Xt)

���Ys; s � t
�
. Assuming �t(y) is de�ned

also for piecewise constant functions and is continuous in some sense, take

�t(Y
n) as a �ltering estimate for the prelimit pair (f(Xt); Y

n
t ). Note that,

due to the weak convergence of (Xt; Y
n
t ) to (Xt; Yt), and the continuity

of the functional �t(�), the distributions of f(Xt); �t(Y
n) converges to the

distribution of the limit f(Xt); �t(Y ) (c.f. Section 3 below for a justi�ca-

tion of these claims under suitable assumptions). Hence, for any bounded

function f(x),

lim
�n!0

E
�
f(Xt)� �t(Y

n)
�2

= E
�
f(Xt)� �t(Y )

�2
:

Many approximation results of this type with di�erent models of observa-

tion noises are well known (see e.g. [6],[7], [9]). However, if the distribu-

tion of �1 is not Gaussian, the resulting �lter might be far from optimal,

even asymptotically, when �n ! 0. On the other hand, using Bayes'

formula, one can �nd the optimal in the mean square �ltering estimate

�nt (Y
n) = E

�
f(Xt)

���Y n
s ; s � t

�
for the prelimit model, which may be

asymptotically better than �t(Y
n), i.e. it may happen that

lim sup
�n!0

E
�
f(Xt)� �nt (Y

n)
�2

< E
�
f(Xt)� �t(Y )

�2
:

To remedy this situation, we make a preliminary nonlinear transfor-

mation of the observation by some smooth function G(x), hereafter called
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ROBUST DIFFUSION APPROXIMATION

\limiter", and show that �ltering via the di�usion approximation imple-

mentation for the transformed signal might be asymptotically better and

even optimal.

We mention that one could easily adapt the above procedure and results

to situations in which the state process Xt also depends on n. For the sake

of simplicity, we chose not to do so here. On the other hand, di�erent

observation approximation lead to new di�culties and di�erent challenges,

and the results there are less satisfactory. We comment in Section 6 below

on some such extensions.

Letting Y G
tn
0

= 0 and

Y G
tn
k
� Y G

tn
k�1

=
p
�nG

� 1p
�n

[Ytn
k
� Ytn

k�1
]
�

(1.2)

and taking into account that Y G
tn
k
�Y G

tn
k�1

�
p
�nG(�k)+G

0(�k)h(Xtn
k�1

)�n;

we arrive at another di�usion limit for the sequence of random processes

(Y
n;G
t )t�0; n � 1, with Y

n;G
t = Y G

tn
k
; tnk < t � tnk+1:

Y G
t =

Z t

0

AGh(Xs)ds+BGWt;

where B2
G = EG2(�1) and AG = EG0(�1). This type of di�usion approxi-

mation allows us to compare limiters using the parameter SNG = A2
G=B

2
G

which naturally can be called the \signal-to-noise" ratio. Put �Gi

t (Y Gi) =

E
�
f(Xt)

���Y Gi
s ; s � t

�
and EGi

= E
�
f(Xt) � �Gi

t (Y Gi)
�2
, i = 1; 2 where

G1; G2 are di�erent limiters. We establish the following important impli-

cation:

SNG1
� SNG2

=) EG1
� EG2

:

Hence, maximization of the \signal-to-noise" ratio by choosing an appro-

priate limiter is a reasonable goal. To this end, assume that the distribution

of �1 possesses a continuously di�erentiable density p(x) with �nite Fisher's

information Ip =
R
IR

(p0(x))2

p(x) dx: Then, for every limiter G

SNG � Ip

and, moreover, the equality is attained at the limiter G�(x) = �p0(x)
p(x) ,

resulting with AG� = Ip, B
2
G� = Ip (c.f. Lemma 3). Therefore, with

Ip �nite, the best possible limiter is G� and the asymptotic mean square

�ltering error (for any bounded f) is de�ned by

lim
�n!0

E
�
f(Xt)� �G

�

t (Y n;G�

)
�2

= E
�
f(Xt)� �G

�

t (Y G�

)
�2
: (1.3)
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On the other hand, slightly modifying the result of Goggin [4] (in the case

of signal Xt independent of n), we have

lim
�n!0

E
�
f(Xt)� �nt (Y

n)
�2

= E
�
f(Xt)�E(f(Xt)jYs; Y G�

s ; s � t)
�2
;(1.4)

where Yt; Y
G�

t is the di�usion limit for the pair Y n
t ; Y

n;G�

t . Due to the obvi-

ous inequality E
�
f(Xt)��G�

t (Y G�

)
�2
� E

�
f(Xt)�E

�
f(Xt)jYs; Y G�

s ; s �

t
��2

; it is a-priori unclear whether the limiter G� guarantees asymptoti-

cally optimal �ltering. However, we establish in Theorem 2 that in fact it

does.

The structure of this article is as follows: in Section 2, we state the main

di�usion approximation and continuity results we use. Section 3 deals with

the convergence of the �lter obtained by applying a pointwise nonlinear

transformation to the discrete observation, and using the optimal �lter for

the limit model. Section 4 addresses the choice of the optimal nonlinearity

for the limit model, as well as some min-max characterization of the optimal

nonlinear transformation. Section 5 is devoted to the proof of asymptotic

optimality for the pre-limit model. Finally, Section 6 provides a discussion

of continuous time extensions as well as a lower bound on the performance

for such systems.

2 Assumptions

We assume that the signal Xt is a di�usion process de�ned by the Itô

equation

dXt = a(t;Xt)dt+ b(t;Xt)dVt (2.1)

with respect to a Wiener process Vt subject to the initial condition X0.

Denote by L the Fokker-Planck-Kolmogorov operator, corresponding to

(2.1): L = a(t; x) @
@x

+
b2(t;x)

2
@2

@x2
; and for each � > 0 de�ne a nonlinear

operator D� acting on twice di�erentiable functions

D�g = �jLgj � 1

2
g2: (2.2)

Hereafter, we �x also the following assumptions.

(A-1) For each � 2 IR, Ee�h(X0) <1.

(A-2) The functions a(t; x) and b(t; x) are continuous and Lipschitz contin-

uous in x uniformly in t; the functions a(t; 0) and b(t; x) are bounded.
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ROBUST DIFFUSION APPROXIMATION

(A-3) f(x) is a continuous function such that for each t � 0, Ef2(Xt) <

1.

(A-4) The function h(x) is twice continuously di�erentiable, having

bounded derivatives h0(x), h00(x), and for each � > 0 there exists a

constant C(�), depending on �, such that

D�h � C(�):

(A-5) (�k)k�1 is an independent of (Xt)t�0 sequence of i.i.d. random

variables, E�21 <1, E�1 = 0.

(A-6) G is a continuously di�erentiable function such that E
�
G0(�1)

�2
<

1 and EG(�1) = 0.

3 Preliminaries: Di�usion Approximations, Filter

Continuity

Introduce the random processes Y n
t and Y

n;G
t letting Y n

t = Ytn
k
; Y

n;G
t =

Y G
tn
k
; tnk � t < tnk+1, where Ytnk and Y G

tn
k
are de�ned in (1.1) and (1.2) re-

spectively. For brevity, the notation W� limn!1 is used below for denot-

ing weak convergence in the Skorohod - Lindvall and the local supremum

topologies (see e.g. Ch. 6 in [10]).

Theorem 1 Assume (A-5), (A-6), and that h(x) is continuous. Then

W � lim
n!1

(Xt; Y
n
t ; Y

n;G
t )t�0 = (Xt; Yt; Y

G
t )t�0;

where (Yt; Y
G
t )t�0 are di�usion processes with respect to independent

Wiener processes Wt, W
0
t , independent of the process Xt, with Y0 = 0,

Y G
0 = 0, and

dYt = h(Xt)dt+B1dW
0
t +B2dWt ; dY G

t = AGh(Xt)dt+BGdWt :

Here,

AG = EG0(�1) ; BG =
p
EG2(�1)

B1 =

s
E�21 �

(E�1G(�1))2

EG2(�1)
; B2 =

E�1G(�1)p
EG2(�1)

:

Proof: De�ne the increasing function Lnt = �n[t=�n], where [t] is the

integer part of t, and the random process Mn
t =

p
�n
PLn

t =�
n

k=1 �k. Then,

the process Y n
t can be represented as:
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R. LIPTSER AND O. ZEITOUNI

Y n
t =

Z t

0

h(Xs)dL
n
s +Mn

t : (3.1)

Analogously, introduce M
n;G
t =

p
�n
PLn

t =�
n

k=1 G(�k), and with some 0 �
�k � 1,

un(t) = G0(�k); t
n
k�1 < t � tnk

Un
t = �n

Ln
t =�

nX
k=1

h(Xtn
k�1

)
h
G0(�k�

nh(Xtn
k�1

) + �k)�G0(�k)
i
:(3.2)

Taking into account the mean value theorem, we arrive at a description for

Y
n;G
t similar to (3.1): Y

n;G
t =

R t
0
un(s)h(Xs)dL

n
s +Mn

t + Un
t : Introduce

next the process eY n;G
t :

eY n;G
t =

Z t

0

AGh(Xs)dL
n
s +Mn

t : (3.3)

We show that for every T > 0, P � limn supt�T

���Y n;G
t � eY n;G

t

��� = 0 : This

holds provided that

P � lim
n
sup
t�T

���Un
t

��� = 0

P � lim
n
sup
t�T

��� Z t

0

[un(s)�AG]h(Xs)dL
n
s

��� = 0: (3.4)

By virtue of assumption (A-6) the function G0 is continuous. Therefore

supt�T

���Un
t

��� � T supt�T jh(Xt)j supk jG0(�k�nh(Xtn
k�1

) + �k) � G0(�k)j !
0; n ! 1, i.e. the �rst part of (3.4) holds. To verify the validity of the

second part note that

Z t

0

[un(s)�AG]h(Xs)dL
n
s = �n

[t=�n]X
k=1

h(Xtn
k�1

)
�
G0(�k)�EG0(�k)

�
:= Mn

t

and that the processMn
t is a square integrable martingale with respect to

the �ltration (Fn
t )t�0, with Fn

t = �fXtn
k�1

; �k; t
n
k � t; k � [t=�n]g. Mn

t

possesses the predictable quadratic variation

D
Mn

E
t
=
�
�n
�2 [t=�n]X

k=1

h2(Xtn
k�1

)E
�
G0(�k)�EG0(�k)

�2
:

6



ROBUST DIFFUSION APPROXIMATION

This and assumption (A-6) allow us to conclude thatD
Mn

E
T
� �nT sup

t�T
h2(Xt)E

�
G0(�1)

�2

which in turn implies P � limn

D
Mn

E
T
= 0. Then, due to Problem 1.9.2

in [10], we have P � limn supt�T

���Mn
t

��� = 0, i.e. the second part in (3.4)

holds as well.

By Theorem 4.1 from [1][Ch. 1 x4], Theorem 1 holds provided that

W � lim
n!1

(Xt; Y
n
t ;
eY n;G
t )t�0 = (Xt; Yt; Y

G
t )t�0: (3.5)

For checking the validity of (3.5), note that (Xt) and (�k)k�1 are indepen-

dent objects, implying the independence of the processes
R t
0
AGH(Xs)dL

n
s

and Mn
t ;M

n;G
t . Hence, we get (3.5) by checking the convergence

W �
�

limn(M
n
t )t�0 = (B1W

0
t +B2Wt)t�0

limn(M
n;G
t )t�0 = (BGWt)t�0

P � lim
n
sup
t�T

��� Z t

0

AGh(Xs)d(L
n
s � s)

��� = 0: (3.6)

The vector (Mn
t ;M

n;G
t ) is a vector of square integrable martingales

with independent homogeneous increments (with respect to the �ltration

generated by itself), with matrix of predictable quadratic variations ele-

ments
D
Mn

E
t
� E�21L

n
t ,
D
Mn;G

E
t
� EG(�1)

2Lnt , and
D
Mn;Mn;G

E
t
�

E�1G(�1)L
n
t . Since limn L

n
t = t, it holds that

lim
n

D
Mn

E
t

= (B2
1 +B2

2)t

lim
n

D
Mn;G

E
t

= B2
Gt

lim
n

D
Mn;Mn;G

E
t

= B2BGt:

Therefore, by a vector version of the Donsker theorem (see e.g. Theorems

9.1.1 and 9.1.2 in [10] for the scalar version) the vectorMn
t ;M

n;G
t converges

weakly (in the Skorohod-Lindvall topology), with the limitMt;M
G
t being a

continuous Gaussian vector martingale with predictable variations matrix

elements
D
M
E
t
� (B2

1 + B2
2)t,

D
MG

E
t
� B2

Gt, and
D
M;MG

E
t
� B2BGt.

Hence, using the orthogonality of MG
t and Mt � B2M

G
t =BG and putting

Wt = (1=BG)Mt and W 0
t = (1=B1)[Mt � B2M

G
t =BG], one can conclude

that Wt;W
0
t are independent Wiener processes and the �rst part of (3.6)

holds.
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The proof of the second part of (3.6) uses the fact that Xt is a con-

tinuous process. Letting Xm
t = X[mt]=m, m = 1; 2; : : :, introduce a se-

quence of random processes (Xm
t )t�0;m � 1. Since limm

[mt]
m

= t, we get

P � limm supj=m�s�(j+1)=m

���h(Xs) � h(Xj=m)
��� = 0. Hence, using Lnt � t,

we obtain

sup
t�T

��� Z t

0

AGfh(Xs)� h(Xm
s�)gd(Lns � s)

� 2jAGjT j sup
j=m�s�(j+1)=m

���h(Xs)� h(Xj=m)
��� := Jm ;

where P � limm Jm = 0, that is (3.6) now holds provided that for every m,

P � limn supt�T

��� R t0 AGh(X
m
s�)d(L

n
s � s)

��� = 0: The last limit follows from

sup
t�T

��� Z t

0

AGh(X
m
s�)d(L

n
s � s)

��� � TmjAGj sup
t�T

jh(Xt)j sup
t�T

jLnt � tj = 0 :

In the remainder of this section, we describe some (essentially known)

continuity properties of the functional �Gt (y). Throughout, we let D de-

note the Skorkhod space of right continuous having limits from the left

functions on [0;1), equipped with the local supremum topology. Let the

pair (Xt; Y
G
t ) be de�ned on a probability space (
;F ; P ) and (e
; eF ; eP )

be its copy. De�ne a new pair ( eXt; Y
G
t ) on (
 � e
;F 
 eF ; P�) eP ). By

the Kallianpur-Striebel formula [5], the conditional expectation �Gt (Y
G) is

de�ned as

�Gt (Y
G) =

eEf( eXt) exp
n

1
B2

G

� R t
0
h( eXs)dY

G
s � 1

2

R t
0
h2( eXs)ds

�o
eE exp

n
1
B2

G

� R t
0
h( eXs)dY G

s � 1
2

R t
0
h2( eXs)ds

�o :

By Itô's formula,

h( eXt)Y
G
t =

Z t

0

h( eXs)dY
G
s +

Z t

0

Y G
s Lh(s; eXs)ds

+

Z t

0

Y G
s h

0( eXs)b(s; eXs)deVs;
where eVt, de�ned on (e
; eF ; eP ), is a copy of the Wiener process Vt. Again

applying Itô's formula we �nd

h( eXt) = h( eX0) +

Z t

0

Lh(s; eXs)ds+

Z t

0

h0( eXs)b(s; eXs)deVs:
8
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Therefore, taking into account the independence of the processes eXt; eVt
and Y G

t , we arrive at

Z t

0

h( eXs)dY
G
s = h( eX0)Y

G
t +

Z t

0

[Y G
t � Y G

s ]Lh(s; eXs)ds

+

Z t

0

[Y G
t � Y G

s ]h0( eXs)b(s; eXs)deVs:
For y 2 D, de�ne

�t( eX; y) = exp
� 1

B2
G

h
yth( eX0) +

Z t

0

h
(yt � ys)Lh( eXs)� 1

2
h2( eXs)

i
ds
�

� exp
� 1

B2
G

Z t

0

(yt � ys)h
0( eXs)b(s; eXs)deVs� (3.7)

and for y 2 D such that it is de�ned, let

�Gt (y) =
eEf( eXt)�t( eX; y)eE�t( eX; y) : (3.8)

We will need the

Lemma 1 Assume (A-1){(A-4). Then �Gt (�); t � 0 is well de�ned and

continuous on D.

Proof: Results of this kind, especially for continuous function y 2 D, are

well known (see e.g. [12], [3],[11]). Thus, we give only a sketch of the proof.

By Jensen's inequality, for each y 2 D,

eE�t( eX; y) � exp
� 1

B2
G

eEhyth( eX0) +

Z t

0

h
(yt � ys)Lh( eXs)

�1

2
h2( eXs)

i
ds
�o

> 0:

On the other hand, putting �(s) = 4
B2

G

((yt � ys)h
0( eXs)b(s; eXs) and notic-

ing that there exists a constant ` such that j�(s)j � sups�t jyt � ysj`, we
get eE expfR t

0
�(s)deVs � 1

2

R t
0
�2(s)ds

o
= 1. Coupled with D�h � 0; � =

sups�t jyt � ysj, we arrive at the following upper bound

eE�4
t (
eX; y) � exp

n`2
2
sup
s�t

jyt � ysj2
o eE exp

n4jytjjh( eX0j
B2
G

o
(<1): (3.9)

9
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This upper bound jointly with the above-mentioned lower one guarantees

that the functional �Gt (y) is well de�ned. Moreover, since �( eX; y) consid-
ered as a function of y is uniformly continuous in probability at any point

y 2 D, one can conclude, using (3.9) for checking the uniform integrability,

that the numerator and denominator in the right hand side of (3.8) are

uniformly continuous in y.

4 Analysis of Limiting Model: Choice of Optimal Lim-

iter

Theorem 1 shows that the limit model depends on the choice of limiter G.

For a �xed G, the limit �ltering model is characterized by two parameters

AG; BG which de�ne a natural \signal-to-noise" ratio

SNG =
A2
G

B2
G

: (4.1)

The next lemma shows that to larger values of the \signal-to-noise" ratio

there correspond smaller value of the �ltering error EG(t) = E
�
f(Xt) �

�Gt (Y
G)
�2
.

Lemma 2 The following implication holds: for every t > 0,

SNG1 � SNG2 =) EG1(t) � EG2(t):

Remark: For a related result, see [13].

Proof: For every limiter G, de�ne a new observation eY G
t = Y G

t =AG and

note that since the �-algebras generated by fY G
s ; s � tg and feY G

s ; s � tg
coincide, the mean square �ltering errors corresponding to the observations

fY G
s ; s � tg and feY G

s ; s � tg coincide as well. Due to the de�nition of the

process Y G
t given in Theorem 1 we have

deY G
t = h(Xt)dt+

BG

AG
dWt

eY G
0 = 0: (4.2)

Therefore, for the comparison of EG1(t) and EG2(t) one can use eY G1

t andeY G2

t as observation processes. To simplify notations, put 
0 =
B
G1

A
G1

and


00 =
B
G2

A
G2
. Since

(
0)2 =
1

SNG0

and (
00)2 =
1

SNG00

;

10
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we have that (
0)2 � (
00)2: Take (
0)2 > (
00)2 and consider two observa-

tion signals:

dY
00

t = h(Xt)dt+ 
00dWt

dY
0

t = h(Xt)dt+ 
00dWt +
p
(
0)2 � (
00)2dfWt;

where fWt is independent of the process (Xt;Wt). It is clear that the di�u-

sion parameter of the observation process for the �rst model is (
00)2 while

for the second (
0)2. Denote

E
0(t) = E
�
f(Xt)�E

�
f(Xt)

���Y 0

s ; s � t
��2

E
00(t) = E
�
f(Xt)�E

�
f(Xt)

���Y 00

s ; s � t
��2

and note that E
0(t) � EG1(t), E
00(t) � EG2(t). Therefore, it remains to

check only the validity of the implication:


0 > 
00 =) E
0(t) � E
00(t): (4.3)

To this end, taking into account that �fY 0

s ;
fWs; s � tg � �fY 0

s ; s � tg, we
get E
0(t) � E(t), where E(t) = E

�
f(Xt)�E

�
f(Xt)

���Y 0

s ;
fWs; s � t

��2
: We

next show that (P -a.s.)

E(t) � E
00(t): (4.4)

Indeed, noticing that �fY 0

s ;
fWs; s � tg = �fY 00

s ;
fWs; s � tg, one can con-

clude that

E
�
f(Xt)

���Y 0

s ;
fWs; s � t

�
= E

�
f(Xt)

���Y 00

s ;
fWs; s � t

�
:

Taking into account now that (Xt; Y
00

t ) and (fWt) are independent pro-

cesses, we arrive at the following chain of equalities: for every bounded

random variables � and �, which are measurable with respect to �-algebras

�fY 00

s ; s � tg and �ffWs; s � tg respectively, and every bounded and mea-

surable function g(x),

E
�
��E

�
g(Xt)

���Y 00

s ;
fWs; s � t

��
= E

�
��g(Xt)

�
11
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= E
�
�g(Xt)

�
E
�
�
�

= E
�
�E
�
g(Xt)

���Y 00

s ; s � t
��
E(�

�
= E

�
��E

�
g(Xt)

���Y 00

s ; s � t
��

which in turn implies (P -a.s.) E
�
f(Xt)

���Y 00

s ;
fWs; s � t

�
= E

�
f(Xt)

���Y 00

s ; s

� t
�
: Then also (4.4) holds.

Disregarding the constraint (A-6), one can �nd the limiter maximizing

the \signal-to-noise" ratio.

Lemma 3 Assume that the distribution of the random variable �1 has a

density p(x) which is twice continuously di�erentiable, and possesses a �-

nite Fisher information Ip =
R
IR

�
p0(x)

�
2

p(x) dx. Then the limiter G�(x) =

�p0(x)
p(x)

has maximal \signal-to-noise" ratio among all limiters G which are

smooth functions with
R
IR
G(x)p(x)dx = 0 and

R
IR
G2(x)p(x)dx <1:

Ip =
A2
G�

B2
G�

� A2
G

B2
G

:

Proof: Let G be an admissible limiter. Under the assumptions of the

lemma SNG =

�R
IR

G0(x)p(x)dx

�
2

R
IR

G2(x)p(x)dx
: Integrating by parts and applying

Cauchy-Schwartz's inequality we obtain

�Z
IR

G0(x)p(x)dx
�2

=
�Z

IR

G(x)p0(x)dx
�2

� Ip

Z
IR

G2(x)p(x)dx;

that is SNG � Ip. On the other hand, since
R
IR
(G�(x))2p(x)dx = Ip and

(G�)0(x) =
p00(x)p(x)�(p0(x))2

p2(x)
, it holds that

SNG� =

�R
IR

�
p00(x)� (p0(x))2

p(x)
dx
�2

R
IR
(G�)(x))2p(x)dx

= Ip:

It is interesting to comment here on the relation of Lemma 3 and [4]:

indeed, it is proved in [4] that the optimal nonlinear �lter for the prelimit

12



ROBUST DIFFUSION APPROXIMATION

model converges to the optimal �lter given both the limit observation Y G
t

and the limit observation Yt. We show in the lemma below that the second

component of the observation is actually super
uous.

Lemma 4 Assume that the distribution of the random variable �1 has a

density p(x) which is twice continuously di�erentiable and possesses a �nite

Fisher information Ip =
R
IR

�
p0(x)

�
2

p(x)
dx. Moreover, assume that the limiter

G�(x) = �p0(x)
p(x)

satis�es assumption (A-6). Then for any t � 0, a.s.

E
�
f(Xt)

���Ys; Y G�

s ; s � t
�
= E

�
f(Xt)

���Y G�

s ; s � t
�
:

Proof: Due to Theorem 1, the observable processes Yt, Y
G�

t are de�ned

by as:

dYt = h(Xt)dt+B�1dW
0
t +

1p
Ip
dWt

dY G�

t = Iph(Xt)dt+
p
IpdWt;

where B�1 =
q
E�21 � 1

Ip
. Evidently IpYt = Y G�

t + IpB
�
1W

0
t ; where the

process IpB
�
1W

0
t is independent of the processes Xt; Y

G�

t , and thereby the

desired statement is obtained similarly to the proof of Lemma 2.

4.1 Minmax problems, and Gaussian worst case

As seen above, the \signal-to-noise" ration attached to the limiter, A2
G=B

2
G,

plays a decisive role in assessing the �ltering performance. The choice of

optimal limiter, however, requires the knowledge of the density p(�) (c.f.
Lemma 3). Often, this knowledge is not available a-priori, and all that one

knows is that for some class of densities P possessing zero mean and �nite

variance, p 2 P .
Although p(�) can be estimated from the data, this results in a cumber-

some algorithm, both from the implementation and analysis aspects. It is

natural therefore to de�ne the \minmax" performance as the one for which

the worst case performance over P is optimized by the choice of limiter G.

Namely, de�ne

SNmax = max
G

min
p2P

A2
G

B2
G

;

where we take the ratio above to be 0 for such p;G with either BG =1 or

AG = BG = 0. Use �p to denote the variance of p 2 P .

13
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Lemma 5

inf
p2P

Ip � SNmax � inf
p2P

1

�2p
:

In particular, with �2max = maxp2P �
2
p, if N(0; �2max) 2 P, then SNmax =

1
�2
max

, and Go(x) = cx for any c 6= 0.

Proof: Clearly,

SNmax � inf
p2P

sup
G

A2
G

B2
G

= inf
p2P

Ip :

On the other hand, the choice of G(x) = x in the de�nition of SNmax leads

to

SNmax � inf
p2P

1R
x2p(x)dx

= inf
p2P

1

�2
:

The conclusion of the lemma follows at once.

5 Asymptotically Optimal Filter

We have now completed the preliminaries needed to state our main results.

Let assumptions (A-1)-(A-6) be ful�lled. For a �xed limiter G, consider

the �ltering problem for the prelimit model (Xt; Y
n;G
t ) with f(Xt) the

signal which has to be �ltered by the observation Y
n;G
t . By Theorem 1,

the pair (Xt; Y
n;G
t ) converges to (Xt; Y

G
t ) in the Skorohod-Lindvall metric.

If �Gt (Y
n;G) is chosen as �ltering estimate, it is reasonable to compare its

mean square �ltering error E
�
f(Xt)��Gt (Y n;G)

�2
with the corresponding

optimal �ltering error for the limit model E
�
f(Xt) � �Gt (Y

G)
�2
. Here,

�Gt (Y
G) = E

�
f(Xt)jY G

s ; s � t).

For f(�) bounded continuous, Lemma 1 and Theorem 1 imply that

lim
n
E
�
f(Xt)� �Gt (Y

n;G
�2

= E
�
f(Xt)� �Gt (Y

G)
�2
: (5.1)

This property re
ects an asymptotical �ltering equivalence for the prelimit

model to the limit one.

Furthermore, for f(x) satisfying only assumptions (A-3), (5.1) remains

true under the uniform integrability condition for the family (�Gt (Y
n;G)2;

n � 1. To avoid a veri�cation of the uniform integrability, let us intro-

duce �-asymptotically equivalent and �-asymptotically optimal �ltering es-

timates.

14
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De�nition 1 For a �xed limiter G, a �ltering estimate �
G;�
t (y) is said to

be asymptotically �-equivalent to the �ltering estimate �Gt (y), if for each

� > 0 there exists a positive constant N(t; �), depending on t and �, such

that j�G;�t (y)j � N(t; �) and

lim
n
E
�
f(Xt)� �

G;�
t (Y n;G)

�2
� E

�
f(Xt)� �Gt (Y

G)
�2

+ �: (5.2)

De�nition 2 A �ltering estimate �
�;�
t (y) is said to be asymptotically �-

optimal, if for each � > 0 there exists a positive constant N(t; �), depending

on t and �, such that j��;�t (y)j � N(t; �) and

lim
n
E
�
f(Xt)���;�t (Y n;G)

�2
� lim inf

n
E
�
f(Xt)�E(f(Xt)jY n

s ; s � t)
�2
+�:

(5.3)

Let us de�ne �
G;�
t (y) in the following way. Put

f�(t; x) =

8<
:

f(x) jf(x)j � N(t; �)

N(t; �) f(x) � N(t; �)

�N(t; �) f(x) � �N(t; �);

(5.4)

whereN(t; �) is chosen such that Ef2(Xt)I(jf(Xt)j � N(t; �)) � �:We take

�
G;�
t (y) as the functional in (3.8) corresponding to the �ltering estimate

�
G;�
t (Y G) = E

�
f�(t;Xt)

���Y G
s ; s � t

�
:

The function f�(t; x) is bounded by N(t; �). Hence �
G;�
t (y) is bounded by

the same constant and we have

lim
n
E
�
f(Xt)� �

G;�
t (Y n;G)

�2
= E

�
f(Xt)� �

G;�
t (Y G)

�2
: (5.5)

On the other hand, since

E
�
�Gt (Y

G)� �
G;�
t (Y G)

�2
� E

�
f(Xt)� f�(Xt)

�2
� �;

we get

E
�
f(Xt)� �

G;�
t (Y G)

�2
= E

�
f(Xt)� �Gt (Y

G)
�2

+E
�
�Gt (Y

G)� �
G;�
t (Y G)

�2
� E

�
f(Xt)� �Gt (Y

G)
�2

+ �: (5.6)
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Assume now that the distribution of the random variable �1 has a den-

sity p(x) which is strictly positive everywhere, twice continuously di�eren-

tiable, and such that (see [4])

(B-1)
R
IR
x2p(x)dx <1;

(B-2) jxjp(x)! 0 as jxj ! 1;

(B-3)
R
IR

[p0(x)]2

p(x) dx <1;

(B-4)
R
IR
j(ln p(x+ "))00 � (ln p(x))00jdx! 0 as "! 0.

Note that (B-1){(B-4) imply that the limiter G�(x) = �p0(x)
p(x)

satis�es as-

sumption (A-6). We are now in the position to revise Goggin's result from

[4].

Theorem 2 Assume (A-1){(A-5) and (B-1){(B-4).

1. If f(x) is bounded, then the �ltering estimate �G
�

t (Y n;G�

) is asymp-

totically optimal, i.e. for each t � 0

lim
n
E
�
f(Xt)� �G

�

t (Y n;G�

)
�2

= lim
n
E
�
f(Xt)�E

�
f(Xt)

��Y n
s ; s � t

��2
= E

�
f(Xt)� �G

�

t (Y G�

)
�2

2. If f(x) satis�es (A-3) only, then the �ltering estimate �
G�;�
t (y),

chosen as �
G;�
t (y) by replacing G with G�, is asymptotically �-optimal, i.e.

for each t � 0

lim
n
E
�
f(Xt)� �

G�;�
t (Y n;G�

)
�2
�

lim inf
n

E
�
f(Xt)�E

�
f(Xt)

��Y n
s ; s � t

��2
+ �:

Proof: 1. The desired conclusion follows from

lim
n
E
�
f(Xt)�E

�
f(Xt)

��Y n
s ; s � t

��2
=

E
�
f(Xt)�E

�
f(Xt)

��Ys; Y G�

s ; s � t
��2

;

(see [4]), from (5.1), and from Lemma 4.

2. The required statement follows from

E
�
f(Xt)�E

�
f(Xt)

��Y n
s ; s � t

��2 � E
�
f(Xt)�E

�
f�(t;Xt)

��Y n
s ; s � t

��2��
16
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and from

lim
n
E
�
f(Xt)�E

�
f�(t;Xt)

��Y n
s ; s � t

��2
= E

�
f(Xt)� �

G�;�
t (Y G�

�2
= lim

n
E
�
f(Xt)� �

G�;�
t (Y n;G�

�2
:

6 Wide Bandwidth Noise

In the setup of Section 3, let (�t)t2IR denote a stationary in the strict sense,

ergodic process, and consider the sequence of observations:

_Y �
t = h(Xt) + ��1�t��2 : (6.1)

For a limiter G, de�ne the transformed observation

Y
�;G
t =

Z t

0

��1G(� _Y �
s )ds : (6.2)

We now have the analog of Theorem 1:

Theorem 3 Assume (A-1)-(A-4),(A-6), and weak dependence conditions

for the process �(t):

(A.7) EG4(�0) <1, EG(�0) = 0

(A.8)
R1
0
E1=4

h
E
�
G(�t)

���s � 0
�i4

dt <1.

Then
�
Xt; Y

�;G
t

�
t�1

converges, as �! 0, weakly in the local uniform topol-

ogy of D, to (Xt; Yt)t�0 with

Yt = AG

Z t

0

h(Xs)ds+BGWt;

where AG = EG0(�0) and B
2
G = 2

R1
0
EG(�0)G(�s)ds:

The proof of this theorem is similar to corresponding di�usion approx-

imation results from [9] and so is omitted here.

As can be seen from the above, the limit process for the wide bandwidth

noise case has the some structure as for the discrete time observation one.

Moreover, for any �xed G, it can be shown that the Kallianpur-Striebel

functional �t(y) applied to Y
�;G
t results in �ltering estimates satisfying

the same continuity properties as in discrete time. Under some additional
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conditions on the joint distribution density for �0 and �t one can obtain an

upper bound for the \signal-to-noise" ratio (see [8])

SNG =
E2G0(�0)

2
R1
0
EG(�0)G(�s)ds

:

Showing optimality for the wide bandwidth noise case is much harder. In

fact, without further assumptions on �t, one cannot hope for optimality, as

the following example amply demonstrates.

Example 1 Let �t be an (independent of the process Xt) Wiener process,

let �t denote the stationary ergodic di�usion process solution of the Itô

equation d�t = ��tdt+
p
q(�t)d�t; where

q(x) =

�
1=4 + x2 jxj � 1=2

jxj jxj > 1=2:

Assume _Y �
t = Xt+�

�1�t��2 . It does not seem possible to construct a limiter

with arbitrarily high \signal-to-noise" ratio. Hence, the �ltering error for

the limit model is bounded away from 0. On the other hand, one may

construct �lters whose errors converge to 0 with �. Indeed, note that

d _Y �
t = [a(t;Xt)� ��3�t��2 ]dt+ b(t;Xt)dVt + ��2q(�t��2)d(��t��2); (6.3)

where the di�usion parameter, which can be measured with zero error from
_Y �
t , is b2(t;Xt) + ��4q2(�t��2). Therefore for small �, q2(�t��2) can be

reconstructed with error converging to 0 with �. It implies the same for

j��1�t��2 j, and hence, using again _Y �
t , an estimate can be constructed with

arbitrarily small �ltering error.

To avoid such pathologies, we introduce some structure to the model

in continuous time. Assume that the process Xt satis�es the stochastic

di�erential equation:

dXt = a(Xt)dt+ dVt; (6.4)

where X0 is distributed with a density po. Assume also that the stationary

process �t is de�ned by the stochastic di�erential equation

d�t = g(�t)dt+ d�t;

where � is a standard Wiener processes independent of the process Xt,

and g is some smooth function. Evidently, the transformed process ��t =

��1�t��2 is de�ned as

d��t = ��3g(���t )dt+ ��2d(��t��2); (6.5)
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where (��t��2) is again a standard Wiener process independent of the pro-

cess Xt. As before, let the observation satisfy

_Y �
t = Xt + ��t : (6.6)

Assuming a and g are smooth functions and putting

At = Ea0(Xt)

Ct =

q
E(a0(Xt)))2 �A2

t +E(g0(�(0))2)

we associate with the original non linear model a linear one de�ned by

stochastic di�erential equations with respect to independent Wiener pro-

cesses vt, wt

dxt = Atxtdt+ dvt (6.7)

dyt = Ctxtdt+ dwt

with x0 a Gaussian random variable, independent of the processes wt; vt,

of zero mean and variance �20 , and y0 = 0.

Theorem 4 Assume that po, a, and g are continuously di�erentiable func-

tions (po once; a and g twice, having bounded derivatives, g is bounded).

Assume also Ipo :=
R
IR

[p0o(x)]
2

po(x)
dx <1 and �20 = 1=Ip0 . Then for each t � 0

lim
�!0

E(Xt �E(Xtj _Y �
s ; s � t))2 � E(xt �E(xtjys; s � t))2:

Proof: The proof uses the ideas in [2]. For T > 0, consider the �lter-

ing problem on the time interval [0; T ]. For a deterministic � 2 f :R T
0

_ 2(t)dt < 1g; let ���;� denote the law induced on (C[0; T ])2 by the

processes

dx�;�t = a(x�;�t � ��t)dt+ � _�tdt+ dvt ; x�;�0 = x0 + ��(0) ;

d�
�;�;�
t =

 
g(�(�

�;�;�
t + ��t))

�3
� � _�t

!
dt+

1

�2
d(��t��2): (6.8)

We use �� = ��0;� throughout. Note that the law of f(x0;�t ; �
�;0;�
t )g is

identical to the law of f(xt; ��t )g, and that xt + ��t = x
�;�
t ; ��t � �t = �

�;�;�
t

. Further, by our assumptions on a; g, and �, d���;�=d�
� exists, and
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d���;�

d��
= exp

 Z T

0

�sdvs � 1

2

Z T

0

�2sds+

Z
�sd(��s��2)�

1

2

Z T

0

�2sds

!
;

where

�t = a(x
�;�
t � ��t) + � _�t � a(x

�;�
t )

�t =
g(�(�

�;�;�
t + ��t))� g(��

�;�;�
t )

�
� �2� _�t:

Also,
�
1� d���;�

d��

�2
=�2 is easily checked to be uniformly integrable (in �,

with �; � �xed). Let f�ig denote a complete, smooth orthonormal basis of

L2[0; T ]. Then, by a direct computation, as in Theorem 4 of [2],

K�
i;j := lim

�!0
E

�
1

�2

�
1� d���;�i

d��

��
1�

d���;�j
d��

��

=
�i(0)�j(0)

�20

+E

(Z T

0

( _�i(t)� a0(xt)�i(t))( _�j (t)� a0(xt)�j(t))dt

+

Z T

0

(g0(���t )�i(t)� �2 _�i(t))(g
0(���t )�j(t)� �2 _�j(t))dt

)

=
�i(0)�j(0)

�20
+E

(
(1 + �4)

Z T

0

h
_�i(t)� �i(t)

a0(xt) + �2g0(���t )

1 + �4

i

�
h
_�j(t)� �j(t)

a0(xt) + �2g0(���t )

1 + �4

i
dt

+

Z T

0

�i(t)�j(t)
�
g0(���t )

2 + a0(xt)
2 � (a0(xt) + �2g0(���t ))

2

1 + �4

�
dt

)
:

The K�
i;j 's are the elements of the (in�nite) information matrix associated

with the nonlinear di�usion Xt and observation f _Y �
t ; 0 � t � Tg. Consider

the linear, Gaussian system:

dx�t = A�
tx

�
tdt+B�

tdvt ;

dy�t = C�
t �x

�
tdt+ d(��t��2); (6.9)

where A�
t = E(a0(Xt) + �2g0(���t )); B

� =
p
1 + �4; (C�

t )
2 = E(g0(���t )

2 +

a0(Xt)
2) � (A�

t)
2, and x�o is Gaussian with Ex�0 = 0; E(x�0)

2 = �20 ; y
�
0 = 0.
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By Theorem 5 of [2], the linear, Gaussian system (6.9) possesses the same

information matrix fK�
i;jg, and furthermore, by choosing as the f�ig the

Karhunen-Loeve base of x�t , the �ltering error matrix associated with the

coe�cients of the Karhunen Loeve expansion equals precisely this informa-

tion matrix. The standard Cram�er{Rao bound then implies (c.f. Theorem

6 of [2]) that the �ltering error of XT with respect to the observation _Y �
t

is bounded below by that of the linear model (6.9). Taking now �! 0, the

conclusion of the theorem follows.
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