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Abstract

Amodel of the neuromuscular mechanics of horizontal eye motion

is developed. The model of the oculomotor system that is presented

incorporates known physiological dynamics and geometry of the mus-

culotendon complex. Muscle force development is a described by a

two-component version of Hill's model and consists of a passive and

active contractile component. The active component includes the

force-velocity and force-length characteristics of the muscle. The

passive component accounts for elastic and viscous e�ects. Acti-

vation dynamics couple the neural controls that are appropriate for

saccadic movements to the muscle mechanics. Numerical simulations

illustrate that the model successfully simulates saccadic movements

and accurately depicts eye position and velocity and muscle tension.

1 Introduction

The modeling of the human ocular system and its dynamic properties have

been extensively studied by neurologists, physiologists, and engineers. One

of the �rst models of eye movement was developed by Descartes [5] in 1630

based on the principal of reciprocal innervation, a notion of paired mus-

cular activity in which a contraction of one muscle is associated with the

relaxation of the other. In 1954 Westheimer [12] developed a linear sec-

ond order approximation of eye dynamics during a saccade in which the

input to the model was assumed to be a step of muscle force. The model
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worked well for 10� saccades but not for larger such movements. In addi-

tion, the model predicted the unphysical results that the time of saccade

duration would be independent of saccade magnitude and that the peak

velocity would be directly proportional to saccade magnitude. A more re-

alistic representation of eye movement was advanced by Robinson [11]. His

linear fourth-order model could simulate saccades between 5� and 40� but

the velocity pro�les predicted by this model were not physically realistic.

It was recognized by Westheimer and Robinson that the eye movement

mechanism was inherently nonlinear, issues not addressed by their work.

Roughly speaking, the nonlinear features of the system can be attributed

to the geometry of the system as well as the nonlinear physiological be-

havior of certain components that describe the extraocular muscle. Martin

and Lu [9] developed a model of the eye system that assumed a linear

model of muscle behavior but accounted for the nonlinear e�ects that oc-

cur when the recti muscles act in a nontangential fashion on the eyeball.

They were able to construct a control law that enabled the eye to track a

target through a range of both large and small displacements. The mus-

cle model that was utilized omitted some physiological features of muscle

and did not distinguish the e�ects of passive and active muscle behavior,

a notion that will be elaborated upon later. Another group of investiga-

tors have concentrated upon ocular models that emphasize the e�ects of

muscular physiology upon system performance. Along these lines, a sixth-

order nonlinear model proposed by Cook and Stark [3] and subsequently

modi�ed in [1] produced realistic position, velocity and acceleration pro-

�les. This Cook-Clark-Stark model addressed the nonlinear relationship

between force and velocity but ignored the force-length characteristics of

muscle. This assumption was tantamount to assuming that the medial and

lateral rectus muscles operate near the primary position that corresponds

to looking straight ahead. Their model incorporates a force-velocity de-

pendence into the active muscle by a velocity dependent viscosity that is

experimentally determined by �tting experimental data to Hill's equation.

The model does not include any passive viscosity and moreover, the pas-

sive elasticity is lumped together with the nonmuscular suspensory passive

tissue.

The model of the oculomotor system that is presented incorporates

known physiological dynamics and geometry of the musculotendon com-

plex. In particular the model for muscle force development is a two-

component version of Hill's model and consists of a passive and active

contractile component. The development allows for the inclusion of very

general force-velocity and force-length characteristics in the active com-

ponent. Unlike the model of [1], the muscle model that is utilized here

includes passive elastic and viscous e�ects. It is pointed out in [15, 8] that

for rapid eye movements, the passive parallel elasticity is important. In
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this paper, attention is focused upon saccadic eye movements which are

among the fastest voluntary muscle movements the human body is capa-

ble of producing. The eye model includes activation dynamics that couple

neural controls which are appropriate for saccadic movements to the mus-

cle mechanics. It should be noted that the model which is investigated

here does not account for the geometric nonlinearities addressed in [9]. A

justi�cation for this assumption is that for saccadic movements, when mo-

tion is typically less than 30�, the nontangential forces associated with the

recti muscles do not occur. Before proceeding to the development of the

model, a a brief review of the relevant physiology and mechanics of muscle

is presented.

2 Musculotendon Dynamics

A commonly used mechanical representation of a skeletal muscle is shown

in Figure 1.
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Figure 1. A mechanical representation of muscle

The muscle mass isMm and the model includes a spring like tendon through

which the muscle force is exerted. The muscle, in series and o�-axis by the

pennation angle � with the tendon, is assumed to consist of two compo-

nents: an active force generator and a parallel passive component. The pas-

sive component is assumed to include a parallel elastic element (Fpe) that

describes the passive muscle elasticity and a damping component which

corresponds to the passive muscle viscosity (Bm). The model for the ac-

tive contractile component is based on the generally accepted notion that

the active muscle force is the product of three factors: (1) a length-tension
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relation, (2) a velocity-tension relation, and (3) the activation level. We

will denote the active muscle force in the normalized form

Fact = F0Fl(�Lm)Fv(
_�Lm)a(t): (1)

Neural excitation, as represented by a sequence of motor unit discharges, is

coupled to the active contractile component by the variable a(t), referred

to as muscle activation. Activation dynamics describe the relation between

the neural input to the muscle and its mechanical activation. The corre-

sponding physiological process within the muscle is the release, di�usion,

and uptake of the calcium ions that control the production of sliding forces

between the actin and myosin �laments. F0 denotes the maximal isomet-

ric force when the muscle is fully active (a = 1) and �Lm = Lm=L0 where

L0 is the length at which the maximal force is achieved. The inclusion of

the pennate angle is not necessary to describe the recti muscles that are

responsible for the horizontal motion of the eye. However, it is included

in the subsequent development and the implications of its inclusion as a

possibility for describing the so-called rectus pulley e�ect [4, 10] will be

elaborated upon later.

Based on the mechanical structure of a muscle as shown in Figure 1,

Levine, Zajac et.al. [7, 14], have developed a dynamical model of the mus-

culotendon actuator. Here we brie
y indicate the relevant results that are

utilized in the eye plant model. We begin by noting that the total muscle-

tendon length Ltm, the muscle length Lm, and the tendon length Lt satisfy

Ltm = Lt + Lm cos�: (2)

Since muscle maintains a constant volume when shortened or stretched,

for the two dimensional model it is required that the muscle width Lw is

constant, or

Lm sin� = Lw = constant:

The total force of a muscle is the sum of the passive elastic force Fpe, the

active force Fact and the viscosity BmLm,

Fm = Fpe + Fact +BmLm:

The tendon elasticity is characterized by the di�erential equation

_Ft = Kt(Ft) _Lt

where Kt = Kt(Ft) describes the force length relationship of the tendon.

The muscle force is related to the tendon force by

Ft = Fm cos�:
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By di�erentiating (2) and using the assumption of constant volume, it

follows that
_Lt = _Ltm � _Lm= cos�

and so the tendon dynamics are expressed as

_Ft = Kt(Ft)( _Ltm � _Lm= cos�): (3)

For the muscle dynamics a force balance gives

Mm

d2(Lm cos�)

dt2
= Ft � [Fact + Fpe +Bm

_Lm] cos�:

By again using the assumption of constant muscle volume it can be shown

that
d2(Lm cos�)

dt2
=

Lm

cos�
�

_L2
m
tan2 �

Lm cos�
:

Therefore, for the muscle dynamics we have

Mm
�Lm = Ft cos�� cos2 �[Fact + Fpe +Bm

_Lm] +
Mm

_L2
m
tan2 �

Lm

: (4)

The passive muscle (when activation is zero) behaves like a spring whose

force-length characteristics are represented by Fpe. Recall that Fact denotes

the purely active force and is given in (1). The e�ects of neural stimulation

upon muscle force are brought to bear upon muscle dynamics through

activation dynamics, a notion to be described in the next sectin. One

could regard activation as the exogeneous inputs into the muscle-tendon

complex and these inputs are manifested through the active component of

the muscle model when multiplied by the force-length and force-velocity

terms. Speci�c forms of force-length and force-velocity as well as Kt and

Fpe will be introduced for the purpose of numerical simulation. The role

of the musculotendon actuator as described by equations (3) and (4) upon

the oculomotor system will now be addressed.

3 The Plant Model of the Eye

Figure 2 shows a top view of the left eyeball. Of the six extraocular muscles,

the lateral and medical recti are used primarily for rotations about the z-

axis, the superior and inferior recti for rotations about the y axis and

the superior and inferior oblique for rotations about the x axis. Only the

medial and lateral recti are shown since the investigation here is restricted

to horizontal movements that correspond to rotations about the z axis.
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Figure 2. Top view of globe with medial and lateral recti muscles respon-

sible for horizontal rotations about z axis.

For displacements from straight ahead that are less than 30� to 40�, the

moment arms of the lateral and medial rectus are approximately equal to

the radius of the eyeball. The mechanics is considerably simpli�ed under

these assumptions and the derivations presented here are restricted to these

range of motions since the primary intent of this work is to model a saccadic

movement.

The di�erential equations that describe eye movement include the mus-

culotendon dynamics in addition to the equation of motion for the globe

and the activation dynamics. One must distinguish the equations that

describe the lateral rectus, (the agonist) and the medial rectus (the antag-

onist). All lengths, forces and parameters that pertain to the agonist will

be denoted as Ft1; Ltm1; Bm1;Mm1, etc, while the corresponding quantities

for the agonist are indicated by Ft2; Ltm2; Bm2;Mm2, etc. Figure 3 shows

the basic arrangement of the elements of the plant, that is, the eyeball or

globe and extraocular muscle. For the sake of convenience, the muscles are

shown unwrapped from the globe as though they were translating it. In

Figure 3, Jg is the moment of inertia of the eyeball which is acted upon by

three forces: the tendon force Ft of the two muscles which constitute the

agonist-antagonist pair and the force of the nonmuscular passive tissues.
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Figure 3. The organization of mechanical elements of the eye model. The

agonist and antagonist elements are denoted by subscripts 1,2 respectively.

Let Ltmp; Ltp and Lmp denote the length of the various elements when

the muscle is in the primary position that corresponds to looking straight

ahead. We assume the primary lengths of the agonist and antagonist are

equal. It should also be noted that the primary position does not cor-

respond to the equilibrium lengths of these elements [6]. Introduce the

change of variables

x1 = Ltm1 � Ltmp

x2 = Lm1 � Lmp

x3 = Lm2 � Lmp

x4 = Ltm2 � Ltmp :

These variables have the interpretation of the change from the primary

position of the tendon and active muscle nodes in the agonist and antagonist

(see Figure 4). Observe that the angular displacement of the globe (in

degrees) is given by

� = 57:296x=r
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where r equals the radius of the eyeball with a value of approximately

11mm.

By Newton's second law and a balance of forces on the globe we have

Jg �� +Bg
_� +Kg� = Ft1 � Ft2:

Since

r� = 57:296(Ltm1 � Ltmp) = 57:296 x;

the equation of motion can be written as

J �x+B _x+Kx = Ft1 � Ft2 (5)

where

J = 57:296Jg=r
2; B = 57:296Bg=r

2;K = 57:296Kg=r
2:

With the above change of variables and because the agonist and antagonist

act in opposite directions on the globe, when pennation e�ects are ignored,

the musculotendon dynamics may be written as

_Ft1 = Kt1( _x � _x2) (6)

_Ft2 = Kt2( _x � _x3) (7)

Mm1�x2 = Kt1(x2 � x)� Fact1 + Fpe1 +Bm1 _x2 (8)

Mm2�x3 = Kt2(x� x3)� (Fact2 + Fpe2 +Bm2 _x3): (9)

The inputs into the model are the neural control signals N1; N2. These

signals are coupled with the purely active muscle force by what are known

as activation dynamics. Here we adopt the approach of [1] and assume

that these processes can be depicted as a low pass �lter with activation-

deactivation time constants t1a; t1d; t2a; t2d. (For a more complete discus-

sion and more sophisticated models of activation dynamics see [14].) In

particular we take

�1 _a1 � a1 = N1 (10)

�2 _a2 � a2 = N2 (11)

where

�1 = t1a[u(t)� u(t� T1)] + t1du(t� T1)

�2 = t2a[u(t)� u(t� T2)] + t2du(t� T2):

Here u(t) is the Heaviside function and T1; T2 correspond to the duration

of the agonist and antagonist pulse.
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The state variables that will be utilized are the three positions x; x2; x3
that correspond to the rotation of the eye, the length of the active mus-

cle, the eye velocity _x, the two tendon forces Ft1; Ft2 and the activation

variables a1(t); a2(t). De�ne

z1 = x = position of eye

z2 = _x = eye velocity

z3 = x2 = position of agonist muscle node

z4 = _x2 = velocity of agonist muscle contaction

z5 = x3 = position of antagonist muscle node

z6 = _x3 = velocity of antagonist muscle contaction

z7 = Ft1 = agonist tendon tension

z8 = Ft2 = antagonist tendon tension

z9 = a1 = agonist activation

z10 = a2 = antagonist activation :

By using equations (6)-(11) one obtains the state equations,

_z1 = z2

_z2 = (�(z7 + z8)�Bz2 �Kz1)=J

_z3 = z4

_z4 = (�z7 � z9Fl1(z3)Fv1(z4) + Fpe1(z3) +Bm1z4)=Mm1

_z5 = z6

_z6 = (z8 � z10Fl2(z5)Fl2(z6) + Fpe2(z5) +Bm2z6)=Mm2

_z7 = Kt(z7)(z1 � z4)

_z8 = Kt(z8)(z1 � z6)

_z9 = (N1 � z9)=�1:

_z10 = (N2 � z10)=�2

It should be noted that the e�ects of nervous activity, that is the controls,

N1; N2, are modulated by the activation dynamics (the last two di�erential

equations). These e�ects contribute to active muscle force by multiplication

with the force-length and force-velocity terms in the di�erential equations

for z4 and z6.

There are a variety of models that have been suggested to account for

the tendon sti�ness Kt, the passive muscle Fpe, the tension-length relation
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Fl,and the tension velocity relation Fv. All studies of the eye have assumed

that the series elasticity parameter Kt to be a constant. Levine, Zajac et

al. [7, 14], have utilized a force length relation of the form

_Ft = Kt(Ft) =

�
(kteFt + ktl) _Lt 0 < Ft < Ftc
kt _Lt Ft � Ftc

where kte; ktl and kt are experimentally determined elasticity parameters

and Ftc denotes the transition point from an exponential to linear spring.

In this same work the passive muscle relation may be expressed in terms

of our current variables (for say, the agonist) as

Fpe(z3) =

�
kml

kme

(ekmez3 � 1) z3 < lmc

kmz3 + fmc z3 > lmc

where kml; kme and km are spring constants and fmc and lmc are respec-

tively the force and length at which the passive muscle elasticity changes

from exponential to linear. Results of [2] suggest that

Fpei = az +
p
bz2 + c; i = 1; 2

where z = z2 or z3. Values are provided for the constants a; b; c and so this

representation of the passive elasticity is employed in the simulations. The

force velocity relation that is employed in the subsequent simulations is

simply Hill's equation. In particular we utilize the results of [1] and adopt

the force-velocity relation Fv( _Lm) = F0 �B _Lm where for the agonist

B =
1:25

1000 + z4

and for the antagonist B = 3=1000: For the force length curve Fl is taken

from [2] and amounts to assuming that Fl depends linearly on the displace-

ment from its optimal length L0. Due to the lack of data for the extraocular

muscles, the simulations that are subsequently presented assume a constant

tendon elasticity. However, certain qualitative insights into system perfor-

mance can be gained from the consideration of the more general models of

tendon and passive elasticity and force-length and force-velocity relations.

Results of these investigations will be presented in future work.

4 Simulations

There are a variety of sources that provide experimental values for the

parameters that appear in the model that has been presented in this paper.

The data used here is taken from [3, 6]. The parameter values are Kg =

:5 gm=�; Jg = 4:3(10�5) gm=s2; Bg = :06 gm=�: There is not universal
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agreement on the relationship between motoneuronal �ring and saccade

duration and amplitude. The following expressions used to represent the

nervous activity are obtained from electromyographic studies and have been

converted into units of force [6]: N1�pulse = 55 + 11� gm; N1�step =

20:6 + 2:35� gm; N2�pulse = :5 gm; N2�step = 20:6 � :74� gm; t1a =

11:7 � :2� ms; t1d = :2 ms; t2a = 2:4 ms; t2d = 1:9 ms; T1 = 10 +

� ms; T2 = T1+6 ms: In the above expression for the pulse amplitude and

duration, � denotes the magnitude of the saccade.

The system of 10 coupled nonlinear di�erential equations for the state

variables z1; � � � ; z10 is solved numerically when the control input corre-

sponds to agonist activity that begins at time t = 1. All of the initial

conditions are zero except those that re
ect the fact that the recti muscles

are not at rest in the primary position. This condition is described by

z3(0) = �z5(0) = 5:6�

z9(0) = z10(0) = 20:6gm:

Simulations of 10� are presented in Figure 5 which illustrates the phe-

nomena of glissadic undershoot and overshoot. If the pulse is too long in

relation to the size of the step, an overshoot with glissadic return is seen.

If the pulse width if too small, undershoot occurs. The numerical calcula-

tions supported the physiological notion that eye motion is quite sensitive

to pulse duration as opposed to the magnitude of the signal. When the val-

ues for pulse and step suggested in the literature were utilized, the model

produced good agreement with the 10� saccade.
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Figure 5. An illustration of glissadic undershoot and overshoot.
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The phase portraits for 10� and 30� saccades are illustrated in Figure

6. When compared with the experimental results of [11], the velocities

predicted by the model provide good agreement.
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Figure 6. Phase portraits for 10� and 30� saccades.

Figure 7 illustrates a possible consequence of omitting the passive elas-

ticity in the muscle model. For instance in [1] and several other studies,

the parallel elasticity is lumped with the passive e�ects of nonmuscular

connective or suspensory tissue. This has tends to overestimate the damp-

ing in the system. When the damping in the globe is reduced and yet

not accounted for in the passive component of the muscle, oscillations as

illustrated in Figure 7 may occur.
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Figure 7. Oscillations may result if passive e�ects are not retained in the

muscle model.

Several issues could be addressed to improve upon the model that has

been presented here. Data suggests that the tendon elasticity is paramet-

rically modulated by the active state tension. Consequently, the tendon

sti�ness Kt should be a function of nervous activity and active force in

addition to the tension in the tendon. The use of a linear approximation

to the passive elasticity and the force-length curve undoubtedly introduces

some error. The role of feedback and the stretch re
ex needs to be explored

within the context of ocular control and movement.
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