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Abstract

This paper is concerned with providing simple conditions guar-

anteeing that a single input single output (SISO) linear distributed

parameter system driven by a harmonic input will, for a suitable

initial condition, possess a nontrivial periodic output with the same

period as the input. This question is related to the problem of out-

put regulation in the case of periodic tracking in which a system

is driven by the output of a neutrally stable exosystem (such as a

harmonic oscillator) and the objective is to design a feedback law

that will force the output of the system to track the output of the

exosystem.

1 Introduction

In this paper we consider a special class of Single Input Single Output

(SISO) linear distributed parameter control systems in the form

_z = Az + bu; (1.1)

z(0) = z0; (1.2)

y = cz (1.3)

where A is the in�nitesimal generator of a C0 semigroup in a Hilbert space

Z and b 2 L(R ; Z), c 2 L(Z;R). Here L(X;Y ) denotes the space of

bounded operators from X to Y .
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We assume that the input u is given, in feedback form, as the output

of a harmonic oscillator with frequency �:

_w = Sw; S =

�
0 �

�� 0

�
;

w(0) =

�
0

1

�
;

u = �w; (1.4)

where � is a given 1� 2 matrix: � = [
1; 
2]. Thus u represents a periodic

function of period T = 2�=� as a linear combination of sin(�t) and cos(�t),

namely,

u(t) = 
1 sin(�t) + 
2 cos(�t): (1.5)

Problem 1.1 Suppose that we are given the input u in (1.5), �nd an initial

condition z0 in (1.2) so that the output y in (1.3) is a nontrivial periodic

function of period T = 2�=�.

It is well known in �nite dimensional linear control theory that if a

system is driven by a periodic input for which the complex frequency i�

is a transmission zero of the system, then the output of the system is zero

for all time. Therefore, we should also state the following more general

problem.

Problem 1.2 Find conditions on (A; b; c) guaranteeing there is a nontriv-

ial periodic output with the desired period for all � and arbitrary 
1, 
2
with 


2
1 + 


2
2 6= 0, i.e., that the system will support a periodic output of

arbitrary period.

A similar scenario arises for the state feedback regulator problem in

which one is interested in designing a feedback law to drive the closed loop

system in order to have its output track a given periodic reference signal.

Note that in the above case the input u is a periodic function of period

T = 2�=�. The questions posed in this paper are intermediate results in

that our objective is to provide a simple test to determine whether it is

even possible for the system to support a periodic output with the desired

period T . For that matter we would also like to give criteria that would

ensure that the system could support a periodic motion of arbitrary period.

Assume for the moment that (1.1) is a �nite dimensional system with

the state space Z = R
n and denote by f�jg

n

j=1 the spectrum of A (eigen-

values listed by multiplicity). In order that the solution to (1.1) be periodic

we would at least need that z(T ) = z(0). By the variation of parameters

formula we have

z(t) = e
At
z0 +

Z
t

0

e
A(t��)

bu(�) d�: (1.6)
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In order that z(�) satisfy z(T ) = z(0) = z0 we need

�
I � e

AT
�
z0 =

Z
T

0

e
A(T��)

bu(�) d�: (1.7)

This equation is solvable for z0 if either 1 is in the resolvent set of eAT

or more generally if the right hand side is in the range of
�
I � e

AT
�
. Our

objective is to give conditions on the original system that will guarantee

solvability. For �nite dimensional systems the spectral mapping theorem

(cf. [3], page 312, Theorem 6), which is valid for very general functions

de�ned on the spectrum of A, gives

�
�
e
AT
�
= e

�(A)T (1.8)

so that
�
I � e

AT
�
is invertible if

1 =2 �
�
e
AT
�
:

This is true if

�jT 6= 2k�i; for j = 1; � � �n; k = 0;�1;�2; � � � ;

or, in other words, if

�j 6= k�i; j = 1; � � �n; k = 0;�1;�2; � � � :

In the typical applications of interest to the authors, the spectrum of

the unbounded operator A consists of a discrete set of eigenvalues of �nite

multiplicity whose real parts tend to minus in�nity. Indeed, for � in the

resolvent set of A, the resolvent operator (�I � A)�1 is compact. In this

case, due to the fact that the function e�t has an essential singularity at

� = 1, the the spectral mapping theorem found in standard texts on

functional analysis (cf, [1, 6]) does not apply since it requires the functions

to be analytic in a neighborhood of the spectrum. There are of course many

special cases. For example if A is normal (e.g., if A is even selfadjoint) the

the spectral mapping theorem holds for any continuous function f de�ned

in a neighborhood of the spectrum, i.e., f(�(A)) = �(f(A)). In general, if

A is the in�nitesimal generator of a C0 semigroup then the most one can

say is that e�(A) � �(eAT ) (cf., [4] (pages 45-48)). For the point spectrum

we have

e
�p(A)T � �p(e

AT ) � e
�p(A)T [ f0g:

This holds, for example, if A is a discrete spectral operator whose eigen-

functions form a Riesz basis, which is usually the case for systems governed

by partial di�erential equations on bounded domains.
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Assumption 1.1 In this paper we will avoid the various technical di�-

culties and make the assumption that A is a discrete Riesz spectral oper-

ator with simple eigenvalues ( multiplicity one) f�jg
1

j=1 and eigenvectors

f jg
1

j=1. These eigenvectors form a Riesz basis in Z (i.e., a linear iso-

morphic image of an orthonormal basis). In this case the adjoint A� is

also a discrete Riesz spectral operator whose eigenvectors f �
j
g1
j=1 form a

biorthogonal Riesz basis, i.e.,

h j ;  
�

k
i = �jk :

For such operators we have a functional calculus much like the case of

self-adjoint operators. Namely, we have

1X
j=1



�;  

�

j

�
 j = �; for all � 2 Z (1.9)

1X
j=1

�j



�;  

�

j

�
 j = A�; for all � 2 D(A) (1.10)

1X
j=1

e
�jt


�;  

�

j

�
 j = e

At
�; for all � 2 Z (1.11)

1X
j=1



�;  

�

j

�
(1� e�jT )

 j = (I � e
AT )�1�; for all � 2 Z (1.12)

1X
j=1



�;  

�

j

�
(�j � �)

 j = (A� �I)�1�; for all � 2 Z (1.13)

Note that due to our assumption that b and c are bounded rank one

operators, we have a well de�ned transfer function given by

g(s) = c(sI �A)�1b:

This is a complex valued function of the complex variable s which is analytic

on the resolvent set of A. Furthermore the singularities of g(s) occur at the

eigenvalues of A and hence have �nite multiplicity, i.e., they are poles in the

terminology of analytic function theory. For all examples that we have in

mind, this is actually a meromorphic function so that all the zeros are also

isolated and of �nite multiplicity and certainly have no �nite accumulation

points.

Assumption 1.2 A natural assumption on our system is that the transfer

function is real, i.e.,

g(s) = g(s): (1.14)

For systems governed by di�erential equations with real coe�cients this

condition is automatic.
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De�nition 1.1 A complex number s0 is a transmission zero if g(s0) = 0.

Assumption 1.3 Our �nal assumption is that there are no pole zero can-

cellations. That is, we assume that if s0 is a transmission zero, then

s0 2 �(A), the resolvent set of A.

2 Main Results

Theorem 2.1 Let the operator A in (1.1) be a discrete Riesz spectral op-

erator with �(A) = f�jg
1

j=1, the input u is given by (1.5) with 
21 + 

2
2 6= 0

and let (A; b; c) satisfy Assumptions 1.1, 1.2 and 1.3. Then we have the

following results.

1. The solution z to (1.1) is periodic with period T = 2�=� provided

distance(�(A); fk�i j k = 0;�1;�2; � � � g) > 0: (2.1)

Furthermore, the system supports all positive periods T (i.e., we can

�nd a periodic solution for all possible frequencies �) if

distance(�(A); C
0) > 0

where C 0 = f� 2 C : Re� = 0g denotes the imaginary axis.

2. In this case, there is a nontrivial periodic output y if and only if i�

is not a transmission zero, i.e., g(i�) 6= 0.

3. Finally, let us denote the amplitude of the periodic input u by

Mu � sup
t2[0;T ]

ju(t)j =
q

21 + 
22 :

Then the amplitude of the output y is a linear function of the ampli-

tude of the input u. In particular, the output can be written in the

forms

y(t) =
�
Re g(i�)

�
u(t) +

1

�

�
Im g(i�)

�du
dt
(t) (2.2)

=Mujg(i�)j
�
~
1 sin(�t) + ~
2 cos(�t)

�
=Mujg(i�)j sin(�t + �) (2.3)

where ~
1
2 + ~
2

2 = 1 and we can easily write explicit formulas for ~
1,

~
2 and � in terms of 
1, 
2 and g(i�). Thus the amplitude My of y

can be written as

My � sup
t2[0;T ]

jy(t)j =Mujg(i�)j:
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Proof of 1:

Under the assumptions imposed on the operator A in Assumption 1.1,

the solution of (1.1)-(1.2) is given by the variation of parameters formula

z(t) = e
At
z0 +

Z
t

0

e
A(t��)

bu(�) d�: (2.4)

Therefore, just as in the �nite dimensional case, in order that z(�) satisfy
z(T ) = z(0) = z0 we need

�
I � e

AT
�
z0 =

Z
T

0

e
A(T��)

bu(�) d�: (2.5)

From the representation in (1.12) for (I � eAT )�1, we see that (I � eAT )�1

is bounded provided the numbers (1� e
�jT ) are bounded away from zero.

Under the assumption (2.1) we can thus solve (2.5) to obtain an initial

condition

z0 =
�
I � e

AT
�
�1
Z

T

0

e
A(T��)

bu(�) d� (2.6)

for which z(T ) = z(0). We now show that for any T periodic input u and

the particular initial condition given in (2.6) the resulting solution to (1.1)

given by the variation of parameter formula (cf., (2.4)) is T periodic, i.e.,

z(t+ T ) = z(t) for all t. Namely, using the fact that

e
AT
�
I � e

AT
�
�1
� =

�
I � e

AT
�
�1
�� �

for all �, we have for the initial condition z0 in (2.6),
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z(t+ T ) = e
A(T+t)

"�
I � e

AT
�
�1
Z

T

0

e
A(T��)

bu(�) d�

#

+

Z
T+t

0

e
A(T+t��)

bu(�) d�

= e
At

"
e
AT
�
I � e

AT
�
�1
Z

T

0

e
A(T��)

bu(�) d�

#

+

Z
T+t

0

e
A(T+t��)

bu(�) d�

= e
At

"�
I � e

AT
�
�1
Z

T

0

e
A(T��)

bu(�) d�

#

�eAt
Z

T

0

e
A(T��)

bu(�) d� +

Z
T+t

0

e
A(T+t��)

bu(�) d�

= e
At
z0 � e

At

Z
T

0

e
A(T��)

bu(�) d�

+eAt
Z

T

0

e
A(T��)

bu(�) d� +

Z
T+t

T

e
A(T+t��)

bu(�) d�

= e
At
z0 +

Z
t

0

e
A(t��)

bu(�) d�

= z(t):n

2

Proof of 2 and 3: In order to prove part 2 of Theorem 2.1, that the

system (1.1) supports a nontrivial periodic output y with period T if and

only if g(i�) 6= 0, we must consider

y(t) = cz(t):

Therefore we need an explicit representation for the solution z.

First let us use the functional calculus to simplify the expression for the

initial condition z0 and the solution z. From (2.6) and (1.12) the initial
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condition can be written as

z0 =

1X
j=1

e
�jT

(1� e�jT )

 Z
T

0

e
��j�u(�) d�

!

b;  

�

j

�
 j :

Now from the explicit form of u given in (1.5) we can readily compute

Z
T

0

e
��j� sin(��) d� =

�
�
1� e

��jT
�

(�2
j
+ �2)

;

and Z
T

0

e
��j� cos(��) d� =

�j

�
1� e

��jT
�

(�2
j
+ �2)

;

to obtain

z0 =

1X
j=1

e
�jT

(1� e�jT )

 Z
T

0

e
��j�u(�) d�

!

b;  

�

j

�
 j

=

1X
j=1

e
�jT

(1� e�jT )

"

1

�
�
1� e

��jT
�

(�2
j
+ �2)

+ 
2

�j

�
1� e

��jT
�

(�2
j
+ �2)

# 

b;  

�

j

�
 j

=

1X
j=1

"
�
1�� 
2�j

(�2
j
+ �2)

# 

b;  

�

j

�
 j

= �
�

1�+ 
2A

�
(A2 + �

2)�1b: (2.7)

In the same way, using the formulasZ
t

0

e
��j� sin(��) d� =

(�� cos(�t) � �j sin(�t)) e
��jt

(�2
j
+ �2)

+
�

(�2
j
+ �2)

;

andZ
t

0

e
��j� cos(��) d� =

(��j cos(�t) + � sin(�t)) e��jt

(�2
j
+ �2)

+
�j

(�2
j
+ �2)

;

we easily obtain the following explicit representation for the solution z.
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z(t) = e
At
z0 +

Z
t

0

e
A(t��)

bu(�)d�

= e
At
z0 +

1X
j=1

e
�jt

�Z
t

0

e
��j�

�

1 sin(��) + 
2 cos(��)

�
d�

�

b;  

�

j

�
 j

= e
At
z0 +

1X
j=1

e
�jt

�
(
1�+ 
2�j)

(�2
j
+ �2)

�

b;  

�

j

�
 j

+ sin(�t)

1X
j=1

�
(�
1�j + 
2�)

(�2
j
+ �2)

�

b;  

�

j

�
 j

+ cos(�t)

1X
j=1

�
(�
1�� 
2�j)

(�2
j
+ �2)

�

b;  

�

j

�
 j

= �eAt
�

1�+ 
2A

�
(A2 + �

2)�1b+ e
At
�

1�+ 
2A

�
(A2 + �

2)�1b

+ sin(�t)
�
�
1A+ 
2�

�
(A2 + �

2)�1b

+ cos(�t)
�
�
1�� 
2A

�
(A2 + �

2)�1b

=

�
sin(�t)

�
�
1A+ 
2�

�
+ cos(�t)

�
�
1�� 
2A

��
(A2 + �

2)�1b:

(2.8)

Applying c to (2.8) we obtain

y(t) = c

�
sin(�t)

�
�
1A+ 
2�

�
+ cos(�t)

�
�
1�� 
2A

��
(A2 + �

2)�1b:

(2.9)

Our next objective is to interpret the formula for y given in (2.9) in

terms of the transfer function g(s) = c(sI � A)�1b. To this end recall the

resolvent identity for �; � 2 �(A),

(�� �)(��A)�1(��A)�1 = (��A)�1 � (��A)�1:

With � = i� and � = �i� we have

(�2 +A
2)�1 = (i��A)�1(�i��A)�1 =

1

2i�

�
(�i��A)�1 � (i��A)�1

�
(2.10)

Also note that

A(i��A)�1 = i�(i��A)�1 � I; A(�i��A)�1 = �i�(�i��A)�1 � I;

(2.11)
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which implies

A(�2 +A
2)�1 =

�1

2

�
(�i��A)�1 + (i��A)�1

�
(2.12)

Now using the fact that the transfer function is real (cf, (1.14)), we have

from (2.10)

�c(�2 +A
2)�1b =

�

2i�

�
c(�i��A)�1b� c(i��A)�1b

�
=

�

2i�
[g(�i�)� g(i�)] = �

1

2i
[g(i�)� g(i�)]

= � Im g(i�); (2.13)

and from (2.12)

cA(�2 +A
2)�1b = �

1

2

�
c(�i��A)�1b+ c(���A)�1b

�
= �

1

2
[g(�i�) + g(i�)] = �

1

2
[g(i�) + g(i�)]

= �Re g(i�): (2.14)

The formulas (2.13) and (2.14) allow us to rewrite (2.9) as

y(t) = sin(�t)
�

1Re g(i�)� 
2 Im g(i�)

�
+ cos(�t)

�

1 Im g(i�) + 
2Re g(i�)

�
(2.15)

=
�

1 sin(�t) + 
2 cos(�t)

�
Re g(i�)

+
�

1 cos(�t) � 
2 sin(�t)

�
Im g(i�)

= u(t) Re g(i�) +
1

�

du

dt
(t) Im g(i�): (2.16)

We can now answer the question of when y is nontrivial. A straightforward

calculation show that

0 = y(t) = sin(�t)
�

1Re g(i�)� 
2 Im g(i�)

�
+cos(�t)

�

1 Im g(i�) + 
2Re g(i�)

�
;

for all t if and only if there are 
1; 
2, not both zero, such that


1Re g(i�)� 
2 Im g(i�) = 0;


1 Im g(i�) + 
2Re g(i�) = 0:

The determinant of the coe�cient matrix for this system is

jg(i�)j2 = (Re g(i�))2 + (Im g(i�))2:
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From this we see that y represents a nontrivial periodic motion if and only

if g(i�) 6= 0, i.e., if and only if i� is not a transmission zero.

Finally, to prove part 3 of the Theorem in the formula (2.15) for y let

�1 =
�

1 Re g(i�)� 
2 Im g(i�)

�
;

and

�2 =
�

1 Im g(i�) + 
2Re g(i�)

�
:

With this (2.15) can be written as

y(t) =
�
�
2
1 + �

2
2

� � �1

(�21 + �22)
sin(�t) +

�2

(�21 + �22)
cos(�t)

�
=
�
�
2
1 + �

2
2

�
sin(�t+ �)

where

sin(�) =
�2

(�21 + �22)
; cos(�) =

�1

(�21 + �22)
:

From this we easily see that the amplitude of y is given by
p
(�21 + �2)

which can be rewritten in terms of the amplitude of u and the magnitude

of the transfer function. Namely, we have

M
2
y
=
�
�
2
1 + �

2
2

�
=
�

1Re g(i�)� 
2 Im g(i�)

�2
+
�

1 Im g(i�) + 
2Re g(i�)

�2
=
�


2
1 + 


2
2

��
Re g(i�)2 + Im g(i�)2

�
=
�


2
1 + 


2
2

�
jg(i�)j2 =M

2
u
jg(i�)j2

and hence

My =Mu jg(i�)j:

2
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