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Abstract

In this article we investigate the problem of how to model and

control the combined motion of the human head and eye. We develop

a model of the muscles, based on a simpli�ed physical model and an

assumption that the muscles can be modeled as damped springs with

a second order linear dynamics. We then �nd control laws that both

make the combined pupil-movement follow a given trajectory, and

make the separate head and eye trajectories three times continu-

ously derivable. Our controls also make the energy produced in the

movement small, since we believe that to be a reasonable, physical

control-criterion.

1 Introduction

In this article, two somewhat separate questions are being discussed, and

the �rst one concerns �nding a mathematical model of the combined, hor-

izontally rotational movements of the human head and eye. Therefore we

devote Section 2 to �nding systems of di�erential equations for describing

the movements, based on simpli�ed physical models of the muscular con�g-

urations in the neck and the eye respectively. However, it must be stressed

that even though we use simpli�ed models, our aim is to come up with

a physically feasible model for the human muscular actions. This model

could be of some interest in robotics, but our primary goal is that it will

help us understand the dynamics of the actual muscles.
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The next task, when it comes to �nding a mathematical model, is to link

the two separate systems, constituted by the head and the eye respectively,

together, so that we can move on to the next major problem investigated

in this article; How do we combine the movements of the head and the

eye in order to follow a moving object with a given, known trajectory, at

a constant distance from the head? This question is discussed in Section

3, where control laws are developed for activating the neck and the eye

muscles in such a way that the pupil follows the desired trajectory, at the

same time as both the head and eye trajectories, viewed separately, are

three times continuously di�erentiable.

The reason for investigating the known trajectory case is that even

though we in practice do not know the trajectory, we believe that since

the problem involves four actuators, one for each muscle, the control of

the overall switching system is interesting for it's own sake. We also hope

that we further on are going to be able to make predictions of the observed

object's trajectory, and then base the tracking on these predictions. This

can be done using the same strategies as those suggested in this article.

But any control laws that accomplish this will not do. Therefore we

dedicate Section 4 to the optimal control problem, and the results are then

discussed in Section 5 followed by a presentation of some of the graphs

produced in the di�erent simulations that were conducted.

2 Head and Eye Rotation

2.1 Dynamics of head rotation

Human head movements are controlled by more than 20 pairs of muscles

that link the skull, spinal column and shoulder girdle in a complex variety

of con�gurations.

In this paper, concern is only given to the muscles that control the

horizontal rotation of the head. This task is mainly handled by �ve muscles

on each side of the body. Three of these �ve muscles, the semispinals, the

erector spinae and the multi�dus are located on the back side of the spine,

and they only function as assistant movers in the rotation movement. The

other two are the sternocleidomastoid and the splenius.

What we want to do in this paper is to model the complex behavior of

all those muscles, primarily the sternocleidomastoids and the splenius, in

such a way that the rotation of the head is given account for in a simple

way. Therefore we chose to model the muscles as just one pair of muscles,

conducting the same actions as all the �ve muscles together. This is because

we are more interested in the principles of the controls behind the muscular

contractions, than in �nding an exact muscular model at the price of clarity.

We chose to model these muscles as damped springs with a second order
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linear dynamics of the form

�x = �k(x� L)� g _x+ v(t); (1)

where L and x are the lengths of the unstretched and the stretched spring

respectively, and k and g are frequency and damping parameters of the

spring. A controller, v(t), is added to the spring, and the control term is

only added to one of the two muscles at a time, since only one muscle is

active when the head is rotating.

This might not be the best way to model the muscles, since an actual

muscle is much more complicated than a spring and has a somewhat non-

linear structure, but this model su�ces to simplify the problem, and works

satisfactory for the purpose of mathematical calculations [13]. This linear

model is also a pretty good approximation of the muscles for small mus-

cular contractions, where nonlinear terms do not contribute that much to

the dynamics.

θ

β
F1

F2

Figure 1: The two forces producing a rotation of the head.

If the angle � is chosen to be the system state variable, as seen in Figure

1, then we get

�� =
R

I
(F1 cos� � F2); (2)

where I is the moment of inertia of the disc that is being rotated, since the

angular acceleration is given by the torque, produced by the two tangential

forces F1 cos� and F2. If we now let x1 and x2 be the lengths of the left

and the right spring respectively and consider the fact that we now have

two springs a�ecting the lengths simultaneously, we get

�x2 = k(cos�(x1�L)� (x2�L))+g(cos� _x1� _x2)�cos�v1(t)+v2(t): (3)
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The Law of Cosines directly gives

x
2
1 = L

2 + (2R sin
�

2
)2 � 2L(2R sin

�

2
) cos

�

2
(4)

= 4R2 sin2
�

2
+ L

2 � 2LR sin �;

and we also know that

x2 = R� + L) �� =
�x2

R
: (5)

This gives us

�� =
1

R
f(k(x1 � L) + g _x1 � v1(t)) cos� + k(L� x2)� g _x2 + v2(t)g; (6)

and after some calculations, we �nally end up with a system on the form

�� = f(�; _�) + g(�)v1(t) +
1

R
v2(t); (7)

where

f(�; _�) = �(g _�+k�)+kLg(�)+h(�)[k+
gR(R sin � � L cos �) _�

L2 + 4R2 sin2 �
2
� 2LR sin �

]; (8)

g(�) = �h(�)
1q

L2 + 4R2 sin2 �
2
� 2LR sin �

; (9)

h(�) =
1

R
(L cos � �R sin �) (10)

and

v1(t)v2(t) = 0 8t: (11)

If we now allow � to be negative, symmetry considerations directly gives

that the total system is

�� = sign(�)f(j�j; sign(�) _�) + u(�)v(t); (12)

where

u(�) =

�
sign(�)g(j�j) if sign(�) = sign( _�)

sign(�) 1
R

if sign(�) 6= sign( _�)
(13)

and

v(t) =

�
v1(t) if _� > 0

v2(t) if _� < 0:
(14)

This last condition (equation 14) gives us a physically inspired descrip-

tion of when we are to switch between actively controlling one muscle to

the other.
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2.2 Dynamics of occular motion

Since the main interest in this paper lies on �nding controls that make the

eyes and the neck act together in a satisfying way, only monocular vision is

being studied. Monocular vision means that we only use one eye, located

in the middle of the head, between the actual eyes of a human being, but

this is not a serious restriction since the binocular case can be derived in

almost the same way as the monocular case [13].

The external and internal recti, the muscles behind the rotation, both

attach on the so-called Annulus of Zinn, behind the eye, and they also

attach rather high up on the eye itself, which makes the modeling a bit

easier than in the head case, since the geometry is simpli�ed by the fact

that the forces, produced by the two muscles, can be assumed to always be

tangential to the eye itself.

φ

Figure 2: The geometry of the external and internal recti.

In almost the same way as in the neck case, the forces that produce the

rotation of the eye are generated by

�x2 = k(x1 � l � (x2 � l)) + g( _x1 � _x2)� v1(t) + v2(t): (15)

We also know that

x1 = l� r� (16)

x2 = l+ r� ) �� =
�x2

r
: (17)

After some calculations, this gives us the total system as

�� = �2(g _�+ k�)� sign( _�)
1

r
v(t); (18)
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with

v(t) =

�
v1(t) if _� > 0

v2(t) if _� < 0;
(19)

as in the head case.

2.3 The combined dynamics

φ

θ

γ

ψ

l

γ

α
h

d

Figure 3: The geometry behind the combined movement.

So if we return to our initial problem; How do we combine the move-

ments of the head and the eye in order to follow an object with a given

trajectory at a constant distance from the head? If  (t) is the tracked

object's trajectory, Figure 3 directly gives the equation

 (t) = �(t) + (t): (20)

The Law of Cosines, gives us

d
2 = h

2 + l
2 � 2hl cos� = h

2 + l
2 + 2hl cos�; (21)

l
2 = d

2 + h
2 � 2dh cos  (22)

and therefore

� = sign() arccos

�
d cos()� hp

d2 + h2 � 2dh cos()

�
; (23)

where  =  � �. Now let

�() =
d cos  � hp

d2 + h2 � 2hd cos 
: (24)

We then have

� = sign() arccos�(); (25)
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_� = �sign()
1q

1� �()
2

d�()

d
_; (26)

�� = �sign()
1q

1� �()
2

�
d
2
�()

d2
_2 +

d�()

d
� + (

d�()

d
)2

�()

1� �()
2

�
:

(27)

This can be stated in a more compact form as

�� = F (�;  ; _�; _ ; ��; � ); (28)

but from equation 18 we still have the almost linear equation

�� = �2(g _�+ k�)� sign( _�)
1

r
v(t): (29)

Combining these two equations makes it possible to impose a control

on ��, and then let the control on �� be given automatically as

veye(t) = �sign( _�)r[F (�;  ; _�; _ ; ��; � ) + 2(g _�+ k�)]: (30)

This way of letting the main tracking be done by the eye is a product

of the so-called occulocentric view. This means that the main tracking is

performed by the eye, while the head is just moving in a general way, as

seen in the next section. This approach is a rather reasonable one, since the

fast saccadic movements of the eye make the eye better suited for following

fast movements than the head [8].

3 Control Laws

Now that we have a model for the combined process of activating both the

muscles of the neck and of the eye, the next task is to �nd the control

laws. We want the pupil to follow a smooth trajectory, and in order to

accomplish this, we need to �nd controls that make the pupil movement

both smooth and completely determined by the tracked object's position.

We also want the two separate movements, those of the head and those of

the eye, to be continuously derivable at least three times. This smoothness

constraint is given more or less by the fact that we want to control models

of actual muscles, whose position, velocity and acceleration appear to be

continuously di�erentiable functions of time.

But this constraint is not enough. We do not only want to �nd any

control law that does what we want, we want to �nd one that does it well.

Therefore we need a criterion by which we can determine how good any

given solution is. A reasonable approach is to try to minimize the energy

produced in the movement, since nature has a tendency towards energy
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minimization. Since the mass of the head, M , is so much larger than the

mass of the eye, m, one criterion for �nding our control could be that it

should make the angular acceleration of the head as small as possible. This

would make the energy, given by the torque, small since

E =

Z �f

�0

jN d�j =

Z �f

�0

j��I d�j: (31)

In order to accomplish this, we divide the trajectory of the head into sub-

parts, where in some parts the head accelerates, and in others the angular

acceleration is zero. This is because one obvious control that makes j��j
small is the one that makes �� = 0. Therefore we want the major part of

the trajectory to be of this type.

If we assume that we start at �0 and stop at �f , what we want is the

following scenario:

_�(t) =
�(t)� �f

t� tf

= const t 2 [t0; tf ]; (32)

��(t) = 0 t 2 [t0; tf ]: (33)

If we recall equation 12 - 14, we directly see that

0 = sign(�)f(j�j; sign(�) _�) + u(�)vlin(t)

vlin(t) = �
sign(�)f(j�j; sign(�) _�)

u(�)
: (34)

Inverse 
model

Direct 
model

State 
recon- 
struction

Regulator

vlin θ̈

θ , θ̇∆θ̈

Figure 4: Block chart for the zero acceleration case.

The general idea can be seen in Figure 4, and we chose to use a feedback

on the form

��� = C(
�(t) � �f

t� tf

� _�(t)): (35)

This linear approach is unfortunately not enough. First of all, we assume

that we start following the object when the head and the eye both are at
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rest at some �xed angle, and therefore we need to �nd controls that can

accelerate the systems up to some suitable velocity when the tracking is

initiated. Secondly, when the followed trajectories are not as well behaved

as  (t) =  0 � (t � t0), we have to take into account that that the eye

may rotate out of bound if no modi�cation of the head's zero acceleration

trajectory is being made. These two cases show that we need to be able to

accelerate the head in a controlled way in some situations.

Inspired by the feed forward control system concept in [16], the general

idea behind the control laws we chose to use, can be illustrated by the block

chart in Figure 5.

Inverse 
model

Direct 
model

Regulator

State 
recon- 
struction

θ , θ̇

∆θ̈

Boundary 
positions

Smooth 
trajectory accv

θ̈s

θ , θ̇s s

θ̈

Figure 5: Block chart for the feed forward acceleration case.

Each period of acceleration has a duration of �t, and it starts at ta
and ends at tb (�t = tb � ta), and if we use a polynomial for describing

the accelerations, which, for calculation reasons, is a good choice, we need

a polynomial for describing �(t) with a degree of at least seven. This is

because we need eight coe�cients since we have eight continuity conditions

that need to be ful�lled (four conditions at ta, and four at tb). If we let

�(t) =
1

42
(t� ta)

7
C1 +

1

30
(t� ta)

6
C2 +

1

20
(t� ta)

5
C3 +

1

12
(t� ta)

4
C4

+
1

6
(t� ta)

3
C5 +

1

2
(t� ta)

2
C6 + (t� ta)C7 + C8; (36)

we get the following, well-de�ned equation system:

T =

0
BB@

5�t4 4�t3 3�t2 2�t

�t5 �t4 �t3 �t2

1
6
�t6 1

5
�t5 1

4
�t4 1

3
�t3

1
42
�t7 1

30
�t6 1

20
�t5 1

12
�t4

1
CCA ; (37)

C =

0
BB@

C1

C2

C3

C4

1
CCA ; (38)
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D =

0
BBB@

d3�(tb)

dt3
� d3�(ta)

dt3

��(tb)� ��(ta)��t
d3�(ta)

dt3

_�(tb)� _�(ta)��t��(ta)�
1
2
�t2

d3�(ta)

dt3

�(tb)� �(ta)��t _�(ta)�
1
2
�t2��(ta)�

1
6
�t3

d3�(ta)

dt3

1
CCCA (39)

and

TC = D: (40)

This gives us all we need to know, and if we want to �nd the control

producing this trajectory, we simply use the inverse for ��:

vacc(t) =
��poly +��� � sign(�)f(j�j; sign(�) _�)

u(�)
; (41)

where ��poly is the desired trajectory, and ��� is the linear feedback. We

chose to model the feedback on the form

���(t) = C1(�poly(t)� �actual(t)) + C2( _�poly(t)� _�actual(t)): (42)

This approach would for instance give the head's starting trajectory as

shown in Figure 6.

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0.36

0.38

0.4

0.42

0.44

0.46
Start head rotation

−0.2 0 0.2 0.4
−0.4

−0.3

−0.2

−0.1

0
Angular velocity

−0.2 0 0.2 0.4
−8

−6

−4

−2

0

2
Acceleration

Figure 6: Head rotation when starting with zero velocity.

4 Optimal Control

Now we have found control laws for controlling the combined rotational

movements, and we suspect that these controls yield reasonably good solu-

tions. The method we used for determining how e�cient any given solution
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was, was by calculating the energy produced in the movement. The energy

for the di�erent trajectories we have studied was calculated by a simple

approximation:

E =

Z tf

t0

j�� _�jI dt � I

nX
i=1

�tij��(ti) _�(ti)j; (43)

for a given set of n points on the interval [t0; tf ], with t0 � t1 < t2 < : : : <

tn�1 < tn � tf . This approximative method gave the following results:

 (t) =  0 � (t� t0)) E � 2:36 � 10�3 J

 (t) =  0 � (t� t0)
2 ) E � 6:42 � 10�2 J

 (t) =  0 � (t� t0)
3 ) E � 8:85 � 10�2 J (44)

 (t) = 0:5�max sin 5(t� t0)) E � 0 J

 (t) = 1:2�max sin 5(t� t0)) E � 3:52 J.

We now need something to compare these values with in order to �nd out

if our solutions can be regarded as satisfactory.

Since we suspect that �� will be small at all times, we choose to investi-

gate the minimization problem

min

Z tf

t0

��2 dt (45)

instead of

min

Z tf

t0

j�� _�j dt (46)

for the sake of simplicity, since the quadratic problem is likely to be less

complicated, and hope that we still get a reasonably good solution anyway.

The reason for this approach is that we are not really interested in the

solution more than as a mere comparison to our previous solutions, in

order to get a feeling for how good they are. If we start by letting

8>>>>>><
>>>>>>:

x1 = �

x2 = _�

x3 = �

x4 = _�

x5 =  

x6 = _ ;

(47)

the minimization problem becomes

min

Z tf

t0

(sign(x1)f(jx1); sign(x1)x2) + u(x1)v)
2
dt; (48)
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under the dynamics8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

_x1 = x2

_x2 = sign(x1)f(jx1j; sign(x1)x2) + u(x1)v

_x3 = x4

_x4 = F (x1; x2; _x2; x5; x6; _x6)

_x5 = x6

_x6 = �2
x1(t0) = �0; x2(t0) = 0; x3(t0) = �0;

x4(t0) = 0; x5(t0) =  0; x6(t0) = 0;

x1(tf ) = �f ; x2(tf ) = 0; x3(tf ) = �f ;

x4(tf ) = 0; x5(tf ) =  0 � (tf � t0)
2
; x6(tf ) = �2(tf � t0);

(49)

if we let

 (t) =  0 � (t� t0)
2
: (50)

This system of di�erential equations gives the following Hamiltonian func-

tion:

H(x; y; v) = (sign(x1)f(jx1j; sign(x1)x2) + u(x1)v)
2 + y1x2

+ y2(sign(x1)f(jx1j; sign(x1)x2) + u(x1)v) + y3x4 (51)

+ y4F (x1; x2; _x2; x5; x6; _x6) + y5x6 � 2y6;

where y is the dual state system variable along the optimal trajectory x̂.

According to Pontryagin's Maximum Principle (PMP) [1], we have

_yj = �
@H(x̂; y; v̂)

@xj

; (52)

which gives the dual system as8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

_y1 = (sign(x̂1)
@f(jx̂1j;sign(x̂1)x̂2)

@x1
+

du(x̂1)

x1
v̂)

�(�2(sign(x̂1)f(jx̂1j; sign(x̂1)x̂2)

+u(x̂1)v̂)� y2 � y4
@F (x̂1;x̂2; _̂x2;x̂5;x̂6; _̂x6)

@ _x2
)� y4

@F (x̂1;x̂2; _̂x2;x̂5;x̂6; _̂x6)

@x1

_y2 = sign(x̂1)
@f(jx̂1j;sign(x̂1)x̂2)

@x2
(�2(sign(x̂1)f(jx̂1j; sign(x̂1)x̂2)

+u(x̂1)v̂)� y2 � y4
@F (x̂1;x̂2; _̂x2;x̂5;x̂6; _̂x6)

@ _x2
)� y4

@F (x̂1;x̂2; _̂x2;x̂5;x̂6; _̂x6)

@x2
� y1

_y3 = 0

_y4 = �y3

_y5 = �y4
@F (x̂1;x̂2; _̂x2;x̂5;x̂6; _̂x6)

@x5

_y6 = �y4
@F (x̂1;x̂2; _̂x2;x̂5;x̂6; _̂x6)

@x6
� y5:

(53)

According to PMP, the optimal control law is given by

H(x̂; y; v̂) = min
v2U

H(x̂; y; v); (54)
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where U is the set of allowed control laws.

This boundary value problem has to be solved numerically, and if we

use the shooting method [4], [18] on this problem, we are given

E � 1:75 � 10�2 J, (55)

which is more than a 70% improvement compared to our previous result.

However, it must be stressed that this optimal control strategy only works

when the tracked object's trajectory is completely known. This approach

could however represent the case when the same tracking task is repeated,

and we therefore have complete knowledge of the tracked object's trajec-

tory. This could for instance be the case when we are reading and basically

performing the same tracking task over and over again.

5 Conclusions

When it comes to the developed model, the weakest part is probably that of

trying to model muscles as second order springs, since an actual muscle has

a dynamics that is more complicated than that. However, this approach has

the major advantage that it makes the mathematics reasonably simple. It

is also su�ciently complete when it comes to actually start thinking about

how to control the head and the eye muscles simultaneously. As we have

seen, this is a non-trivial problem.

The control strategy we chose to use was based on a desire to keep the

energy produced in the movement small, since we believed this to be a

physically reasonable approach. We therefore let the angular acceleration

of the head be zero most of the time, since this would make the energy

small.

When minimizing the square of the angular acceleration of the head,

the energy in both the piecewise linear case and in the optimal case, were

of the same power of ten, which must be regarded as acceptable. However,

it must be stressed that our control strategy only works when the tracked

object's trajectory is known, since our controls are, among other things,

based on a knowledge of the total time that tracking is to be conducted.

When it comes to physical adequacy, it can be worth comparing our

results to the trajectories found in Guitton's Eye-Head Coordination in

Gaze Control. It turns out that our piecewise linear approach is not so bad

after all, since an actual combined movements seem to have somewhat of

the same piecewise linear characteristics as our trajectories, even though

they are somewhat more complex. This should not, however, disqualify

our model as not being an interesting step towards an understanding of

the complex behavior of human head-eye-coordination.
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6 Simulations

In this appendix, the di�erent graphs produced when simulating the move-

ments are presented. The controls are presented for each individual muscle,

with the notation

L.H.M - ctrl : Left Head Muscle Control

R.H.M - ctrl : Right Head Muscle Control

L.E.M - ctrl : Left Eye Muscle Control

R.E.M - ctrl : Right Eye Muscle Control.

It can be worth noticing that each pair of muscles have the desired property

that

v1(t)v2(t) = 0 8t:

In each section, the energy produced by the head rotation is also listed,

calculated by equation 43.
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Figure A-1: Head and eye rotation when  (t) =  0�(t�t0). No corrections
from the zero head acceleration was necessary. The energy produced in the

movement was E � 2:36 � 10�3 J.
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Figure A-2: Head and eye rotation when  (t) =  0 � (t � t0)
2. One

correction of the head acceleration was necessary, since the eye was rotating

out of bound. The energy produced was E � 6:42 � 10�2 J.
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Figure A-3: Head and eye rotation when  (t) =  0�(t�t0)
2, and when the

controls were designed to minimize the square of the angular acceleration

of the head, using Pontryagin's Maximum Principle. The energy produced

was E � 1:75 � 10�2 J in this optimal case. This can be compared to our

previous 6:42 � 10�2 J, but in this case, we have no guarantee that the

trajectories are three times continuously derivable.
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