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1 Introduction

Elastomers, rubber{like polymers, are found in a vast array of engineer-

ing applications, ranging from traditional products such as tires to more

modern applications, such as road bridge bearings that allow for thermal

expansion of the bridge (see [9, 11, 12]). For these applications, rubber

is combined with inactive �llers, frequently carbon black or silica, which

enhance the physical properties to �t design speci�cations. As smart ma-

terials technology evolves, rubber is inevitably being considered for more

advanced engineering roles. For example, a rubber rod with a matrix of

embedded �ber optic cables might be used as a strain sensor, and an ac-

tive vibration suppression device might be made by using piezoelectric or

ferrous particles as �llers.

Many static models (see [10, 14, 15]) have been developed for elastomers,

mainly based on either Rivlin's �nite strain (FS) theory or on strain energy

functions (SEFs). Both classes of models rely on use of the principal stretch

ratios, the deformed length of a unit vector parallel to the principal axes

(the axes of zero shear). Although some of these models have produced

excellent �ts to loading curves resulting from static testing, they do not

address the loss of potential energy (hysteresis) inherent to elastomers, and

hence cannot be used to �t the \loops" resulting from loading followed

by unloading. The development of more sophisticated, dynamic models is

critical to the design of elastomer components for use in dynamic conditions.
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Elastomers exhibit a number of complex behaviors, in addition to the

nonlinear constitutive laws and hysteresis, that are essential elements of

a successful dynamic model. Strong damping (loss of kinetic energy) is

characteristic of these materials. The state of strain also depends in a non-

trivial way on strain history, environmental temperature, rate of loading,

and amount and type of �ller. The nonlinear partial di�erential equation

(PDE) model presented here for a slender rod with a tip mass undergoing

simple extension includes damping, but not hysteresis. Models for hystere-

sis are currently being developed, and will eventually be used in conjunction

with this PDE model.

Constitutive laws, arising either from a SEF or from Rivlin's �nite strain

formulation, can be used along with material independent force and moment

balance derivations (the Timoshenko theory [8, 13]) as the basis of dynamic

models. To illustrate this we take the simplest example: an isotropic,

incompressible rubber-like rod (with a tip mass) under simple elongation

with a �nite applied stress in the principal axis direction x1 = x, as seen
in Figure 1.1. The position at any time t of the slice that was at location
x in the unstrained body is designated by u(t; x). The engineering stress is
given by
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E
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where a Kelvin-Voigt damping term has been included as a �rst attempt

at modeling damping (see [4, 6] for more details). For a Hookean material

ĝ(�) = 2�, and for a neo-Hookean material ĝ(�) = 1 � (1 + �)�2 (see [4]).

Here E is a generalized modulus of elasticity and we note these formulations

are restricted by the physical constraint @u
@x

> �1. Substituting the engi-

neering stress (1.1) into the Timoshenko theory for longitudinal vibrations

of a rubber bar with a tip mass, we obtain the nonlinear partial di�erential

equation initial boundary value problem (PDE IBVP)
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u(t; 0) = 0 ; u(0; x) = �(x) ; _u(0; x) = 0 (1.2)

for the dynamic longitudinal displacement of a rod in extension. In this case

� = mass density, F (t) = applied external force, Ac is the cross sectional
area, M is the tip mass, g is the gravitational constant, and 
 is the air

damping coe�cient.

In general, one does not expect the initial boundary value problem as-

sociated with (1.2) to have a classical (smooth) solution. For this reason,
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Figure 1.1: Rod with tip mass under tension

it is useful to consider the abstract form of (1.2)

�y(t) + A2 _y(t) +A1y(t) +N �G(Ny) = F (t) in V �

y(0) = y0; _y(0) = y1 (1.3)

in the state y = (u(t; l); u(t; �)). The pivot space H = R
1 � L2(0; l) is

endowed with the inner product

h(�; �); (�;  )iH =M��+ h�Ac�;  i0

where h�; �i0 is the usual L2 inner product on the interval (0; l), and the

state space V = f(�; �) : � 2 H1
L(0; l); � = �(l)g has inner product

h(�; �); (�;  )iV =M��+ h�Ac
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i0 :

The spaces V and H form a Gelfand triple V ,! H ' H� ,! V � with pivot

space H and duality paring h�; �iV �;V .

The linear operator
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where the derivatives are in the distributional sense, has associated sesqui-

linear form
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A2 2 L(V; V
�), with derivatives again in the distributional sense, has asso-

ciated sesquilinear form
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The linear operator N 2 L(V;H) is given by

N� = (�(l);
@�

@x
) ;

and its adjoint N � 2 L(H;V �). The function G is given by

G(�; �) = (0;
E

3�
ĝ(�)) ;

where ĝ(�) comes from the constitutive law (1.1), and the function

F (t) = (f(t) +Mg; 0) ;

where F (t) is the applied external force. Equation (1.3) �ts into the Banks,
Gilliam, Shubov framework [1], and thus the problem is well-posed if ap-

propriate monotonicity and smoothness conditions are satis�ed by G. We

will assume that these conditions hold for the remainder of this paper, and

defer the details of the arguments to a later paper.

Having established well-posedness, we proceed to Section 2 and a dis-

cussion of numerical methods for approximating the solution of (1.3). In

Section 3 we will present an inverse methodology, along with numerical re-

sults. In Section 4 we summarize current and future work to augment and

re�ne the modeling e�orts.

2 Numerical Approximation

For a given G satisfying the Banks, Gilliam, Shubov well-posedness criteria

in [1], equation (1.3) may be written using the weak, or variational, form:

for every � 2 V ,

h�y;�iV �;V + �2( _y;�) + �1(y;�) +N �(G(Ny))� = hF (t);�iV �;V ; (2.4)

and Galerkin approximations may be de�ned. For any set of linearly in-

dependent basis functions which form a total set in V , the Galerkin ap-

proximates are guaranteed to converge (see [1]). We will employ a Galerkin

method using linear splines (appropriate in the H1(0; l) setting) for the ba-
sis elements in the spatial discretization. The system with tip mass is sti�,

and for that reason a sti� integrator, such as Gear's BDF method, should

be used in time. We seek an approximate solution to (1.3) of the form

uN(t; x) =

NX
j=1

�Nj (t)B
N
j (x)

where the basis functions BNj (x) = (LNj (l); L
N
j (x)), the L

N
j are the usual

linear splines with grid spacing h = l=N , and the coe�cients �Nj are un-

known functions of time. The boundary condition u(t; 0) = 0 is treated
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as an essential boundary condition and is imposed directly on each of the

basis elements LNj .
In order to use Gear's method, (1.3) must be written as a �rst order

system in time. To accomplish this, rewrite the weak formulation (2.4) by

choosing w1 = y, thus

_w1 = w2 (2.5)

and for each � 2 V

h _w2;�iV �;V = ��2(w2;�)� �1(w1;�)�N �(G(Nw1))� + hF (t);�iV �;V :
(2.6)

The approximate solutions of (2.5) and (2.6) are given by (for ease in no-

tation, we henceforth drop the superscript N on the elements Bj = BNj ,

Lj = LNj , and coe�cients �j = �Nj ; �j = �Nj )

wN1 (t; x) =

NX
j=1

�j(t)Bj(x) ;

and

wN2 (t; x) =

NX
j=1

�j(t)Bj(x) :

Substituting the approximate solutions into (2.5) we obtain equations

_�j(t) = �j(t) ; j = 1 ; : : : ; N :

Substituting the approximate solutions into (2.6), and choosing � = Bk,
we �nd

h

NX
j=1

_�jBj ; BkiV �;V = ��2(

NX
j=1

�jBj ; Bk)� �1(

NX
j=1

�jBj ; Bk)

� N �(G(N

NX
j=1

�jBj))Bk + hF (t); BkiV �;V : (2.7)

For �xed t the discrete system is achieved by allowing k to vary between
1 and N . The following notation is necessary to write down the discrete

system. De�ne the (symmetric) tridiagonal mass matrix M with diagonal

entries

[Mi;i] =

Z l

0

�AcL
2
i dx ; i < N ;

[MN;N ] = M +

Z l

0

�AcL
2
Ndx
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and sub- and super-diagonal entries

[Mi+1;i] = [Mi;i+1] =

Z l

0

�AcLiLi+1dx :

The (symmetric) tridiagonal sti�ness matrix K has entries

[Ki;j ] = �

Z l

0

EAc
3

L0iL
0

jdx

and the (symmetric) tridiagonal damping matrix D has entries

[Di;j ] = �

Z l

0

CDAcL
0

iL
0

jdx � 


Z l

0

LiLjdx :

The vector ~G is given by
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Z l

0

L0i
AcE

3
ĝ(
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0

j)dx ;

and the vector ~F = (0; : : : ; 0; F (t)+Mg)T . The �rst order discrete system
is then

�
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3 Approximation of Constitutive Laws

The standard SEF models used to �nd an exact form for the engineering

stress (1.1) are inadequate in describing most elastomers. Experimental

results can be used to establish more accurate (and more general) estimates

of the nonlinearity ĝ in ~g = E
3
(@u
@x

+ ĝ(@u
@x
)). These approximate constitutive

laws should not be expected to admit a SEF as a function of either the strain

invariants or the stretch ratios. For static problems, comparisons with

SEF methods (which are widely accepted static models in industry) can be

made by using the (approximate) SEF to derive the expected stress-strain

relationship, and comparing results in the stress-strain (or, equivalently,

the load-de
ection) plane. The static form of the PDE has been used

to approximate constitutive laws which compare favorably to results from

a standard SEF package ( see [6, 5]). This is an important foundation,

since there are no existing packages to calculate the dynamic constitutive

relationship.
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To determine the nonlinearity ĝ(�), one has, for a given input F (t), ob-
servations zi which are proportional to the strain @u

@x
(ti; 0) at the �xed end.

The estimation problem of interest consists of minimizing over (ĝ; CD; 
)
in some admissible class G � R

2
+

J(ĝ; CD; 
) =

NtX
i=1

jzi � �
@u

@x
(ti; 0; ĝ; CD ; 
)j

2 (3.8)

where y = (u(t; l); u(t; �)) is the solution of (2.4) corresponding to ĝ; CD ;
and 
. One may also be fortunate enough (although this is not the case for

the experimental results that we are about to present) to have observations

ûi of deformations u(ti; �x; ĝ; CD; 
) at some point x = �x, 0 < �x < l, and
then the optimization criterion (3.8) can be modi�ed accordingly.

Because the problem involving (3.8) and (2.4) is an in�nite dimensional

problem in both state and parameter space, �nite dimensional approxima-

tions must be made for computational purposes. For state approximations,

we use the Galerkin techniques discussed in Section 2, along with Gear's

BDF method for time integration. For parameter space discretization, one

may use a �nite dimensional parameterization or representation of ĝ. One
of the simplest methods is to approximate ĝ using piecewise linear elements,

ĝM (x) =

MX
j=1

cj�j(x) :

The least squares spline inverse problem (LSSIP) is then equivalent to: �nd

~c 2 RM+2 (with cM+1 = CD and cM+2 = 
) minimizing

J(~c) =

NtX
i=1

jzi � �
@uN

@x
(ti; 0;~c)j

2 :

The majority of the dynamic tests currently performed on elastomers

are cyclic, with either sinusoidal applied forces or forced sinusoidal end

displacement. Because our primary goal is to identify the constitutive re-

lationship, we used numerical simulations to predict the results of various

dynamic tests. As reported in [6, 7], the di�erence between a Hookean

material and a neo{Hookean material was most readily seen under free vi-

bration testing conditions. An added bene�t of free vibration testing is

that it provides a natural setting for the study of damping properties. We

have chosen to use free release tests, which result in larger deformations

than hammer hit tests.

Compression leads to nontrivial shear, and should be avoided to obtain

the best results when investigating simple tension or elongation. To ac-

complish this, a tip mass was attached to the end of the rod. In order to
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minimize the contribution of hysteresis, which is not included in our current

model, a slender rod composed of un�lled natural rubber was used, as de-

picted in Figure 3.2. The rod length was l = 5:4356 cm, with 
ange height

0:3048 cm, inner diameter ID = 0:4572 cm, outer diameter OD = 1:905
cm, and the metal tabs were 1:27 cm high. The frame (which was used

both as a mass and as a housing to protect an accelerometer) had mass

262:7 g, and the sample (including the bonded metal tabs) had mass 52:1
g. Data was collected using three Hewlett Packard digital analyzers. The

purpose of the top accelerometer was to verify that we physically obtained

a reasonable approximation to a \clamped end" boundary condition, while

the accelerometer in the frame was used to corroborate data obtained from

the load cell.

Frame

l
ID

OD

Impedence
Head

Metal
TabsAccelerometers

Figure 3.2: Experimental setup for rod under tension

For the free release experiments, the assembly was lifted so that the rod

was at its natural length (i.e., no compression or extension). The support

was then removed, allowing the mass to fall freely. The maximum dynamic

strain achieved in this test was approximately 34%. As seen in Figure 3.3,

the 8-term piecewise linear constitutive approximation provides a model

that gives a close �t to the data in both the time and frequency domains.

Figure 3.4 depicts a linear approximation and an 8-term piecewise linear

approximation to the the static constitutive relationship.

4 Summary

The methods presented in this paper provide a �rst insight to the dynamic

mechanical behavior of elastomers. The Kelvin Voigt term used in the

model represents our initial e�ort to model damping. While the results

we obtained were acceptable for un�lled natural rubber, most applications
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Figure 3.3: 8-term �t, air and Kelvin Voigt damping for free release data
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require �lled elastomers, which are often more highly damped. Further

studies should be conducted using a variety of damping models and more

highly damped materials.

Hysteresis is highly signi�cant in a �lled rubber, and must be included

in any successful model. The modeling implications of this are fairly ob-

vious: one cannot represent the stress-strain constitutive law by a simple

nonlinearity ~g. Instead, a family of stress-strain laws f~gg , along with some

type of memory mechanism must be used. Experimental data has been col-

lected, and modeling e�orts based on generalized hysteresis measure ideas

(developed for shape memory alloy actuators in [2, 3]) have begun.

Because shear is signi�cant in elastomers, shear models must be devel-

oped in order to predict more general deformations. Our initial attempts
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to develop models for elastomers in generalized simple shear can be found

in [4, 5]. We are in the process of using numerical simulations to design

experiments which will be most e�ective in identifying the constitutive re-

lationship, as we did in the modeling e�orts for simple extension.
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