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Abstract

We consider functions f which are de�ned for nonnegative argu-

ments. A �nite equidistant table of functional values is given nu-

merically. The task is to calculate F (f) where F is a given �xed

functional. This task can be looked upon as a generalization of the

problem of �nding the integral of f over a given interval. The idea

is to approximate f with a linear combination of decaying expo-

nentials f�, which reproduces the given table of functional values.

It is assumed that F (f�) can be evaluated with ease, and several

important examples are given, when this certainly is true. Several

computational schemes are described and the relationships to classi-

cal numerical algorithms are pointed out.

Key words: completely monotonic, decaying exponentials, quadrature rules,

interpolation, semi-in�nite programming, Vandermonde matrix
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1 Formulation of the Problem

We will describe a uniform approach to the following problem: We are
given an equidistant table of n values with step-size h > 0,

fr = f(rh); r = 0; 1; : : : ; n� 1; (1.1)

of a function f which is de�ned for nonnegative arguments. Combining this
information with assumptions to be introduced later, we want to calculate
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the value of a linear functional F (f). We give the following instances of
such functionals:

Example 1.1 (Interpolation) Let T > 0 be a �xed number and put

F1(f) = f(T ): (1.2)

Example 1.2 (Integration) Let a and b be given real numbers such that

0 � a < b and put

F2(f) =

Z
b

a

f(t) dt: (1.3)

Example 1.3 (One-sided Fourier integral) Let ! be a �xed real num-

ber and put

F3(f) =

Z
1

0

e
i!t

f(t) dt: (1.4)

Example 1.4 (Summation and analytic continuation) Let z be a

�xed complex number and put

F4(f) =

1X
r=0

f(rh)zr: (1.5)

Example 1.5 (Error term of the trapezoidal rule) Let f be be such

that the following expression is de�ned:

F5(f) =

Z
1

0

f(t) dt� h

 
f(0)

2
+

1X
r=1

f(rh)

!
: (1.6)

Remark 1.1 The �rst three functionals occur frequently in engineering

mathematics, while the remaining two may require a comment.

Assume that the function A(z) is de�ned by a power series with a radius
of convergence R = 1 and that we need A(z) at a point z0 with jz0j > 1.
If A can be continued analytically to the point z0, then its value there is

well-de�ned, but how to compute it may not be obvious. However, sev-

eral convergence acceleration methods are known, which use the numerical

values of f(rh); r = 0; : : : ; n� 1 as input and deliver values of f(z0) with
accompanying error bounds, even if the de�ning power series (1.5) diverges.

The functional F5 occurs when sums are to be compared with integrals

and either the sum or the integral is easily available. From (1.6) we get

F5(f) =

Z
1

0

f(t) dt� h

 
f(0)

2
+

1X
r=1

f(rh)

!
;
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and

F5(f)� h

2
f(0) =

Z
1

0

f(t) dt� h

1X
r=0

f(rh):

The classical approach to this problem is using the Euler-Maclaurin for-

mula, but then the derivatives of f are required. We will describe a method

which only requires values of the function f itself as input.

It is clear that (1.1) must be combined with quantitative bounds on f , if
one should be able to �nd an estimate of F (f) and an associated error
bound. We have namely the simple

Lemma 1.1 Let F be a linear functional which is de�ned for all functions

f on the nonnegative axis. Then there are functions f satisfying (1.1) such

that F (f) is arbitrarily large, if F (p) 6= 0, where

p(t) =

n�1Y
r=0

(t� rh):

Proof: Let f satisfy (1.1) and put

f1 = f + cp; c a constant

Then f1 satis�es (1.1) for all c, and

F (f1) = F (f) + cF (p):

Since F (p] 6= 0 was assumed, we can select c to render jF (f1)j larger than
any given bound, establishing the Lemma. QED

In order to get useful results one needs to introduce assumptions on
both the functionals F and the admissible functions f . We have namely,
that if f� is an approximation to f then

jF (f�)� F (f)j = jF (f � f
�)j; (1.7)

and this simple relation may be used, if F (f�) is more easily available than
is F (f), and we have some means of estimating the right side of (1.7). A
bound of the type

jF (f � f
�)j � jjF jj � jjf � f

�jj;

is often much too conservative. Compare Remark 3.3
Often one seeks to approximate f by a polynomial f�. This is frequently

done with success for F1 and F2 in classical numerical analysis, even if the
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potential di�culties caused by equidistant interpolation are well-known.
(See e.g. [2]).

An interesting alternative is to work with sinc-expansions, where the
function f is represented by its cardinal series. The reader is referred to
the text-books by Stenger and Lund/Bowers to learn about this approach.
See [17] and [14].

We will instead approximate f by linear combinations of decaying ex-
ponentials. This topic will be dealt with in the Sections to follow. Here we
recall the fact that both the Euler-Maclaurin summation formula and the
Chebyshev acceleration for power series, [7], and [9], may be looked upon
as instances of exponential approximation.

2 Approximation with Linear Combinations of Decay-

ing Exponentials

We �t sums of decaying exponentials to the table (1.1) in the following way.
Let q be an integer, �1; : : : ; �q x1; : : : ; xq reals with 0 � �1; < : : : ; < �q .
Put

f
�(t) =

qX
j=1

xje
��jt; (2.1)

where q and xj ; �j ; j = 1; : : : ; q are to satisfy the constraints

f(rh) =

qX
j=1

xje
��jrh; r = 0; : : : ; n� 1: (2.2)

The condition (2.2) means that

f
�(rh) = f(rh); r = 0; : : : ; n� 1:

In (2.2) we make a change of variables and put

uj = e
��jh; j = 1; : : : ; q: (2.3)

Then we arrive at the more familiar equations

qX
j=1

xju
r

j
= f(rh); r = 0; : : : ; n� 1: (2.4)

Since we may choose the integer q, (2.4), and equivalently (2.2), is solvable.
If we put q = n, then (2.4) becomes a Vandermonde set of equations, which
as known, has a unique solutions. The system may have solutions for other
combinations of q and n. A special case is n = 2`; q = ` when the solution, if
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it exists, de�nes the weights and absciss� of a generalized Gauss quadrature
rule.

We next derive approximations for the functionals F1 through F5 in
Section 1, when f is approximated by f

� in (2.1). Then we �nd after
straight-forward computations:

F1(f
�) =

qX
j=1

xje
��jT ;

F2(f
�) =

qX
j=1

xj

�j
(e��ja � e

��jb);

F3(f
�) =

qX
j=1

xj

�j � i!
;

F4(f
�) =

qX
j=1

xj
1

1� ze��jh
;

F5(f
�) =

qX
j=1

xj

�
1

�j
� h

2
coth(�jh=2)

�
:

We note, that some of these expressions are remarkably simple. Thus
F3(f

�) and F4(f
�) are rational expressions which are easy to tabulate, if

they are considered to be functions of ! and z respectively.

3 E�cient Strategies for Determining Decay Rates and

Weights

3.1 A special class of functions

It is clear, that not all functions f can be e�ciently approximated by sums
of decaying exponentials of the form of (2.1). We shall therefore require
that f satis�es:

Assumption E: The function f is said to satisfy Assumption E on [0;1],
if there are constants c � 0; B > 0 and a Stieltje's integrator d� such that

f(t) =

Z
1

0

e
(c�t)�

d�(�); t � c; (3.1)Z
1

0

jd�(�)j � B: (3.2)

We next illustrate that Assumption E de�nes a fairly large class of func-
tions.
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Example 3.1 The exponential sum (2.1) satis�es Assumption E, with

c = 0. d�(�) has the point-mass xj at � = �j and we may take

B =

qX
j=1

jxj j:

Example 3.2 The function

f(t) =
1

3 + t
;

satis�es Assumption E since we have

1

3 + t
=

Z
1

0

e
��� � e�(3+t��)�d�;

for any � > 0. If we now set

d�(�) = e
���

d�;

we may put c = �3 + � and

B =

Z
1

0

e
���

d� = 1=�:

Example 3.3 All functions satisfying Assumption E may be written as

the di�erence between two functions, which are completely monotonic on

[0;1].

Remark 3.1 Functions, which satisfy Assumption E are analytic and

bounded on any halfplane <(z) = c + �; � > 0. Using the expression

for the inverse Laplace transform, it is straight-forward to verify that ra-

tional functions, which have poles with negative real parts and which are

real-valued for real arguments satisfy Assumption E.

3.2 Quadrature and interpolation

De�nition 3.1 Let F be a linear functional which is de�ned for functions

satisfying Assumption E. Set

G(�) = F (f); when f(t) = e
��t

: (3.3)

Then we shall call G the generating function of F .

We immediately arrive at
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Lemma 3.1 Let F and G be as in De�nition 3.1 and let f satisfy

Assumption E. Then

F (f) =

Z
1

0

e
c�
G(�)d�(�): (3.4)

Proof: We �ndZ
1

0

e
c�
G(�)d�(�) =

Z
1

0

e
c�
F (e�t� )d�(�) =

F

�Z
1

0

e
c�
e
�t�

d�(�)

�
= F (f);

using the expression (3.1) for f(t). QED

We next derive a pair of quadrature and interpolation rules which are
algebraically equivalent. We will also discuss the choice of the nodes. Com-
bining (3.4) and (1.1) with (3.1) we get the relations

G(f) =

Z
1

0

e
c�
G(�)d�(�) (3.5)

fr =

Z
1

0

e
(c�hr)�

d�(�); r = 0; : : : ; n� 1: (3.6)

We next make a change of variables in the integrals (3,5) and (3.6), putting

e
�h� = u:

Then we obtain

G(f) =

Z 1

0

u
�c=h �G(u)d�(u); (3.7)

fr =

Z 1

0

u
�c=h

u
r
d�(u); r = 0; : : : ; n� 1; (3.8)

where
�G(u) = G(� lnu=h); (3.9)

and d�(u) is of bounded variation on [0; 1]. We next prove

Lemma 3.2 Let �G be de�ned by (3.9) and the generating function (3.3)

of the linear functional F . Let u1; : : : ; un be n distinct numbers in [0; 1].
Finally, let x1; : : : ; xn be the solution of the linear system

nX
j=1

xju
r

j = fr; r = 0; : : : ; n� 1; (3.10)
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and let y1; : : : ; yn be the solution of the system:

n�1X
r=0

yru
r

j
= �G(uj); j = 1; : : : ; n: (3.11)

Then
n�1X
r=0

yrfr =

nX
j=1

xj
�G(uj): (3.12)

Proof: We �nd immediately

n�1X
r=0

yrfr =

n�1X
r=0

yr

nX
j=1

xju
r

j
=

nX
j=1

xj

n�1X
r=0

yru
r

j
=

nX
j=1

xj
�G(uj):

QED

Remark 3.2 (3.12) o�ers two di�erent, but algebraically equivalent esti-

mates for F (f) based on the table (1.1) of functional values and the gener-

ating function of (3.3).

We also obtain

Lemma 3.3 Use the same notations as in Lemma 3.2 and put

Q(u) =

n�1X
r=0

yru
r
:

Then we get the error

Rn =

Z 1

0

u
�c=h

�
�G(u)�Q(u)

�
d�(u); (3.13)

when we approximate F (f) with one of the two expressions in (3.12)

Proof: Using (3.8) we �nd

n�1X
r=0

yrfr =

Z 1

0

u
�c=h

 
n�1X
r=0

yru
r

!
d�(u) =

Z 1

0

u
�c=h

Q(u)d�(u):

Combining this with (3.7) we arrive at the desired expression (3.13). QED

We now consider the task of selecting the nodes u1; : : : ; un in order to
minimize bounds for the error Rn as given by (3.13). We will present the
two methods A) and B) below:
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Method A): Assume that �G is continuous on [0; 1]. We seek to render the
expression

max
0�u�1

j �G(u)�Q(u)j (3.14)

small. The optimal value may be computed by means of the exchange algo-
rithm by Remez. (See e.g. [1]). This requires considerable computational
work and the optimal solution depends nonlinearly on �G.

Instead we take u1; : : : ; un at the zeroes of T �n , the shifted nth degree
Chebyshev polynomial. According to [16], the value of (3.14) will be larger
than the optimal by a factor which grows like lnn, when n!1. Thus we
put

uj =
1

2
(1 + cos �j); �j =

(j � 1=2)�

n
; j = 1; : : : ; n: (3.15)

Method B): We next discuss selecting the nodes in order to render the
following expression small:

max
0�u�1

u
�c=hj �G(u)�Q(u)j: (3.16)

Melinder [15] has generalized the result of Powell mentioned above and
shown that one should take uj at the zeroes of the shifted Jacobi polynomial
of degree n corresponding to the weighting function

(1� u)�u� ;

where we in this case take � = �1=2; � = �(2c=h+1=2). Since the three-
terms recurrence relation of the Jacobi polynomials has coe�cients which
are known analytically, the nodes uj can be evaluated in a stable manner.
See e. g. [5].

Remark 3.3 (Construction of exponential approximation to f)

Using either Method A) or Method B) above we determine �rst xj and uj.

From (2.3) we calculate �j and hence (2.1) gives the expression sought.

Note that F (f�) may approximate F (f) well, even if f�(t) deviates appre-
ciably from f(t) for t > nh.

Remark 3.4 (Gauss quadrature) If f is completely monotonic on

[0;1], then (3.10) may be replaced by (2.4) and the corresponding gen-

eralized Gauss quadrature rule can be calculated. It is well-known that nu-

merical di�culties frequently occur, if one seeks to determine the absciss�

and weights from the numerical values of fr in (1.1).

4 Numerical Examples and Applications

If the table (1.1) and the functional F are given, then one only needs the
generating function G to be able to compute F (f) using the methods de-
scribed in Section 3. We mention the examples F1 through F5 in Section
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1. In these cases one gets the approximation formulas listed in Section 2.
Next we present:

Numerical example: We consider the function

f(t) =
1p
1 + t

;

and form the table (1.1) with h = 0:2 and n = 6 Based on these data we
estimate f(T ) for T = 0; 0:1; : : :2:0 We compare two methods:

The �rst one consists of constructing a polynomial of degree 5 which
interpolates the given data and use this polynomial as an approximation for
f . We found that in the interval 0 � T � 1 the observed largest error had
absolute value 2:3�10�5, but for T � 1 the absolute value grew progressively
with T to reach 9:4 � 10�2 at T = 2, the largest T -value studied.

The second method was to construct an exponential approximation for
f(t) using Method A of Section 3, i.e., allocating the nodes uj of (3.11)
according to (3.15). The largest error observed for 0 � T � 1 was 1:2 �10�7
and for 1 � T � 2, it was 2:5 � 10�5. The calculations were carried out by
means of a Fortran program and working in single precision, in this case
a relative error of at most about 1:2 � 10�7. Hence we may conclude that
the exponential approximation reproduced the function f within working
precision in the interval [0; 1], but a certain loss of accuracy was observed
outside the interval. The exponential approximation was more accurate
than straight-forward use of interpolating polynomials in this example.
One should note that this conclusion rests heavily on the fact that the
interpolation points were �xed to be equidistant. It is to be expected that
if F2 is de�ned as the task to integrate over parts of the interval [0; 2], the
conclusion would be similar.

Examples of F3 can be found in [13] where both methods of Section 3
are discussed and applied to numerical examples.

Computation of instances of F4 is dealt with in e.g. [3], [7], [8] and
[10]. Due to the special character of F4 it is possible to calculate the
approximation F4(f

�) without �rst determining the weights xi. This is
true even in the case when f is completely monotonic over the positive
axis and one seeks estimates based on the corresponding generalized Gauss
rules. This is achieved using the �-algorithm by Wynn. See [3]. In the
general case of F4 when (3.12) is used implicitly, the estimate F4(f

�) is
delivered by the Chebyshev acceleration algorithm and its generalization
to the Jacobi case [7], [10] and [12].

The results of preliminary numerical experiments indicate that the sums
of slowly converging positive series may be estimated accurately by calculat-
ing F5(f). This could be an alternative to the Euler-Maclaurin summation
formula when derivatives are not available numerically.
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5 Concluding Remarks

If we employ the methods A and B of Section 3, then the estimate F (f�)
becomes a linear function of the values f0; : : : ; fn�1, as is apparent from
(3.12). This makes the sensitivity analysis simple, since the numbers
y1; : : : ; yn in (3.12) are easily available.

The analysis of the present paper may be extended to the case of a
not equidistant table (1.1). If B in (3.2) is known, one may use semi-
in�nite programming to �nd upper and lower bounds for the value of F (f)
Considerably more computational work will be required. This matter is
dealt with in [11]. An introduction to semi-in�nite programming is given
in [4].
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