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�
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Abstract

The classical time{optimal problem is investigated with the sole

hypothesis on the controls that they are bounded in the L1 norm. In

fact, we allow the controls to be unbounded in the L1 norm and we

do not assume any of the growth conditions that prevent the exploita-

tion of larger and larger controls. An assumption of controllability

with zero energy (which means that only the bounded component of

the control is used to reach the target from a neighborhood of it) is

proved to be su�cient for the continuity of the time{optimal map.

Under the same assumption this map turns out to be the unique

solution of a suitable Bellman equation with boundary conditions

of mixed type. The result relies essentially on a reparameterization

technique, which, in particular, allows one to replace the (discontin-

uous) conventional Hamiltonian with a more regular one.
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1 Introduction

The minimum time problem has commonly been studied under the hypoth-

esis that the set of available velocities were bounded (see e.g. [1, 2, 3, 4, 5, 6],

[9, 10], [12], [17, 18], [51], [53, 55], [57] and the references therein). Alter-

natively, a growth condition has been assumed to make the use of large

controls disadvantageous. In fact, many applications show these assump-

tions to be quite reasonable, and both the boundedness of the controls and

the growth hypotheses imply that the problem has important regularity

properties. For example, the corresponding Hamiltonian turns out to be

continuous.

�Received September 15, 1996; received in �nal form February 10, 1997. Summary

appeared in Volume 8, Number 2, 1998.
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However, the mathematical models describing a certain class of appli-

cations lack both boundedness and growth. Examples of this can be found

in rational mechanics when holonomic constraints are used as controls (see

[15],[19], [43]). Further examples come from space navigation theory (see

[28], [31]) and from advertising modelling (see [23]). Indeed, these applica-

tions share the fact that the velocity �eld and the Lagrangian depend lin-

early on the derivative of a certain control parameter. When this derivative

is itself regarded as a control there are often no reasons to justify a bound-

edness assumption on it. Moreover, the linear (or sublinear) dependence

of both the dynamics and the Lagrangian rules out the growth hypothesis

as well. This situation represents the control-theoretic analogue of what

happens in calculus of variations with slow growth (see e.g [20]). For this

reason we refer to these problems as to slow growth control problems.

Slow growth control problems have been investigated since the early

sixties (see e.g. [41], [44], [46]). In the �rst approaches to the problem

the unbounded controls appeared linearly in both the dynamics and the

Lagrangian, and their coe�cient did not depend on the state variable. Such

an hypothesis allowed for a measure theoretical interpretation of both the

equations of motion and the integral cost. In particular it was possible to

give a robust notion of solution corresponding to a control represented by

a measure.

More recently genuine nonlinear slow growth problems have been ad-

dressed (see e.g. [7], [11], [13], [14], [16], [22, 23, 24], [29, 30], [32, 33, 34,

35, 36, 37, 38, 39, 40], [44, 45], [47, 48, 49, 50]). We mean, for instance,

the case where the dynamics and the Lagrangian depend linearly on the

unbounded controls but the coe�cients of the latter are functions of the

state as well. More generally one considers the case where the �elds and

the Lagrangian depend sublinearly on the unbounded controls. It is known

(see [13]) that in these cases a measure theoretical interpretation of the dy-

namic equations leads to an ill{posed problem, for no de�nition of solution

exists having continuous dependence on a control which degenerates into a

measure. Actually a di�erent approach, based on embedding into space{

time, suits the problem better. Here, according to this line of investigation,

we address the minimum time problem with unbounded controls.

More precisely we consider the control system

_x = f(t; x; v; �) x(�t) = �x (1.1)

where (t; x) 2R1+n, v is a standard|i.e., bounded| control, and � belongs

to a closed cone C �Rm. Given a closed target T �Rn, the goal of the

problem consists in choosing a control policy (v; �) so that the correspond-

ing trajectory reaches the target T in a time tf � �t as short as possible.

Though we allow the control � to have unbounded L1 norm, we impose
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an L1 bound on it. Namely we assume thatZ
tf

�t

j�(t)jdt � K � �k (1.2)

where K > 0 and �k 2 [0;K]. We can think of �k as an initial condition

which prescribes the maximal amount K � �k of energy available to the

control �.

Besides some regularity hypotheses we assume the following slow growth

condition on the �eld f : there exists a map f1 = f
1(t; x; v; w), called the

recession map of f , with the same regularity as f , such that

f
1(t; x; v; w) = lim

r!0
f(t; x; v;

w

r
)r:

The existence of the recession map f1 implies that f grows at most linearly

in � as j�j tends to in�nity.

An obvious example of such an f is given by

f1(t; x; v; �)
:
= g0(t; x; v) +

mX
i=1

gi(t; x; v)�i;

where g0; g1; : : : ; gm are vector �elds with standard regularity properties.

Setting

�f(t; x; v; w0; w)
:
=

�
f(t; x; v; w

w0
)w0 if w0 6= 0

f
1(t; x; v; w) if w0 = 0

we obtain

�f1(t; x; v; w0; w)
:
= g0(t; x; v)w0 +

mX
i=1

gi(t; x; v)wi:

Further examples can be found in [38]. We remark that, due to the slow

growth assumption, it may happen that minimizing sequences of measur-

able controls (vn; �n) do not converge to a measurable control (v; �) (note,

incidentally, that this phenomenon is not related to the lack of convexity:

it may occur even if convexity assumptions hold). For example �n could

converge to a distribution, say a delta function. As already remarked, in

that case the attempt to give a distributional sense to equation (1.1) fails

because of the nonlinear nature of the problem. Consider for example a

dynamics like f1 above: if the vector �elds g1; : : : ; gm are independent of x

and v, it can be shown that a distributional approach still works (see [46],

[8]). As soon as the gi's depend on (v; x), however, an obvious drawback

arises when one tries to de�ne a trajectory corresponding to a control (v; �)

whose second component � is a delta function.
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These kinds of problems have been thoroughly investigated in [38] and

[35] by embedding the system (1.1) in the following space{time di�erential

system:

dt

ds
= w0

dx

ds
= �f(t; x; v; w0; w)

(t; x)(0) = (�t; �x);

(1.3)

where s is a pseudo{time parameter with respect to which the time t is

a non-decreasing, Lipschitz continuous function. It is remarkable that as

soon as w0 = 0 on an interval [s1; s2], the time variable remains equal to

a constant ~t on this interval, while the space variable x evolves according

to the dynamics �f(~t; x; v; 0; w) = f
1(~t; x; v; w). In other words the jump

of x at ~t is determined by the values of the control w on the whole interval

[s1; s2] (while in the case where the distributional approach can be applied,

this jump depends only on the integral of w over [s1; s2]).

In the space{time formulation of the problem the integral constraint

(1.2) has to be replaced by the inequalityZ 1

0

jw(s)jds � K � �k: (1.4)

It can be shown that each space-time trajectory (t; x)(s) can be ap-

proximated by (reparametrizations of) the graphs (t; xn(t)) of trajectories

xn(t) of the original system (1.1). However, on the one hand it is not true

that each space{time trajectory reaching the target T can be approximated

by (the graphs of) trajectories of (1.1) that reach T . On the other hand

such an approximability property is essential if one wishes to consider (1.3)

as an extension of (1.1) (see [56]). In fact, we shall assume the following

hypothesis: Hypothesis (H). For every R > 0 there exist �R > 0 and

�R > 0 such that for every (t; x) 2 (R �(T�R n T )) \ B1+n(0;R) there

exists vt;x 2 V such that

f(t; x; vt;x; 0) � x� �(x)

jx� �(x)j � ��R

for some �(x) 2 T such that jx� �(x)j = dT (x); where dT (x) denotes the
distance between T and the point x 2Rn and for each � > 0 T� denotes

the open set fx 2Rn : dT (x) < �g:
Hypothesis (H) can be thought of as an assumption of controllability

with zero energy. This means nothing but a version of the classical inwards

pointing �eld condition for the vectogram f(t; x; v; 0) at the points x 2 @T .
Under Hypothesis (H) and for a given amount K � �k of maximal avail-

able energy we prove the following: if a space{time trajectory of (1.3)
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starting from a point (�t; �x) reaches a point y 2 T , then a point z 2 T near

y can be reached by a trajectory of the original system (1.1) starting from

�x at �t.

Let us denote by T (�t; �x; �k) the in�mum of the times one needs to reach

the target starting from �x at time �t with energy less than or equal to

K � �k. Let Te(�t; �x; �k) be the analogous quantity |i.e. the in�mum ofR 1
0
jw0(s)jds| for the extended system (1.3). Under Hypothesis (H) we

prove that T = Te. This fact together with the above approximability

argument makes the extended minimum time problem a proper extension

of the original one.

The advantage of addressing Te instead of T relies on the fact that

Te involves only bounded controls. This is the consequence of a suitable

combination of three facts: �rst, the extended system (1.3) is invariant

with respect to changes of the parameter s; secondly, each control must

satisfy the integral constraint (1.4); �nally, under Hypothesis (H) the map

Te(= T ) is locally bounded.

When Hypothesis (H) is in force, we prove (see Section 4) that Te
is continuous. Incidentally, this also provides an extension of the results

concerning the case with bounded controls, in that our �eld f depends on

the time variable as well. Actually, if f is Lipschitz continuous in (t; x; �),

Te turns out to be Lipschitz continuous. Let us note that, unlike the

optimal time map for problems with bounded controls, Te may happen to

be equal to zero even at points not belonging to the target T . In Section

5 we establish a Bellman equation for Te which, unlike the formal Bellman

equation, involves a continuous Hamiltonian. The boundary conditions

satis�ed by Te on 0 � k < K are of Dirichlet type, while, for k = K; Te

is a supersolution of the established Bellman equation. This latter fact is

not surprising in view of the results on constrained control problems (see

e.g. [52], [39]): actually, the integral constraint (1.4) can be interpreted as

a state constraint for the variable k(s) = �k +
R
s

0
jw(�)jd�.

By means of a suitable Kruskov-type transformation of the dependent

variable we prove that Te is the unique (viscosity) solution of the established

boundary value problem. Two appendices, where some technical results are

proved, conclude the paper.

Notation: Throughout the paper we denote by Bm[x0; r] the closed ball

of Rm with center in x0 and radius r and by Bm(x0; r) its interior. We

denote by k � k1 the sup norm. Given the set A we indicate by @A its

boundary and by Int A its interior. For a closed set T �Rn, dT (x) denotes
the distance between T and the point x 2Rn and T� denotes the open

set fx 2Rn : dT (x) < �g: We call modulus each positive, continuous,

nondecreasing function from R to R which maps zer{t{zero. Finally by
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cone we mean a subset of a vector space closed under multiplication by non

negative scalars.

2 The Control System and the Minimum Time Func-

tion

We consider a control system of the form�
_x = f(t; x; v; �)

x(�t) = �x;
(2.1)

where v is a conventional control which takes values in a compact set

V �Rq , while the control � is unbounded and takes values in a closed

cone C �Rm.

We assume the following hypotheses on the vector �eld f :

i) f 2 C(R1+n � V � C;R
n) and for every compact subset Q �R1+n

there exists a positive constant L = LQ and a modulus ! = !Q satisfying

jf(t1; x1; v; �)� f(t2; x2; v; �)j � (1 + j�j)(Ljx1 � x2j+ !(jt1 � t2j));
(2.2)

for all (t1; x1; v; �); (t2; x2; v; �) 2 Q� V � C;

ii) there exists a continuous nondecreasing functionM(t) > 0 such that

jf(t; x; v; �)j �M(t)(1 + j�j)(1 + jxj) (2.3)

for every (t; x; v; �) 2R1+n � V � C;

iii) (slow growth) there exists a map f1 2 C(R1+n � V � C; R
n),

called the recession function of f , such that

lim
r!+1

r
�1
f(t; x; v; r�) = f

1(t; x; v; �) (2.4)

uniformly on compact sets of R1+n � V � C.

We now introduce the set of controls

W (�t)
:
= f(v; �) 2

[
T>�t

B([�t; T ];V � C)g;

where B([a; b]; E) denotes the set of Borel measurable functions from [a; b]

into a metric space E which are Lebesgue integrable. Let K > 0 be �xed,

and for every �k 2 [0;K], let us set

W (�t; �k)
:
= f(v; �) 2W (�t) :

Z
T

�t

j�(s)j ds � K � �kg;
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where, for every pair (v; �); the involved domain of integration [�t; T ] coin-

cides with the domain of de�nition of (v; �):

The assumptions (2.2) and (2.3) ensure existence, uniqueness and ex-

ponential growth of the solution to (2.1) for every (v; �) 2 W (�t). Such a

solution will be indicated by x�t;�x(v; �)(t).

Let T be a closed subset of Rn . For every (�t; �x) 2R1+n and every

(v; �) 2W (�t) de�ne

��t;�x(v; �) =

(
inf ft� �tg ; if x�t;�x(v; �)(t) 2 T for some t � �t

+1; if x�t;�x(v; �)(t) =2 T for any t � �t:

A control will be called admissible for (�t; �x) if ��t;�x(v; �) < +1; and a

trajectory corresponding to an admissible control will be called admissible.

The minimum time function is then de�ned as

T (�t; �x; �k)
:
= inf

(v;�)2W (�t;�k)

�
��t;�x(v; �)

	
:

A problem arises immediately. As it will be clear from Example 3.1

below, the lack of any L1-bound on the control � and the slow growth as-

sumption possibly yield minimizing sequences of trajectories whose deriva-

tive are larger and larger in the L1 norm. In other words these trajectories

tend to a discontinuous map. To tackle this problem we follow the approach

already exploited e.g. in [32, 33, 34, 35, 36, 37, 38, 39, 40], that is, we embed

the dynamics of (2.1) into a new dynamics in which the variable t is treated

as a space variable which is nondecreasing with respect to a new parame-

ter s. In this extended setting, as soon as the function T is bounded, the

minimizing trajectories are uniformly Lipschitz continuous provided that

the parameter s is suitably chosen (see Proposition 2.3).

For the sake of completeness we list here some de�nitions and results

from [40] which describe this embedding.

De�nition 2.1. A space-time control is a triple belonging to the set �

de�ned by

�
:
= B([0;1];V � [0;+1)� C).

Moreover we set

�(k)
:
=

�
(v; w0; w) 2 � :

Z 1

0

jw(s)j ds � K � k

�
.

De�nition 2.2. For every (t; x) 2R1+n and every triple (v; w0; w) 2 � we

set

f(t; x; v; w0; w)
:
=

(
f

�
t; x; v;

w

w0

�
� w0 if w0 6= 0

f
1(t; x; v; w) if w0 = 0:

7
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The function f is therefore the continuous extension of the map

f

�
t; x; v;

w

w0

�
w0 to the set De :=R1+n � V � [0;+1)� C.

We consider now the new, extended system, also called space-time sys-

tem, 8<
:

t
0(s) = w0(s)

x
0(s) = f(t(s); x(s); v(s); w0(s); w(s))

(t(0); x(0)) = (�t; �x);

(2.5)

where di�erentiation is done with respect to the new parameter s 2 [0; 1].

A solution of this system will be indicated by either (�t +
R
s

0
w0(�) d�,

x�t;�x(v; w0; w)(s)) or (t; x)�t;�x(v; w0; w)(s):

Let us de�ne the sets

�+
:
=

�
(v; w0; w) 2 � such that : w0(s) > 0 for a.e. s 2 [0; 1]

�

and

�+(k)
:
= �+ \ �(k):

Proposition 2.1. If (v; �) 2 B([�t; T ];V � C); let us consider s : [0; 1] !
([�t; T ]� C) such that s 7! (t(s); u(s)) is any Lipschitz continuous parame-

terization of the graph of t 7! u(t)
:
=
R
t

�t
�(�)d� with t0(s) > 0: Then, setting

w0(s)
:
= t

0(s), w(s)
:
= u

0(s) and v(s)
:
= v � t(s), one has that x(t) is the

solution to (2.1) corresponding to (v; �) if and only if (t(s); x � t(s)) is the
solution to (2.5) corresponding to the control (v(s); w0(s); w(s)); the latter

belonging to �+: Moreover, let (v; w0; w) 2 �+ and let (t; x)�t;�x(s) denote

the corresponding solution to (2.5). Then the position

(~v; �)(t)
:
= (v;

w

w0

) � s(t);

where s(�) is the inverse of t(�); de�nes almost everywhere in [�t; T ]; T = t(1);

a control belonging to W (�t) and the solution ~x to (2.1) corresponding to

(~v; �) veri�es

~x � t(s) = x(s)

for every s 2 [0; 1].

Proof: The �rst part of the Proposition follows from the uniqueness of

the solution to (2.1) and (2.5). The same uniqueness property implies the

second part, provided (~v; �)(�) belongs to W (�t). To prove this latter fact,

set

�(s)
:
=

Z
s

0

w(�) d�; u(t) = � � s(t):
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Since (w0; w) 2 �+; there exists a null subset N � [0;1] such that t(�) is
di�erentiable on [0; 1] n N and

t
0(s) = w0(s) > 0 8s 2 [0; 1] n N :

Moreover s(�) is absolutely continuous (see e.g. [20]). In particular there

exists a null subsetM� [�t; T ] such that s(�) is di�erentiable on [�t; T ]nM:

Let us set O :
=M[t(N ) and let us observe that O is a null set, for t(�)

is absolutely continuous. Hence u(�) is di�erentiable almost everywhere,

namely on [�t; T ] n O; and one has

u
0(t) =

w

w0
� s(t) = �(t) 8t 2 [�t; T ] n O:

Since u(�) is absolutely continuous, it follows that (any extension to [�t; T ]

of) �(�) is integrable. Since the L1� equivalence class of (~v; �)(�) contains
a Borel map, the Proposition is proved. 2

Notice that a Lipschitz continuous parameterization (t(s); u(s)) as in

the previous statement always exists. Indeed it is su�cient to consider the

inverse t(s) of the map s(t)
:
=

R
t
�t
j(1;�(s0))j

R
T
�t
j(1;�(s0))j ds

0 and set u(s)
:
= u � t(s):

In the sense speci�ed by the above proposition the sets
S

�t2RW (�t) andS
�t2RW (�t; �k) can be identi�ed with �+ and �+(�k); respectively, for every

�k 2 [0;K]: For this reason the trajectories corresponding to �+ will be

called regular. Let � : [0; 1] ! [0; 1] be an increasing, surjective map,

continuous with its inverse, and (v; w0; w) 2 �: The map (v̂; ŵ0; ŵ)
:
=

(v ��; (w0 ��)�0; (w ��)�0) de�nes almost everywhere a space-time control,
as it is easy to check.

Proposition 2.2. [40] We have

x�t;�x(v; w0; w) � �(s) = x�t;�x(v̂; ŵ0; ŵ)(s)

for every s 2 [0; 1].

We recall now from [38] the notion of canonical parameterization. Let

(v; w0; w) 2 � and let �c be the map from [0,1] into itself de�ned by

�c(s)
:
=

R
s

0
j(w0; w)j(s)dsR 1

0
j(w0; w)j(s)ds

:

If (w0; w) = 0 in [0,1] we set (vc; wc0; w
c)

:
= (v; w0; w) otherwise we set

(vc � �c; wc0 � �c �
d�c

ds
; w

c � �c � d�c
ds

)
:
= (v(s); w0(s); w(s)): (2.6)

In [36] the following Proposition was proved:
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Proposition 2.3. The relation (2.6) de�nes a measurable map (wc0; w
c)

on [0; 1] so that jwc0; wcj(s) =
R 1
0
j(w0; w)j(s)ds a.e. in [0; 1]: Moreover

(2.6) de�nes a univalued Borel measurable map v
c almost everywhere in

[0; 1]: Finally the equality

(t; x)�t;�x(v; w0; w)(�
�1
c

(fsg)) = (t; x)�t;�x(v
c
; w

c

0; w
c)(s)

holds for every s 2 [0; 1].

The triple (vc; wc0; w
c) is called canonical parameterization of (v; w0; w):

In the next lemma we state some properties that f inherits from f :

Lemma 2.1. The function f is continuous in De. Moreover assumptions

(2.2) and (2.3) on f imply that f satis�es:

i) for every compact subset Q � R1+n there exist L = LQ and

! = !Qsuch that

jf(t1; x1; v; w0; w)� f(t2; x2; v; w0; w)j �
(w0 + jwj)(Ljx1 � x2j+ !(jt1 � t2j));

8(t1; x1; v; w0; w); (t2; x2; v; w0; w) 2 Q� V � [0;+1)� C;

ii) jf(t; x; v; w0; w)j �M(t)(w0 + jwj)(1 + jxj); 8(t; x; v; w0; w) 2 De;
whereM(t) is the same as in (2.3);

iii) f(t; x; v; �w0; �w) = �f(t; x; v; w0; w); 8(t; x; v; w0; w) 2 De;
8� 2 R.

Setting

M�t;�x = max
(v;w0;w)2V�(B1+m[0;1]\([0;+1)�C))

jf(�t; �x; v; w0; w)j +
p
2;

by ii) of the previous lemma we have that

jf(�t; �x; v; w0; w)j �M�t;�x � j(w0; w)j:

Moreover Gronwall's Lemma gives

jx�t;�x(v; w0; w)(s)j � j�xj+ e

R
s

0
M(t(s0))

p
2j(w0;w)(s0)j ds0 � 1 (2.7)

where t(s) = �t+
R
s

0
w0(s

0) ds0:

Remark 2.1. It is clear that for �t belonging to a bounded set and for all

space-time controls (v; w0; w) such that
R 1
0
w0(s) ds � S, where S is a given

positive constant,M(�t+
R 1
0
w0(s) ds) is bounded. Therefore, for these same

controls, since
R 1
0
jw(s)j ds � K; and for (�t; �x) 2 Q, Q compact, there exists

a compact Q0 containing all the extended trajectories (t; x)�t;�x(v; w0; w)(s).
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Proposition 2.4. For every (�t; �x) 2R1+n the set of regular trajectories

issuing from (�t; �x) is dense in the set of space-time trajectories issuing from

the same initial data.

The previous proposition is based on the fact that given a control

(v; w0; w) 2 �(k); for every n 2N we de�ne the new control (v; w0n ; w)

by setting w0n = 1
n
+ w0: The controls (v; w0n ; w) belong to �+(k) and

the corresponding trajectories approximate in the sup-norm the trajectory

corresponding to (v; w0; w):

Finally we give a result of approximability of trajectories. It is a slight

modi�cation of Proposition 3.1 of [39] and we will present its proof in

Appendix 1 just for the sake of self-consistency.

Proposition 2.5. Fix �y = (�t; �x; �k) 2 R1+n � [0;K], (v; w0; w) 2 �(�k)

and � > 0. Then there exists a modulus �(�) such that for every y =

(t; x; k) 2 B2+n(�y; �) there exists a control (v; w0; w) 2 �(k) with
R 1
0
w0ds �R 1

0
w0ds+ �,

R 1
0
jwjds � R 1

0
jwjds and

kx�t;�x(v; w0; w)� xt;x(v; w0; w)k1 � �(�): (2.8)

Moreover for every compact Q �R1+n and S > 0 one can choose �(�)
independent of (�t; �x; �k) and (v; w0; w); provided (�t; �x) 2 Q and

R 1
0
w0 ds � S:

Proof: See Appendix 1. 2

If we assume Hypothesis (L) below, then estimate (2.8) can be im-

proved. Hypothesis (L)For every compact subset Q �R1+n there exists

a constant �LQ such that

jf(t1; x1; v; w1

w01

)w01 � f(t2; x2; v;
w2

w02

)w02 j �
�LQ(jt1 � t2j+ jx1 � x2j+ jw01 � w02 j+ jw1 � w2j);

for all (t1; x1; v; w01 ; w1); (t2; x2; v; w02 ; w2) 2 Q� V � (0;+1)� C.

For instance Hypothesis (L) is veri�ed if f is a�ne with respect to �

and locally Lipschitz continuous with respect to (t; x):

Corollary 2.1. Assume hypothesis (L). Fix Q �R1+n and S > 0: Then

there exists a positive constant ��LQ such that for every �y = (�t; �x; �k) y =

(t; x; k) with (�t; �x); (t; x) 2 Q and for every (v; w0; w) 2 �(�k) withR 1
0
w0(s) ds � S; there exists (v; w0; w) 2 �(k) with

Z 1

0

w0(s) ds �
Z 1

0

w0(s) ds+ j�t� tj

11
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and
R 1
0
jw(s)j ds � R 1

0
jw(s)j ds such that

kx�t;�x(v; w0; w)� xt;x(v; w0; w)k1 � ��LQj�y � yj: (2.9)

Proof: See Appendix 1. 2

3 The Extended Problem

In this chapter we de�ne the minimum time function Te for the extended

system (2.5). As already mentioned in the Introduction, T [resp.Te] besides

depending on (t; x); is a function of k through the constraint
R
T

�t
j�j dt �

K � k [resp.
R 1
0
jwjds � K � k].

De�ne

Re[�k]
:
=

�
(�t; �x) 2 R1+n : 9(v; w0; w) 2 �(�k) such that

x�t;�x(v; w0; w)(s) 2 T ; for some s 2 [0; 1]

�

and

R[�k] :=
�
(�t; �x) 2 R1+n : 9(v; w0; w) 2 �+(�k) such that

x�t;�x(v; w0; w)(s) 2 T ; for some s 2 [0; 1]

�
.

Re[�k]
�
resp.R[�k]� is the controllable set with space-time controls [resp.

regular space-time controls] having energy less than or equal to K � �k. (In

some literature these kinds of sets are called reachable).

For every (v; w0; w) 2 � and every (t; x) 2R1+n let us introduce

�t;x(v; w0; w) =

8>>><
>>>:

min
�Z �s

0

w0(s) ds �s 2 [0; 1]; xt;x(v; w0; w)(�s) 2 T
	

if 9 ~s 2 [0; 1] such thatxt;x(v; w0; w)(~s) 2 T
+1 if @ ~s 2 [0; 1] such thatxt;x(v; w0; w)(~s) 2 T :

A space-time control (v; w0; w) will be called admissible for (t; x) if

�t;x(v; w0; w) < +1; and the corresponding trajectory will be called an

admissible trajectory.

Remark 3.1. It is clear that the de�nition of �t;x involves, for each space-

time control (v; w0; w); only the values of s up to the �rst instant when

the corresponding trajectory reaches the target. Hence, in view of the

parameter-free character of the extended system (see Proposition 2.2), we

12
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can restrict the class of admissible controls to those whose corresponding

trajectory reaches the target for s = 1 (obviously for these controls one has

�t;x(v; w0; w) =
R 1
0
w0(s) ds).

For every (t; x; k) 2R1+n � [0;K] let us de�ne

Te(t; x; k) = inf
(v;w0;w)2�(k)

f�t;x(v; w0; w)g:

Hence the function Te is �nite on the set

Re[0;K]
:
=

[
k2[0;K]

Re[k]� fkg

and it is equal to +1 on (R1+n� [0;K])nRe[0;K]: In view of Remark 2.1

the function T (t; x; k) can be now identi�ed with

T (t; x; k) = inf
(v;w0;w)2�+(k)

f�t;x(v; w0; w)g:

Setting

R[0;K]
:
=

[
k2[0;K]

R[k]� fkg;

the function T (t; x; k) is �nite inR[0;K]; while it is equal to +1 in (R1+n�
[0;K]) n R[0;K]:

In general we have R[0;K] � Re[0;K]: The following simple example

shows that unless controllability conditions are assumed (see Section 4),

the inclusion is strict. Moreover it shows that at a point (�t; �x) 2 R[�k], the
optimal control (when it exists) might belong only to the extended set �:

This, together with the density result stated in Proposition 2.4, justi�es

the space-time extension of the problem.

Example 3.1. Let us consider the autonomous system in [0; 1]8<
:

_x1 = r + �1

_x2 = �2

x(0) = (x1; x2);

where r is a �xed positive real number. Let T = f(0; 0)g, K = 1 and

C = f(�1; �2) : 0 � �2 � �1g:
It is easy to see that all the admissible trajectories are contained in the

cone f(x1; x2) 2R2 : x1 < x2 � 0g and that no admissible trajectory steers

points of the half-line x1 = x2 < 0 to the origin. Therefore we have that

(t; (x1; x2)) =2 R[0] when x1 = x2 except in the case x1 = x2 = 0: On the

other hand if we consider the extended system8>><
>>:

t
0(s) = w0(s)

x
0
1(s) = rw0(s) + w1(s)

x
0
2(s) = w2(s)

(t; x)(0) = (0; (x1; x2))

s 2 [0; 1];

13
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by taking the constant space-time control (0; (1=
p
2; 1=

p
2)) one shows that

f(x1; x2); x1 = x2 and �1=
p
2 � x1 � 0g � Re[0]:

Consider now (x1; x2) = (�1; 0) and the sequence of controls belonging

to W (0; 0) given by

�n(t) = (n� r; 0) for 0 � t � 1=n:

The controls �n are admissible, in that x(�1;0)(�n)(1=n) = (0; 0). Ac-

tually they are a minimizing sequence and T (�t; (�1; 0); 0) = 0 for every
�t 2R. However no optimal regular control exists, while the space-time

control (0; (1; 0)) is optimal.

It is also worthwhile noting that at the points (t; x; k) where both T

and Te are �nite, T might be strictly greater than Te; as shown by the

following example.

Example 3.2. Let us consider the scalar control di�erential equation

_x = �x� 1

with � 2 [0;+1), K = 2 and T = f1; 3g: After a trivial computation one

obtains that Te(t; 2; 1) = 0 for every t 2R, while T (t; 2; 1) = 1:

The next two theorems establish some relations betweenR[k] andRe[k],

when no controllability (see Hypothesis (H) below) is assumed.

Theorem 3.1. If T �Rn is a closed set, then for every k 2 [0;K] we have

Re[k] � R[k]:

Proof: If (�t; �x) 2 Re[k] n (R�T ) then there exists a control (v; w0; w) 2
�(k) such that�

�t+

Z 1

0

w0ds ; x�t;�x(v; w0; w)(1)

�
= (~t; ~x) 2 R � T :

Consider now the control (v�; w�0 ; w
�)(s)

:
= (v;�w0;�w)(1�s): It is clear

that �
~t+

Z 1

0

w
�
0 ds; x~t;~x(v

�
; w

�
0 ; w

�)(1)

�
= (�t; �x):

De�ne

w
�
0n

= � 1

n
+ w

�
0 :

Consider the control (v�; w�0n ; w
�) and set

(tn; xn) = (~t+

Z 1

0

w
�
0n
(s) ds; x~t;~x(v

�
; w

�
0n
; w

�)(1)):

14
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Clearly limn!+1(tn; xn) = (�t; �x) and indicating by w0n
:
= �w�0n(1�s) one

has

(tn +

Z 1

0

w0n ; xtn;xn(v; w0n ; w)(1)) = (~t; ~x) 8n 2 N :

This yields the thesis, in that (v; w0n ; w) 2 �+(k): 2

Theorem 3.2. Let T 2Rn be a closed set such that either

i)T = IntT
or

ii)T = @QandQ = IntQ

is veri�ed. Then we have

Re[k] = IntR[k]:

Proof: In view of Theorem 3.1 it is su�cient to show that R[k] � IntR[k]:
We shall prove the assertion only under hypothesis i), for the proof assum-

ing ii) is quite similar. Let (�t; �x) 2 R[k] and let (v; w0; w) 2 �(k) be such

that
�
�t+

R 1
0
w0ds; x�t;�x(v; w0; w)(1)

�
= (t1; x1)

:
= y1 2 R�T : There exist

an open ball B = B1+n((�t; �x); r) and W neighborhood of y1 such that the

map � B ! W de�ned by �(q; z) = (q +
R 1
0
w0ds,xq;z(v; w0; w)(1)) is a

homeomorphism. Hence for every % < r there exists (q1; z1) 2 B((�t; �x); %)

such that �(q1; z1) 2R�IntT :
LetW1 be a neighborhood of �(q1; z1) such thatW \W1 � (R �IntT ):

The thesis follows from the fact that the subset ��1(W1) is a neighbor-

hood of (q1; z1); and �
�1(W1) � R[k]. Indeed, for every (q; z) 2 ��1(W1)

there exists �s < 1, such that xq;z(v; w0; w)(s) =2 IntT for s < �s and

xq;z(v; w0; w)(�s) 2 @T : By de�nition of IntR[k]; this implies that (�t; �x) 2
IntR[k]: 2

4 Properness of the Extension and Continuity of the

Minimum Time Function

In this section we prove that under a controllability condition on the dy-

namics of (2.1) the function T coincides with Te and is continuous.

Let us state two Dynamic Programming Principles, the former for T

and the latter for Te: The proofs rely on standard arguments combined

with obvious reparameterization techniques (see [37]). For this reason we

omit them.

15
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Dynamic Programming Principle. For every �y = (�t; �x; �k) 2 R[0;K]

one has

T (�y) = inf
(v;w0;w)2�+(�k)

�Z
s

0

w0(s
0) ds0 + T (y(s))

�
; for every s 2 [0; 1];

(DPP )

where

y(s) = (t(s); x(s); k(s)) =

(�t+

Z
s

0

w0(s
0

)ds
0

; x�t;�x(v; w0; w)(s); �k +

Z
s

0

jw(s0)j ds0);

while for every �y = (�t; �x; �k) 2 Re[0;K] one has

Te(�y) = inf
(v;w0;w)2�(�k)

�Z
s

0

w0(s
0) ds0 + Te(y(s))

�
; for every s 2 [0; 1];

(DPPe)

where y(s) = (t(s); x(s); k(s)) = (�t +
R
s

0
w0(s

0) ds0; x�t;�x(v; w0; w)(s); �k +R
s

0
jw(s0)j ds0):

Remark 4.1. It is clear from the character of the extension f thatR[K] =

Re[K] and that in such set we haveTe(t; x;K) = T (t; x;K).

Hypothesis (H) below is the main assumption on the �eld at the bound-

ary of T . It roughly states that at each point in a neighborhood of @T and

for any t there exists an ordinary control v such that the dynamics points

towards T ; when the unbounded control � is zero. Hence it is a standard

hypothesis of local controllability. If one thinks of the L1 norm of � as the

energy spent by the system, Hypothesis (H) can be seen as a controllability

condition with zero energy. For standard problems, where only bounded

controls appear in the dynamics, it is a re�nement of former hypotheses

which concerned a single point target (see [42]). In the form presented here,

it is an adaptation to the non-autonomous case of a condition introduced by

Cannarsa & Sinestrari in [18] (see also [25, 26, 27] and [53, 54] where similar

conditions are considered). Hypothesis (H). For every R > 0 there exist

�R > 0 and �R > 0 such that for every (t; x) 2 (R�(T�R nT ))\B1+n(0;R)
there exists vt;x 2 V such that

f(t; x; vt;x; 0) � x� �(x)

jx� �(x)j � ��R

for some �(x) 2 T such that jx� �(x)j = dT (x).
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Since T (t; x;K) is nothing but the minimum time for the conventional

control system _x = f(t; x; v; 0); Theorem 4.1 below is a slight extension of

a well known result to the case where f depends on t as well and is locally

Lipschitz continuous in x: Up to minor changes the proof is practically the

same as in the autonomous case with global Lipschitz continuity (see [18]).

We sketch it in the Appendix just for the reader's convenience.

Theorem 4.1. Assume hypothesis (H). Then for all R > 0 there exist two

positive constants CR and �R, such that

T (t; x;K) � CRdT (x) 8(t; x) 2 (R � T�R) \ B1+n(0;R): (4.6)

In particular the set R[K] contains a neighborhood of R�T :
Proof: See Appendix 2. 2

Theorem 4.2. Assume hypothesis (H). Then the sets Re[k] and R[k] co-
incide and are open, for every k 2 [0;K].

Proof: Let us prove that Re[�k] � R[�k]: Let � > 0: If (�t; �x) 2 Re[�k];

let (v; w0; w) 2 �(�k) be such that (~t; ~x) = (t; x)�t;�x(v; w0; w)(1) 2R�T .
Setting w0n = w0 +

1
n
one has (v; w0n ; w) 2 �+(�k) and kx�t;�x(v; w0; w) �

x�t;�x(v; w0n ; w)k1 � �(n); with limn!+1 �(n) = 0:

Put tn(s) = �t+
R
s

0
w0n(s

0) ds0,xn(s) = x�t;�x(v; w0n ; w)(s) and k(s) =
�k+
R
s

0
jwj ds0: If n is su�ciently large, by Theorem 4.1 there exists a control

(v; w0; 0) 2 �+(K) such that �tn(1);xn(1)(v; w0; 0) < +1: For such a value

of n, consider the control

(~v; ~w0; ~w)(r) =

(
(v(2r); 2w0n(2r); 2w(2r)) for 0 � r � 1=2

(v(2r � 1); 2w0(2r � 1); 0) for 1=2 < r � 1.

Clearly

(~v; ~w0; ~w) 2 �+(�k)

and

��t;�x(~v; ~w0; ~w) < tn(1) + �tn(1);xn(1)(v; w0; 0) < +1:

This implies that (�t; �x) 2 R[�k]:
Let us prove that Re[�k] is open. Let (�t; �x) 2 Re[�k] and (v; w0; w) be as

before. Given � > 0; by Proposition 2.5 for every (t; x; �k) 2 B((�t; �x; �k); �)

there exists a control (v; w0; w) in

N(v; w0; w) =

�
(v; w0; w) 2 �(�k) with

R 1
0
w0 ds �

R 1
0
w0 ds+ �;

R 1
0
jwj ds � R 1

0
jwj ds

�

17



R. RAMPAZZO AND C. SARTORI

and a modulus � such that

kx�t;�x(v; w0; w)� xt;x(v; w0; w)k1 � �(�):

This implies that (t; x)t;x(v; w0; w)(1) belongs to a �(�)�neighborhood of

R�T : By Theorem 4.1, for a su�ciently small � there exists a control

(v0; w00; 0) 2 �+(K) such that the control

(~v; ~w0; ~w)(r) =

(
(v(2r); 2w0(2r); 2w(2r)) for 0 � r � 1=2

(v0(2r � 1); 2w00(2r � 1); 0) for 1=2 < r � 1,

(belongs to �(�k) and) steers x to a point of T : Hence �t;x(~v; ~w0; ~w) < +1:

It follows that B((�t; �x; �k); �) � Re[�k]; and therefore Re[�k] is open. 2

Corollary 4.1. Assume hypothesis (H). We have

R[0;K] = Re[0;K]

and

T (t; x; k) = Te(t; x; k)

for every (t; x; k) 2 R[0;K]:

Proof: The �rst assertion is a trivial consequence of Theorem 4.2. Let us

prove that T = Te in Re[0;K]: Let � > 0: If (�t; �x) 2 Re[�k]; let (v; w0; w) 2
�(�k) be such that (t; x)�t;�x(v; w0; w)(1) 2R�T and Te(�t; �x; �k) �

R 1
0
w0 ds��:

Set w0n = w0 +
1
n
; tn(s) = �t+

R
s

0
w0n(s

0) ds0; xn(s) = x�t;�x(v; w0n ; w)(s)

and k(s) = �k +
R
s

0
jwj ds0: In particular one has

kx�t;�x(v; w0; w)� x�t;�x(v; w0n ; w)k1 � �(n)

with limn!+1 �(n) = 0 and (v; w0n ; w) 2 �(�k): Since the set

K =
[

n2NN

fx�t;�x(v; w0n ; w)(s); s 2 [0; 1]g
[

fx�t;�x(v; w0; w)(s); s 2 [0; 1]g

is compact, there is an R > 0 such that K � B(0; R): By Theorem 4.1,

there exist CR and �R such that, if �(�n) � �R, for n � �n, we have

Te(tn(1); xn(1);K) � CR�(n): (4.7)

Observe that T (tn(1); xn(1); k(1)) � T (tn(1); xn(1);K): By (DPP ), (4.7)
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and Remark 4.1, we have

T (�t; �x; �k) �
Z 1

0

w0n(s) ds+ T (tn(1); xn(1); k(1))

�
Z 1

0

w0n(s) ds+ T (tn(1); xn(1);K)

�
Z 1

0

w0(s) ds+
1

n
+ Te(tn(1); xn(1);K)

�Te(�t; �x; �k) + 1

n
+ CR�(n) + �.

(4.8)

Taking the limit as n! +1 on the r.h.s. of (4.8), we get, by the arbitrari-

ness of �, that T (�t; �x; �k) � Te(�t; �x; �k): The opposite inequality is obvious.

2

Observe that the proof of Corollary 4.1 implies that every admissible

trajectory of the extended system (2.5) can be approximated with regular

admissible trajectories. This fact and Corollary 4.1 say that the introduc-

tion of space-time controls is an actual extension of the original problem

(see [56]).

In what follows we always assume the controllability Hypothesis (H).

Hence, in view of Corollary 4.1, we can identify T with Te and R[0;K] with

Re[0;K]:

In order to prove the continuity of T we begin by showing that it is

locally bounded.

Lemma 4.1. Assume hypothesis (H). Then the function T is bounded on

compact subsets of R[0;K]:

Proof: Let �y = (�t; �x; �k) 2 R[�k]: Consider B(�y; �) for some positive �: Let
(v; w0; w) 2 �(�k) be such that x(1) = x�t;�x(v; w0; w)(1) 2 T and T (�t; �x; �k) �R 1
0
w0(s) � �: In view of Proposition 2.5, for every y = (t; x; k) 2 B(�y; �);

there exists a control in the set N(v; w0; w) de�ned in the proof of Theorem

4.2 such that kx�t;�x(v; w0; w)�xt;x(v; w0; w)k1 � �(�); where � is a suitable

modulus.

Choose R such that Bn(0; R) � fxt;x(v; w0; w)(s); s 2 [0; 1];8(t; x; k) 2
B(�y; �), 8(v; w0; w) 2 N(v; w0; w)g: Let �R and CR be as in Theorem 4.1.

It is not restrictive to assume that �(�) � �R: Then we have

T (y) �
Z 1

0

w0(s) ds+ CR�(�)

�
Z 1

0

w0(s)ds+ � + CR�(�) � T (�y) + � + CR�R + �,
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for every y 2 B(�y; �) \R[0;K]: A trivial compactness argument concludes

the proof. 2

Theorem 4.3. Assume hypothesis (H). Then the function T :R1+n�[0;K]

! R [ f+1g is continuous in R[0;K]:

Let Q be a compact subset of R[0;K]: We shall prove that T is uni-

formly continuous on Q: By the previous lemma there exists S such that

T (Q) � S: Hence, on Q, T coincides with the value map ~T of the problem

corresponding to controls (v; w0; w) such that
R 1
0
w0(s) ds � S + 1; i.e.,

T (t; x; k) = ~T (t; x; k)
:
= inf

(v;w0;w)2�(k)
R
1
0
w0�S+1

f�t;x(v; w0; w)g:

In particular we can apply Proposition 2.5 to this subclass of controls. Let

� > 0 and let us consider (ti; xi; ki) 2 Q; i = 1; 2; such that j(t1; x1; k1) �
(t2; x2; k2)j � �

2
: Let us choose a space-time control (v1; w01 ; w1) 2 �(k1)

(with
R 1
0
w01 � S + 1) verifying xt1;x1(v1; w01 ; w1)(s) =2 T 8s 2 [0;1),

xt1;x1(v1; w01 ; w1)(1) 2 T ; and
R 1
0
w01 � T (t1; x1; k1) +

�

2
: By Proposi-

tion 2.5 there is a control (v2; w02 ; w2) 2 �(k2) (with
R 1
0
w02 � S+1) such

that
R 1
0
w02 � R 1

0
w01 + �

2
and jxt1;x1(v1; w01 ; w1)(1)�

xt2;x2(v2; w02 ; w2)(1)j � �( �
2
) where � is a suitable modulus.

Let B1+n[0; R] be so large to contain all the trajectories issuing from Q

and corresponding to controls (v; w0; w) such that
R 1
0
w0 � S+1: Let �R and

CR be the corresponding constants whose existence is stated in Theorem

4.1. By taking � su�ciently small we obtain xt2;x2(v2; w02 ; w2)(1) 2 T�R :
Hence in view of (DPP ) and of Theorem 4.1 we obtain

~T (t2; x2; k2) �
Z 1

0

w02 +
~T

�
(t; x)t2;x2(v2; w02 ; w2)(1); k2 +

Z 1

0

jw2(s)j ds
�

�
Z 1

0

w01 +
�

2
+ ~T ((t; x)t2;x2(v2; w02 ; w2)(1);K)

� ~T (t1; x1; k1) + �+ CR�(
�

2
).

By interchanging the roles of (t1; x1; k1) and (t2; x2; k2) we obtain

j ~T (t1; x1; k1)� ~T (t2; x2; k2)j � �+ CR�(
�

2
)

as soon as j(t1; x1; k1)� (t2; x2; k2)j � �

2
:

To conclude the proof we must show that if (yn)n2N = (tn; xn; kn) is a

sequence belonging to R[0;K] and limn!+1 yn = �y = (�t; �x; �k) 2 R[0;K] n
R[0;K] then we have limn!+1 T (yn) = +1: If not, there would be a
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subsequence, still denoted by (yn); such that limn!+1 T (yn) = T: Choose

a sequence of minimizing controls (vn; w0n ; wn) such that
R 1
0
w0n(s) ds �

T (yn) +
1
n
and xtn;xn(vn; w0n ; wn)(1) 2 T : It is trivial to check that the

corresponding trajectories verify that

lim
n!+1

kx�t;�x(vn; w0n ; wn)� xtn;xn(vn; w0n ; wn)k1 = 0:

With an argument analogous to the one exploited in the �rst part of the

proof we obtain that (�t; �x; �k) 2 R[0;K]; a contradiction. 2

The result can be improved as soon as one assumes Hypothesis (L)

introduced in section 2:

Corollary 4.2. Assume hypotheses (L) and (H). Then the function T is

locally Lipschitz continuous in R[0;K]:

Proof: Let Q � R[0;K] be a compact subset. Then there exists S > 0

such that T (t; x; k) � S; for every (t; x; k) 2 Q: The set of trajectories from
points of Q is compact if we use space-time controls (v; w0; w) such thatR 1
0
w0(s) ds � S: Proceeding as in the proof of the continuity of T it is easy

to prove that (4.6) together with (2.9) (which now replaces (2.8)) implies

the local Lipschitz continuity of T: 2

5 Hamilton-Jacobi Equation

The aim of this section is to recover the value map T as the unique so-

lution of a suitable boundary value problem. Because of the sublinearity

in the unbounded control the Hamiltonian turns out to be equal to �1
at several points. Hence, analogously to what has been done for the Boltz

problem in [37], [39, 40], we regularize the problem by considering a contin-

uous Hamiltonian which is naturally connected with the extended control

system.

Let us consider the Hamiltonian

H(t; x; pt; px; pk)
:
= min

v2V;(w0;w)2S+m
H(t; x; pt; px; pk; v; w0; w);

where

H(t; x; pt; px; pk; v; w0; w)
:
= w0 + ptw0 + px � f(t; x; v; w0; w) + pkjwj;

with

S
+
m
= Sm \ f[0;+1)� Cg and Sm = f(w0; w) 2 Rm+1 : kw0; wk = 1g:
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Notice that, unlike the formal Hamiltonian of the problem, H is con-

tinuous. The reason of that relies on the fact that we have replaced a

minimization over an unbounded set (the cone [0;+1) � C) with a min-

imization over the compact set S+
m
: As it will be clear later, the fact that

S
+
m
does not contain the origin is essential in order to prove the uniqueness

of the corresponding boundary value problem (see also [37]).

Let us set rT :
= (rtT;rxT;rkT ); where rtT;rxT;rkT denote the

gradients of T with respect to t; x and k; respectively. We will prove that

T is a viscosity solution of the Hamilton- Jacobi equation

�H(t; x;rT (t; x; k)) = 0 (HJ)

in the open set



:
= R(0;K) \ (R� (Rn n T )� (0;K)) ;

where R(0;K)
:
=
S
k2(0;K)R[k]� fkg: Moreover we shall establish bound-

ary conditions on the sets:

@
0
:
= (R[0] n (R � T ))� f0g

and

@
K

:
= (R[K] n (R� T ))� fKg:

For the reader convenience we recall the notion of viscosity solution (see

e.g. [21]).

De�nition 5.1. Let E be a subset of Rn+2
:

A function � 2 C0(E) is a viscosity subsolution of (HJ) at (t; x; k) 2 E
if for any ' 2 C1( Rn+2) such that (t; x; k) is a local maximum of � � '

on E one has

�H(t; x;r'(t; x; k)) � 0:

� 2 C
0(E) is a viscosity supersolution of (HJ) at (t; x; k) 2 E if for any

' 2 C
1(Rn+2) such that (t; x; k) is a local minimum of � � ' on E one

has

�H(t; x;r'(t; x; k)) � 0:

� 2 C
0(E) is a viscosity solution of (HJ) at (t; x; k) 2 E if it is both a

viscosity subsolution and a viscosity supersolution.

Theorem 5.1. Assume hypothesis (H). Then

i) T is a viscosity solution of (HJ) in 
 [ @
0,

ii) T is a viscosity supersolution of (HJ) on @
K :

Proof: The proof of this result, besides involving some standard argu-

ments, is mainly based on the fact that f is homogeneous in (w0; w) and
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that we can canonically parameterize the space-time controls. Let us show

that T is a subsolution of (HJ) in 
[ @
0: Let �y = (�t; �x; �k) 2 
[ @
0 and

let ' be a function of C1(Rn+2), such that

T (y)� '(y) � T (�y)� '(�y);

for every y = (t; x; k) in (
[@
0)\B(�y; r0); where r0 is su�ciently small.
Let w = (w0; w1; : : : ; wm) 2 S+

m
[0; 1] and v 2 V: Then the control

(v; w0; w)(s) =

(
(v; w0; w)(s); for 0 � s � �

(v; w0; 0)(s); for � < s � 1;

belongs to �(�k) as soon as we choose � > 0 su�ciently small. Moreover

setting �y(s) = (�t +
R
s

0
w0 d�; x�t;�x(v; w0; w)(s); �k +

R
s

0
jwj d�), there exists

�s > 0 such that �y(s) 2 B(�y; r0) for each s 2 [0; �s]: By (DPP ) we have

'(�y)� '(�y(s))

s
� T (�y)� T (�y(s))

s
�
R
s

0
w0(s) ds

s
:

Taking the limit as s! 0 we get

rt'(�y) +rx'(�y) � f(�t; �x; v; w0; w) +rk'(�y)jwj � �w0

and since (v; w0; w) was arbitrary in V � S
+
m
we deduce that

� inf
v2V;(w0;w)2Sm+

H(�t; �x;rt'(�y);rx'(�y);rk'(�y); v; w0; w) � 0:

We prove now that T is a supersolution in 
[@
0[@
K : Let (�t; �x; �k) = �y

and let ' be a map in C1(Rn+2) such that �y is a local minimum for T �'
on 
[@
0[@
K :We can suppose that T (�y) = '(�y): Hence there exists r0
such that T (y)�'(y) � 0 is veri�ed for every y 2 B(�y; r0)\(
[@
0[@
K):

By (DPP ) for every s we can choose a sequence (vn; w0n ; wn) 2 �(�k)

such that denoting by yn(s) = (tn(s); xn(s); kn(s)) = (�t +
R
s

0
w0n(s

0) ds0,

x�t;�x(vn; w0n ; wn)(s);
�k+
R
s

0
jwn(s0)j ds0); we have

R
s

0
w0n(s

0) ds0+T (yn(s)) �
T (�y)+ 1

n2
:We can suppose xn(1) = x�t;�x(vn; w0n ; wn)(1) 2 T andxn(s) =2 T

for every s < 1: By (2.7) there exists �s 2 [0; 1] such that for every s � �s

and every n 2N we have yn(s) 2 B(�y; r0) and therefore

'(yn(s)) +

Z
s

0

w0n(s
0) ds0 � T (yn(s)) +

Z
s

0

w0n(s
0) ds0

� T (�y) +
1

n2
= '(�y) +

1

n2
:

(5.1)
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For an n su�ciently large, set s = 1
n
in (5.1). Then one has

Z 1
n

0

w0n(s
0) ds0 + '(yn(

1

n
))� '(�y) � 1

n2
;

that isZ 1
n

0

H(xn(s); tn(s);r('(tn(s); xn(s); kn(s)); vn(s); w0n(s); wn(s)) ds �
1

n2
:

(5.2)

It is not restrictive to assume that the space-time controls (vn; w0n ; wn) are

canonically parameterized (see Proposition 2.3), which implies that

jw0n ; wnj(s) =
Z 1

0

j(w0n ; wn)(�)j d� 8s 2 [0; 1]:

We shall prove that there exists A > 0 such thatZ 1

0

j(w0n ; wn)j(�) d� � A (5.3)

for all n 2N . Since all the functions are continuous, taking the limit as

s! 0 inside the integral of (5.2), we get that there exists a sequence �(n)

with limn!+1 �(n) = 0 such that

�(n) � n

Z 1
n

0

H(�t; �x;r'(�t; �x; �k); vn(�); w0n(�); wn(�)) d�

� n

Z 1

0

j(w0n ; wn)j(�) d�
Z 1

n

0

min
(w0;w)2S+m

v2V

H(�t; �x;r'(�t; �x; �k); v; w0; w) d�

� AH(�t; �x;r'(�t; �x; �k)).
The above expression gives the required inequality once we consider the

limit of both sides as n! +1:

Let us conclude by proving the claim that (5.3) holds true. If for every s

and every sequence of the above controls (vn; w0n ; wn) (5.3) does not hold,

then there would be a subsequence, still denoted by (vn; w0n ; wn) such that

limn!+1
R 1
0
j(w0n ; wn)j(�) d� = 0. Since all the trajectories (tn; xn)�t;�x; are

contained in a compact set Q; by setting L = LQ; we have

k(tn; xn)�t;�x � (�t; �x)k1 �M�t;�xL
�1
�
e
L
R
1

0
jw0n(s);wn(s)j ds � 1

�

where M�t;�x is the constant appearing after Lemma 2.1.

In particular we would obtain �x 2 T , a contradiction. 2
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We are now in position to provide an uniqueness theorem. We will

use a comparison theorem due to M. Bardi and P. Soravia (see [5], [6])

which gives uniqueness of viscosity solutions that satisfy mixed boundary

conditions: that is, Dirichlet conditions and conditions of sub or super

viscosity solution, also called constrained conditions at the boundary of 
:

In our case T is a viscosity supersolution of (HJ) on @
K ; while it satis�es

classical Dirichlet conditions on @T : We will make use of a Kruskov-type

transform which allows to convert the condition that on R[0;K] n R[0;K]
the minimum time function is +1 into a classical Dirichlet condition.

Finally we have to remark that the main di�erence with a system with

bounded controls is that the function T is allowed to be equal to zero even

at points that do not belong to the boundary of the target.

Theorem 5.2. Assume hypothesis (H). Let f be locally Lipschitz continu-

ous in (t; x) and such that jf(t; x; v; w0; w)j � �C(1+j(t; x)j)(w0+jwj): Then
T is the unique, continuous and lower bounded function in R[0;K]; which

is a viscosity solution of (HJ) in 
 and satis�es the following boundary

conditions:

T (y) = 0 8y 2 R� @T � [0;K];
T (y) = +1 8y 2 R[0;K] n R[0;K];

T is a viscosity supersolution of (HJ) on@
K ;

T is a viscosity solution of (HJ) on@
0:

(BC)

Proof: Let us consider the map

S(t; x; k) =

(
1� e

�T (t;x;k)+k for (t; x; k) 2 R[0;K];

1 for (t; x; k) 2 (R1+n � [0;K]) n R[0;K]:

By the second boundary condition, S turns out to be continuous in R1+n�
[0;K]: Note that S is bounded and it is straightforward to prove that S is

a viscosity solution of

S � min
(w0;w)2S+m

v2V

(1 +rtS
w0

w0 + jwj+rxS � f(t; x; v; w0; w)

w0 + jwj

+rkS
jwj

w0 + jwj ) = 0

(5.5)

in R1+n � [0;K] n ( R�T � [0;K]):
We introduce the Hamiltonian

F (t; x; r; pt; px; pk)
:
= r + max

(w0;w)2S+m
v2V

F(t; x; pt; px; pk; v; w0; w)
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where

F(t; x; pt; px; pk; v; w0; w) = �(1+pt w0

w0 + jwj +

px � f(t; x; v; w0; w)

w0 + jwj + pk
jwj

w0 + jwj )

so that we can write (5.5) as

F (t; x; S;rS) = 0: (HJ')

The boundary conditions (BC) are transformed into

S(t; x; k) = 1� e
k for (t; x; k) 2 R� @T � [0;K];

S is a viscosity supersolution of (HJ') in R
1+n � fKg;

S is a viscosity solution of (HJ') in R
1+n � f0g:

(BC')

In order to apply the comparison theorem of [6] we have to prove that,

given a compact Q �R1+n
; setting

p = (pt; px; pk)

and

q = (qt; qx; qk) 2 Rn+2
;

there exists a constant C such that

jF (t1; x1; r; p)� F (t2; x2; r; q)j � C (1 + j(t1; x1)j) jp� qj+
LQjqjj(t1; x1)� (t2; x2)j

for every (t1; x1; r; p); (t1; x2; r; q) 2 Q�Rn+3
: The sublinear growth of f

in (t; x) implies that jf(t; x; v; w0; w)j � �C(1 + j(t; x)j)(w0 + jwj): Choose
(v; w0; w) 2 V �S+

m
such that F (t2; x2; r; q) = r+F(t2; x2; q; v; w0; w): We

have

F (t2; x2; r; q)� F (t1; x1; r; p) � w0

w0 + jwj jpt � qtj+ jwj
w0 + jwj jpk � qkj+

+
�� f(t1; x1; v; w0; w) � px

w0 + jwj � f(t2; x2; v; w0; w) � qx

w0 + jwj
��

� LQj(t1; x1)� (t2; x2)jjqxj+ �C(1 + jt1; x1j)jpx � qxj+ 2jp� qj
� LQj(t1; x1)� (t2; x2)jjqj+ C(1 + jt1; x1j)jp� qj

where C = �C + 2.

The inequality holds true in absolute value once we exchange (t1; x1)

with (t2; x2):We apply Theorem 1.2 of [6] and Corollary 1.5 to get unique-

ness for the solution of (HJ') that satis�es (BC'). Using the inverse trans-

formation T (t; x; k) = k � log(1� S(t; x; k)) we recover uniqueness for the

solution of (HJ) and (BC).
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We point out that Theorem 1.2 in [6] is proved under a condition weaker

than Lipschitz continuity on (t; x) but of global nature. It is not di�cult to

prove that the theorem still holds if we assume local Lipschitz continuity

and sublinear growth on (t; x): 2

Appendix 1

Here we present the proof of Proposition 2.5, which is a variation of The-

orem 3.1 in [39]. We need some de�nitions and notations. Fix a compact

Q �R1+n and S > 0: Let us introduce

�(w) = max

�
jf(y; v; w0; w)� f(y; v; w0; 0)j;

for (y; v; w0) 2 Q� V � [0; S +K]

� (A.1)

and

 (w0) = max

�
jf(y; v; w0 + w0; w)� f(y; v; w0; w)j;

for (y; v; w0; w) 2 Q� V �B1+m[0; S +K]

�
.

(A.2)

Lemma A.1. Let w0(�) 2 L1([0; 1]; [0; S+K]) and w 2 L1([0; 1]; Bm[0; S+

K]): Then � �w(�) and  �w0(�) belong to L1([0; 1];R) and there exist two

modulus �(�) and  (�); de�ned in [0; S +K]; such that

Z 1

0

�(w(s)) ds � �(

Z 1

0

jwj(s) ds) and

Z 1

0

 (w0) ds �  (

Z 1

0

w0(s) ds):

Moreover if we assume hypothesis (L) then we have

Z 1

0

�(w(s)) ds � NQ

Z 1

0

jwj(s) ds and

Z 1

0

 (w0) ds � NQ

Z 1

0

w0(s) ds;

for a suitable NQ depending only on Q.

Proof: Indicate by � the modulus of continuity of the restriction of f to

Q�V�B1+m[0; S+K] with respect to the w variable and by �0 the one with

respect to the w0 variable. Then we have j�(w1) � �(w2)j � �(jw1 � w2j)
and j (w01)� (w02)j � �0(jw01 �w02 j): The map w ! �(jwj) is bounded,
continuous at w = 0 and veri�es �(0) = 0: Hence it is well known that the

superposition operator w ! � � w acts from L
1([0; 1]; Bm[0; S +K]) with

values in L1([0; 1];R) and it is continuous at zero. Therefore
R 1
0
jw1�w2j �
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� yields
R 1
0
j�(w1) � �(w2)j �

R 1
0
�(jw1 � w2j) � �: This implies that the

operator w ! � � w; de�ned in L
1([0; 1]; Bm[0; S + K]) with values in

L
1([0; 1];R) is uniformly continuous. If we de�ne � to be its modulus of

continuity, we get the �rst inequality of the thesis. Analogously we obtain

the second inequality, as soon as  is the modulus of continuity of the

operator w0 !  � w0:

It is clear that if hypothesis (L) is assumed, then �(jw1 � w2j) and

�0(jw01 � w02 j) can be replaced by NQjw1 � w2j and NQjw01 � w02 j; re-
spectively, for a suitable NQ. 2

Proof of Proposition 2.5: If t > �t de�ne �s
:
= minfs 2 [0; 1] : �t +R

s

0
w0 d� = tgand

w0(s) =

(
0 for s 2 [0; �s]

w0(s) for s 2 (�s; 1]

while if t � �t de�ne

w0(s) = w0(s) + (�t� t):

Set t(s) = �t+
R
s

0
w0(�) d� and t(s) = t+

R
s

0
w0(�) d�: Notice that in both

cases we have jt(s)� t(s)j � j�t� tj:
Now de�ne ��s

:
= max

�
s 2 [0; 1] :

R
s

0
jw(�)j d� � K � k

�
and introduce

w(s) =

(
w(s) for s 2 [0; ��s]

0 for s 2 (��s; 1].

This implies that w(s) = w(s) in the case k � �k: Notice that
R 1
0
jw�wj d� �

j�k � kj and R 1
0
jwj d� � R 1

0
jwj d�: Finally de�ne x(s)

:
= x�t;�x(v; w0; w)(s)

and x(s)
:
= xt;x(v; w0; w)(s): If (t; x; k) 2 Bn+2(�y; �), these trajectories

are contained in a compact set Q0 � R1+n
: Let us set L = LQ0 , M =

max
Q0�V�[0;1]�(Bm[0;1]\C)

jf j; and let us consider the maps � and  introduced

in (A.1) and (A.2), with S =
R 1
0
w(s) ds + 1 and Q replaced by Q0: The

following estimates hold (see Lemma 3.1 of [39] for details): if t > �t

jx(s)� x(s)j � j�x� xj+ R �s
0
 (w0(�)) d� +M(j�t� tj+ j�k � kj)+

+
R 1
��s
�(w(�)) d� + !(j�t� tj) R 1

0
(w0(�) + jw(�)j) d�+

+L
R
s

0
(w0(�) + jw(�)j)jx(�)� x(�)j d�

while, if t � �t;

jx(s)� x(s)j � j�x� xj+ R 1��s �(w(�)) d� + R �s0  (�t� t) d�+

+!(j�t� tj) R 1
0
(w0(�) + jw(�)j) d�

+L
R
s

0
(w0(�) + jw(�)j)jx(�)� x(�)j d�.

28



MINIMUM TIME FUNCTION

In both cases using Gronwall's lemma we get

jx(s)� x(s)j �
�
j�x� xj+M(j�t� tj+ j�k � kj) +  (j�t� tj) + �(j�k � kj) +

+!(j�t� tj)
Z 1

0

(w0(�) + jw(�)j + j�t� tj) d�
�
e
L
R
s

0
(w0(�)+jw(�)j+j�t�tj) d�,

(A.3)

where  (�) and �(�) are the same as in Lemma A.1. Hence we obtain (2.8)

for a suitable choice of �: Moreover in view of the above arguments the

second part of the thesis is trivial.

Proof of Corollary 2.1: If we assume hypothesis (L), the estimate (A.3)

yields (2.9) since, by the last part of Lemma A.1, we can replace  (j�t� tj)
and �(j�k� kj) by �NQ0 j�t� tj and �NQ0 j�k� kj; respectively. Taking the value
of the r.h.s. of (A.3) for s = 1 we get (2.9).

Appendix 2

Proof of Theorem 4.1. As mentioned in Section 4, this proof mimics

the proof of Proposition 2.2 in [18], where the autonomous case with global

Lipschitz continuity, is investigated. We outline it just for the sake of

self-consistency. We �rst prove (4.6) under the additional assumption that

T is bounded, that f is globally Lipschitz continuous with respect to x

with constant L; and that there exists M > 0 such that jf(t; x; v; 0)j �
M for every (t; x; v; 0): Then � and � in Hypothesis (H) can be chosen

independently of R: Suppose M � �; set � = minf�; M
L
g and C = 1

�
+q

1
�2

+ 1
4M2 : Fix (t0; x0) 2 R � (T� n T ) and inductively de�ne a sequence

(tj ; xj) by setting x1 = x0, tj = �

4M2 d(xj),�j =
P

j�1
k=0 tk and xj+1 =

x�j (v�j ;xj ; 0)(tj) for j � 1; where v�j ;xj is given by (H). With the same

arguments exploited in [18], one can prove that dT (xj+1) � K
j
dT (x0); for

j � 0; where K =
q
1� ( 1

2M
)2 and �t =

P+1
k=1 tk � CdT (x0): Therefore the

sequence xj converges to a point �x 2 T : De�ne the control
v(t) = v�j ;xj for �j � t � �j+1:

We have xt0;x0(v; 0)(�t) = �x and therefore T (t0; x0;K) � CdT (x0):
Next we have to prove (4.6) for general f and T . For any R > 0 de�ne

T(R) = T \ Bn[0;2R], LR = LBn[0;2R]; MR = maxfjf(t; x; v; 0)j : (t; x; v) 2
B1+n[0; 2R]� V g, and

fR(t; x; v; 0) =

(
f(t; x; v; 0) if jf(t; x; v; 0)j �MR

MR

f(t;x;v;0)

jf(t;x;v;0)j if jf(t; x; v; 0)j > MR.
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Consider the control system obtained by substituting f and T with fR and

T(R) and denote by TR the corresponding minimum time function. By the

�rst part of the proof, there exist �R = minf�R; MR

LR
g and CR such that

TR(t; x;K) � CRdT (x) for every (t; x) 2 [�2R; 2R]� (T�R \ Bn[0;2R]):
Choose �RCRMR < R: For such a choice of �R; we may assume that for �

small enough the �-optimal trajectories starting at points (t; x) 2 [�R;R]�
(T�R \Bn[0;R]); that is xt;x(v; 0)(t) with �t;x(v; 0) � TR(t; x;K)+�; remain

inside Bn[0; 2R] and t + TR(t; x;K) + � � 2R: Therefore these trajecto-

ries are admissible for the original control system and we can deduce that

T (t; x;K) � TR(t; x;K) � CRdT (x):
Finally, to prove the claim about the reachable set R[K] observe that

if (�t; �x) belongs to R[K] and is su�ciently close to R�T then (4.6) implies

that there exists a ball of suitable radius around (�t; �x) on which T (�; �;K)

is bounded, that is R[K] contains a neighborhood of R�T :
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