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Abstract

A spectral-element technique to approximate partial di�erential

equations on an in�nite domain is examined. The method is based on

Boyd's mapping of a semi-in�nite interval to a �nite interval, and it is

extended to a variational setting which allows for an implementation

using a spectral-element method. By extending the method to a

variational form, a straight-forward implementation allows for high

order approximations over an in�nite computational domain.

1 Introduction

Partial Di�erential Equations (PDEs) on either in�nite or semi-in�nite do-

mains arise in many applications. For example, for a problem that in-

cludes an electromagnetic �eld in 3-D, the �eld may need to be extended

to an in�nite interval to simulate total absorbing boundary conditions.

One of the di�culties in dealing with the in�nite interval is that these

�elds decay to zero but only decay algebraically depending on the dimen-

sion [1, 9, 13, 15, 16]. The approximation of the resulting equations can

give rise to many practical di�culties, especially when Laguerre or Hermite

polynomials are employed to approximate the equations.

The approximation of PDEs on in�nite domains has proceeded on var-

ious fronts. For high order methods, such as spectral elements, the most

common method is through the use of polynomials which are orthogonal

over a semi-in�nite domain. Such methods su�er from a variety of draw-

backs. For example, Laguerre polynomials scale quite badly for large poly-

nomial degrees [4] and o�er poor convergence for approximating solutions

that do not decay to zero exponentially [2].
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To avoid these di�culties, Boyd has proposed a method that proceeds

by mapping a semi-in�nite interval to a �nite interval [2]. The method

is commonly used for relatively simple geometries where a single compu-

tational domain can be employed. The method is adapted for use in the

spectral element method. By adapting the method to allow for a varia-

tional approach, the spectral element method can be extended to allow for

semi-in�nite subdomains.

A numerical method is proposed in which the computational domain

is divided into non-overlapping subdomains. The semi-in�nite subdomains

are approximated by �rst mapping them to �nite subdomains through the

use of an algebraic mapping [2]. An example is given for the approximation

of the Helmholtz equation. Numerical examples are given for the method

for the approximation of Navier Stokes incompressible 
ow as well as a

comparison with Laguerre polynomial approximations.

2 Spectral Elements

Spectral elements are employed to build high-order approximations to avoid

some of the restrictions of single domain spectral methods. The spectral

element method allows for approximations on more complicated geome-

tries when compared to a single domain spectral method by dividing the

domain of a problem into non-overlapping subdomains. Within each sub-

domain, an approximation is constructed as a linear combination of high

order orthogonal polynomials.

Speci�cally, Legendre polynomials are used to build a variational formu-

lation. Such an approach is essentially the h�p �nite element method and

allows for simple p-re�nement. The traditional spectral element method

builds on the collocation method, in which the approximation is found

from the polynomial interpolating on the abscissa of the Gauss-Lobatto

quadrature. Here an approximation is constructed in the spectral space.

The approximation is found as a linear combination of the Legendre poly-

nomials.

A simple test case is examined, to demonstrate the spectral element

method with a local Fourier basis. The method is demonstrated for a simple

Helmholtz equation, and an application to Navier-Stokes incompressible


ow over a back-step is given. The method is then extended to a semi-

in�nite computational domain. This is done by �rst examining Laguerre

polynomials, and �nally a new method is given which is based on the work

of Boyd [2]. In this method, the semi-in�nite subdomains are mapped to a

�nite domain via an algebraic mapping. Once done, a variational form is

derived.
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2.1 Introduction to spectral elements with local spec-

tral basis

An approximation is found in the spectral space. In order to �nd the

approximation, the space of polynomials up to degree N is divided into the

polynomials that are zero on the boundaries and those that are not,

�i(x) =

8<
:

1+x
2

i = 0;
1�x
2

i = 1;

Li(x) � Li�2(x) i > 1;

(2.1)

for i = 0 : : :N , and Li(x) is the i
th Legendre polynomial. The span of the

test functions is the span of polynomials up to degree N , and each of the

�i's are linearly independent. The choice of these functions is motivated

by the results of Shen [14]. As will be seen, the resulting sti�ness matrix

for the 1D problem is nearly diagonal, and the mass matrix is tridiagonal.

(Because the mass matrix is not diagonal inverting the relevant systems of

equations leads to a greater number of operations.) Since a tensor product

of the basis functions is used for the higher dimensional problems, the result

is a very sparse system of equations. The primary di�erence from the work

of Shen [14] is the addition of �0 and �1, and implementing it as a spectral

element method. The two new linear basis functions are used to form a

hat function whose support includes adjacent subdomains.

To present the method and to avoid too many technical details, a simple

1D Helmholtz equation is examined �rst,

uxx + �u = f(x); (2.2)

x 2 (�1; 1);

u(�1) = 0:

If the domain, (�1; 1), is divided into two subdomains, (�1; 0) and (0; 1)

(see Figure 1), then within each subdomain, an approximation is con-

structed as a linear combination of the basis functions,

u0N (x) =

NX
i=0

û0i�
0
i (x); x 2 (�1; 0); (2.3a)

u1N (x) =

NX
i=0

û1i�
1
i (x); x 2 (0; 1); (2.3b)

where the basis functions are de�ned within each subdomain,

�0i (x) = �i(2x+ 1); (2.4a)

�1i (x) = �i(2x� 1): (2.4b)
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�1 0 1

u0N(x) u1N (x)

Figure 1: A Multi-Domain Example in 1-D for subdomains 0 and 1.

To build the linear system of equations to approximate equation (2.2),

a variational form for each test function is constructed. First, on subdo-

main 1, the variational form for the test functions which are zero at the

subdomain interfaces is found,

�

Z 0

�1

�
u0N (x)

�
x

�
�0m(x)

�
x
dx+

Z 0

�1

�u0N (x)�
0
m(x)dx (2.5)

=

Z 0

�1

fN (x)�
0
m(x)dx;

for m = 2 : : :N . Next, the variational form for the test functions which are

zero at the subdomain faces is found for subdomain 1,

�

Z 1

0

�
u1N (x)

�
x

�
�1m(x)

�
x
dx+

Z 1

0

�u1N (x)�
1
m(x)dx (2.6)

=

Z 1

0

fN (x)�
1
m(x)dx;

for m = 2 : : :N . Next the variational form for the hat function spanning

the two subdomains is constructed (see Figure 2),

�

Z 0

�1

�
u0N(x)

�
x

�
�00(x)

�
x
dx+

Z 0

�1

�u0N (x)�
0
0(x)dx (2.7)

�

Z 1

0

�
u1N (x)

�
x

�
�11(x)

�
x
dx+

Z 1

0

�u1N (x)�
1
1(x)dx =

Z 0

�1

fN (x)�
0
0(x)dx +

Z 1

0

fN (x)�
1
1(x)dx:

Finally, the boundary conditions are enforced, and continuity at the sub-

domain interface is enforced,

u0N(0) = û00 = u1N(0) = û11:

u0N(�1) = û01 = 0;

u1N(1) = û10 = 0:

(2.8)
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Figure 2: Trial functions �00(x) and �11(x) combine on adjacent subdomains

to assemble a \hat" function on adjacent subdomains.

To build the linear system of equations, the approximations, equations

(2.3a) and (2.3b), are substituted into the variational formulation given in

equations (2.5) through (2.8). For example, the sti�ness matrix, SN , can
be found, by �rst substituting equation (2.3a) into the variational form,

�

Z 0

�1

�
u0N(x)

�
x

�
�0m(x)

�
x
dx =

NX
i=0

û0i

�
�

Z 0

�1

�
�0i (x)

�
x

�
�0m(x)

�
x
dx

�
:(2.9)

The sti�ness matrix can then be de�ned,

(SN )mi = �2

Z 1

�1

(�i(x))x (�m(x))x dx: (2.10)

In this Galerkin formulation, the choice of test functions, �i(x), o�ers

an advantage. As pointed out by Shen [14],

�

Z 1

�1

(Li(x) � Li�2(x))
0

(Li(x)� Li�2(x))
0

dx (2.11)

= �

Z 1

�1

(2i� 1)Li�1(x) (2j � 1)Lj�1(x)dx;

= � (2i� 1) (2j � 1) ;

Z 1

�1

Li�1(x)Lj�1(x)dx

= �2 (2i� 1) �ij :

The �nal result follows from the orthogonality of the Legendre polynomials.

The result is that the sti�ness matrix for the 1D problem is diagonal for

rows greater than 1, and is block diagonal (2 � 2) on rows 0 and 1 (see

Figure 3). The mass matrix is tridiagonal, and since a tensor product is

used for higher dimensions, the result is a sparse linear system.
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Figure 3: Comparison of the sti�ness matrix for the collocation and the

local spectral schemes.

2.2 Spectral element approximation of Navier-Stokes

incompressible 
ow

As a demonstration of a 2D approximation, the incompressible Navier-

Stokes 
ow equation,

ut + (u � r)u+rp =
1

Re
r2

u; (2.12)

subject to r � u = 0;

with no slip boundaries is examined [6]. The geometry examined is for


ow over a backstep. The spatial discretization employed is the same as

examined in section 2. The temporal discretization is based on the the

splitting method [10] and the methods proposed by Karniadakis, et al [8].

The splitting method is a convenient scheme to separate the actions of the

two spatial operators acting on the velocity,

N (u) =
1

2
((u � r)u+r � (uu)) ; (2.13)

L(u) =
1

Re
r2

u:

(The implementation employs the skew-symmetric form of the nonlinear

operator).

Following the method proposed by Karniadakis, et al [8], the pressure

is not calculated, rather the time averaged pressure is approximated. The
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three relevant spatial operators can then be isolated in three separate steps,

~uN � u
n
N = �

Z tn+1

tn

N (uN ) dt; (2.14a)

�~uN + ûN = �r�p; subject to r � ûN = 0; (2.14b)

u
n+1
N � ûN =

Z tn+1

tn

L(uN ) dt: (2.14c)

In the �rst time step the nonlinear term is integrated through the use

of an explicit method such as those from the Adams-Bashforth family of

schemes while the third step employs an implicit step such as those found

in the Adams-Moulton family of schemes. Because an explicit step is taken

there is a restriction on the time step. However, the more stringent restric-

tion on the time step comes from the Stokes operator. This is mitigated

through the use of the implicit step in the �nal equation.

The boundary conditions are found in the same manner as that pro-

posed by Karniadakis, et al [8], and Neumann type boundaries are em-

ployed [6]. For the pressure calculation, the boundaries are calculated by

splitting the Laplace operator into its solenoidal and irrotational parts. Be-

cause the divergence of the velocity is to be zero at a future time step, an

implicit scheme is used to integrate the irrotational part of the operator,

while an explicit scheme is used for the solenoidal part.

For the 2D equations, both the basis and test functions are taken as

tensor products of those found in the 1D case. Within each subdomain an

approximation is constructed which is a linear combination of the Legendre

polynomials, for (x; y) in subdomain r,

urN (x; y) =

NX
j=0

NX
i=0

ûrij�
r
i (x)�

r
j (y): (2.15)

The test functions are also found as a simple tensor product, �rj (x)�
r
i (y).

Continuity across the subdomain interfaces are enforced by minimizing

the di�erence between the approximations on adjacent subdomains. For

example, if subdomain r is to the right of subdomain l then on subdomain

r the boundary xr = �1 is adjacent to the boundary on subdomain l when

xl = 1 (see Figure 4). The continuity across this interface is enforced by

requiring that the di�erence between the two approximations be orthogonal

to the space of polynomials of degree N ,

Z 1

�1

�
ulN(1; y)� urN (�1; y)

�
Lj(y)dy = 0; (2.16)

j = 0 : : :N:
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l r

Ω

Figure 4: Example of two adjacent subdomains, subdomain l and r.

If a conforming method is employed, continuity is insured when ûl0i = ûr1i,

for i = 0 : : :N since the basis functions are linearly independent.

An example of the results of such an approximation is shown in Figure

6. In the example, the velocity �eld is shown for two di�erent Reynolds

numbers, Re=200 and Re=400. Because the domain can be divided into

separate subdomains (see Figure 5), a more complex geometry can be ac-

commodated when compared to a single domain spectral method.

3 Laguerre Polynomials

At �rst glance, the Laguerre polynomials seem to be a natural candidate

for approximating PDE's on a semi-in�nite domain. The Laguerre polyno-

mials, denoted L
(0)
i (x) for the ith Laguerre polynomial, are orthogonal on

the semi-in�nite domain with respect to the weight function e�x [5],

Z
1

0

L
(0)
i (x)L

(0)
j (x)e�xdx = �ij : (3.1)

There is an abundance of theoretical results on Laguerre polynomials.

Most noticeably, both Funaro [3] and Maday [11] have shown many theo-

retical results on the accuracy of such methods. However, in practice, there

are also many di�culties associated with Laguerre polynomials [12]. First,
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Figure 5: Flow over a backstep and the domain decomposition.

the Laguerre polynomials scale quite badly for the larger degree polyno-

mials [4]. Moreover, the Laguerre polynomials su�er considerably in the

small range of boundaries that can be accommodated at in�nity [12]. Fi-

nally, the Laguerre polynomials experience spectral convergence only for

solutions that decay to zero exponentially [2].

On the positive side, for approximations to solutions that decay ex-

ponentially to zero, Laguerre polynomials o�er a simple implementation.

For example, for a spectral element method, semi-in�nite domains can be

accommodated through the following basis functions,

�0(x) = L
(0)
0 (x)e�x=2; (3.2a)

�i(x) =
�
L
(0)
i (x)� L

(0)
i�1(x)

�
e�x=2; i > 0: (3.2b)

Through these basis elements a variational approximation can be con-

structed. This is made easier since, as de�ned, the basis functions satisfy

the following identities,

�0(0) = 1; (3.3a)

�i(0) = 0; i > 0; (3.3b)

d

dx

�
L
(0)
i (x)� L

(0)
i�1(x)

�
= �L

(0)
i�1(x); i > 0: (3.3c)

Here the function �0(x) is employed to form a basis function whose support

includes two adjacent subdomains. The technique is used in the same man-

ner as in the situation with �nite subdomains, and the resulting sti�ness

and mass matrices are both symmetric and tridiagonal.
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Re=400

Re=200

Figure 6: Spectral element approximation of 
ow past a back-step. The

approximation within each subdomain consists of a polynomial of degree 6

in both the x and the y directions. The maximum velocity at the inlet is

one and the height of the step is one half.

4 Algebraic Mapping

Another common method for building an approximation on a semi-in�nite

domain is through the use of the algebraic mapping proposed by Boyd [2].

By mapping the semi-in�nite interval, [0;1), to a �nite interval, [�1; 1].
Orthogonal polynomials can be constructed to construct an approximation

on the �nite interval.

The method proposed is �rst introduced and a simple 1D example is

given. Once done, comparisons are given between the mapping and La-

guerre polynomials. In the examples, a 1D Helmholtz equation is examined

on an in�nite domain. In the �rst comparison, the solution to the equa-

tion decays to zero exponentially, while in the second example, the solution

decays to zero algebraically.

4.1 Mapping to a �nite subdomain

We propose to adapt the mapping �rst proposed by Boyd [2],

y = M
1 + x

1� x
; (4.1a)
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x =
y �M

y +M
: (4.1b)

The mapping can be utilized to construct an approximation on the �nite

interval. The method proposed by Boyd [2] has often been employed for

the single domain problem. While the method has been used for the single

domain case, we propose to extend its use to the multidomain approach.

The idea is to use standard spectral elements in an area of the domain

in which the solution might experience relatively rapid changes. Far away

from this area, where the approximation does not experience such change,

a semi-in�nite domain is employed.

For example, given a simple 1D Helmholtz equation,

uxx + �u = f; (4.2)

x 2 (�1;1);

lim
x!1

u(�x) = 0;

the area around the origin can be approximated using spectral elements

with a �nite subdomain. Away from the origin, semi-in�nite subdomains

can be employed. For the semi-in�nite subdomains, the following functions

are de�ned (the notation introduced by Boyd [2] is employed here),

LMn(y) = Ln

�
y �M

y +M

�
(4.3)

= Ln(x);

where Ln(x) is the nth Legendre polynomial. To take advantage of the

orthogonality of the Legendre polynomials, a weight function is required,

Z
1

0

LMn(y)LMm(y)
2

(y +M)
2
dy =

Z 1

�1

Ln(x)Lm(x)dx (4.4)

=
2

2n+ 1
�nm:

Choosing the test function in the same manner as in section 2,

�Mj(y) =

8<
:

1+x
2

j = 0
1�x
2

j = 1

Lj(x)� Lj�2(x) j > 1;

(4.5)

leads to a mass matrix that is identical to that used for the �nite subdo-

mains. The sti�ness matrix is not as elegant as that found in section 2,

though. The sti�ness matrix, while not diagonal, is a banded matrix, with

band width 5. While the new sti�ness matrix is not symmetric, the new

approximation can be employed for a much wider collection of boundary
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conditions at in�nity. In fact, the boundaries are enforced in exactly the

same way as is done for a �nite domain.

The sti�ness matrix for the in�nite subdomain is found in the same

manner as for the �nite subdomains,

(SN )mj = �

Z
1

0

d

dy
(�Mj(y))

d

dy

�
�Mm(y)

2M2

(y +M)2

�
dy (4.6)

= �
M

2

Z 1

�1

�0j(x)
(1� x)2

2M
�0m(x)

(1� x)2

2M
dx

+
M

2

Z 1

�1

�0j(x)�m(x)
(1 � x)3

2M2
dx:

The factor M should scale linearly to capture large scale variations in

the solution [2]. However, because the method is de�ned to be used in

conjunction with a spectral element method, an in�nite domain can be

\moved" further away from the origin by increasing the number of �nite

subdomains that are employed. One 
exibility in the spectral element

method is that it allows for greater resolution by increasing the number of

subdomains.

4.2 Comparison with Laguerre polynomials

To employ this approach with the spectral element method, the basis func-

tions are de�ned in exactly the same way. The basis functions, as de�ned,

can be easily divided into those test functions that are zero on the subdo-

main boundaries, and those that are not zero on the subdomain boundaries.

In this way the test functions that span two adjacent subdomains are de-

�ned in exactly the same way, and the implementation is a simple extension

to the semi-in�nite interval.

For example, to approximate equation (4.2), the domain is divided into

non-overlapping subdomains. The interval [�5; 5] is divided into �nite

subdomains, the remaining two subdomains are (�1; 5] and [5;1). Within

each of the semi-in�nite domains, an approximation is constructed from a

linear combination of the basis functions de�ned in equation (4.5). The

interval [�5; 5] is divided into four subdomains, the interval (�1; 5] is

denoted subdomain 0, the interval [5;1) is denoted subdomain 6, and the

remaining subdomains, 1 through 4, are found from equally spaced �nite

intervals within [�5; 5]. In this situation, the basis functions on subdomain

n, �ni (x), only have support on subdomain n for i = 2 : : :N . The functions

�n0 (x) and �n1 (x) are used to construct basis functions whose support only

includes adjacent subdomains and to enforce the boundary conditions.

To compare Laguerre polynomials and Boyd's mapping method, two

separate situations are examined. The �rst is a situation where the so-

lution decays to zero exponentially, and the second is a situation where

12
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Figure 7: Spectral element approximation of a solution with exponential

decay using Laguerre polynomials and algebraic mappings on the outer

subdomains. The errors for the Laguerre polynomials are denoted by �,
while the errors for the mapping to the �nite interval are denoted by �.

the solution decays to zero algebraically. In both of these examples, a 1D

Helmholtz equations is examined, equation (4.2), and in both cases � = 2.

In the �rst example, the forcing function, f(x), is (2 + �)e�x
2

+ 4x2e�x
2

,

and in the second example the forcing function is 8x2

(1+x2)3
� 2

(1+x2)2
+ �

1+x2
.

The L1 errors for the two trials are shown in Figures 7 and 10 (a brief

discussion of the L2 errors is given in Appendix A). The approximation that

utilizes Laguerre polynomials does exhibit fast convergence to the equation

whose solution decays to zero exponentially (Figure 7). However, this is

not the case for the approximation to the equation whose solution does

not decay as fast. The method using the proposed mapping, though, does

exhibit similar convergence properties for both situations. Figures 9 and

10 demonstrate the L1 errors on the interval [-5,5] (the error is calculated

only on the interval [-5,5]).

To test the method utilizing the mapping in a 2D case, a Poisson equa-
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Figure 8: Spectral element approximation of a solution with algebraic decay

using Laguerre polynomials and algebraic mappings on the outer subdo-

mains. The errors for the Laguerre polynomials are denoted by �, while
the errors for the mapping to the �nite interval are denoted by �.

tion is examined,

4u =
4x2 + 4y2 � 4

(1 + x2 + y2)
3
; (4.7)

lim
x!1

u(�x; y) = 0;

lim
y!1

u(x;�y) = 0:

The solution to this equation, 1
1+x2+y2

, decays to zero algebraically. In

this test case 16 subdomains are employed. Four �nite subdomains are

employed on the unit square, [�1; 1]� [�1; 1]. Away from the unit square

semi-in�nite subdomains are employed to construct an approximation (see

Figure 11). The errors are shown in Table 1, and the errors are the max-

imum errors found on the abscissa of the Legendre-Gauss quadrature on

each subdomain.
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Figure 9: Spectral element approximation of a solution with exponential

decay using Laguerre polynomials and algebraic mappings on the outer

subdomains. The errors for the Laguerre polynomials are denoted by �,
while the errors for the mapping to the �nite interval are denoted by �.
The errors given are found by examining only the interval [-5,5].

Nx = Ny L1 Error

8 5.206259e-04

10 2.438615e-04

12 1.365491e-04

14 7.567740e-05

16 4.658750e-05

Table 1: Maximum Errors for the approximation of a Poisson equation

on an in�nite domain. For each approximation 16 subdomains are em-

ployed, and the polynomial degree is given for each trial. For each trial the

polynomial degree for both the x and y direction are equal.
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Figure 10: Spectral element approximation of a solution with algebraic

decay using Laguerre polynomials and algebraic mappings on the outer

subdomains. The errors for the Laguerre polynomials are denoted by �,
while the errors for the mapping to the �nite interval are denoted by �.
The errors given are found by examining only the interval [-5,5].
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Figure 11: Close-up view of the domain decomposition for the 2D in�-

nite domain. The grid is found from the abscissa of the Legendre-Gauss

quadrature. The four �nite subdomains are employed to decompose the

unit square [�1; 1]� [�1; 1]
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A L
2 Errors for a Single Domain Approximation with

Laguerre Polynomials

Theory for the convergence estimates of Laguerre polynomials are based on

an L2 norm [3, 11, 12]. In particular, the basis functions de�ned in section

3 are de�ned through the use of the Laguerre polynomials,

�0(x) = L
(0)
0 (x)e�

x

2 ; (A.1)

�i(x) = (L
(0)
i (x)� L

(0)
i�1(x))e

�

x

2 ; i > 0:

When the factor e�
x

2 is included in the basis functions, the relevant norm

is the L2[0;1) norm [12].

jjujj =

Z
1

0

u2(x)dx: (A.2)

The integral can be approximated through the use of the Gauss quadrature.

As discussed by Boyd [2], the convergence of an approximation con-

structed through the use of Laguerre polynomials depends on the behavior

of the solution at in�nity. As a demonstration, a simple single domain ap-

proximation is examined. Approximations for two equations are examined,

u00 = e�x; (A.3)

u(0) = 1;

lim
x!1

u(x) = 0;

and

u00 = �2(1 + x2)�2 + 8x2(1 + x2)�3; (A.4)

u(0) = 1;

lim
x!1

u(x) = 0:

The solution to equation (A.3), e�x, decays to zero exponentially while the

solution to equation (A.4), 1
1+x2

, decays only algebraically.

The L2 errors for both approximations is given in Figure 12. The results

are similar to those when the L1 error are examined. The errors for the

approximation to equation (A.3) demonstrate spectral convergence, while

the approximation to equation (A.4) do not.
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Figure 12: L2 errors for a single domain approximation utilizing Laguerre

polynomials. Errors for the approximation of a solution that decays to zero

exponentially are denoted by an � while errors for the approximation of a

solution that decays only algebraically are denoted by an �.
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