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Observability on Noncompact

Symmetric Spaces�

Joseph A. Wolfy

1 The General Problem

Let X be a di�erentiable manifold and D a di�erential operator on X . Let

f(x : t) be a solution to the evolution equation

Dxf(x : t) +
@

@t
f(x : t) = 0 (x 2 X; t = 0): (1.1)

Choose an \observation time" t0 > 0. Our problem is to �nd points

fx0; x1; : : : g � X such that

(a) the values f(xi; t0); 1 5 i 5 n, determine a reasonable approximation
bn(x) to the initial data b(x) = f(x : 0),

(b) limn!1 bn(x) = b(x) in some reasonable way, and

(c) we understand the speed of convergence well enough to know when

to stop.

The \classical case" is the case in which X is a compact riemannian man-

ifold and D is the (positive de�nite) Laplacian. Then (1.1) is the heat

equation on X . In this paper we'll look at the special case where X is a

riemannian symmetric space of noncompact type. Thus X is a noncompact

riemannian manifold with a very large symmetry group G, harmonic anal-
ysis on X is understood in terms of the structure of G, and the operator

D is G{invariant. The idea is to use some geometry and group structure

to guide methods of observation, control and quadrature.
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Wallace and I had looked at this situation for compact X , speci�cally

when X is a compact homogeneous or symmetric space G=K. See [12] for

the observability and [13] for the speed of convergence.

At this point one should ask why we are looking at such complicated

models. The reason is that a lot of special function theory and approxima-

tion theory, usually viewed analytically, can also be viewed geometrically.

The point is much of special function theory is tied to group representation

theory and the geometry of riemannian symmetric spaces. This is old news,

but we mention it again to emphasize the fact that one can look to non{

euclidean geometry, as well as euclidean geometry, as a guide to setting up

mathematical models. Here we refer the reader to Helgason's books [8] and

[9] for an introduction to geometry and analysis on symmetric spaces.

2 Review of Compact Case

We review the setting and indicate some of the results of [12] and [13].

Let S = K=M , compact riemannian homogeneous space. Thus K is

a compact Lie group, S is a riemannian manifold, and K acts smoothly

and transitively on S preserving the riemannian metric. Choose a base

point s0 2 S and set M = fk 2 K j k(s0) = s0g. Then S is in bijective

correspondence k(s0)$ kM with the coset space K=M .

For example one might have S = Sn, unit sphere in R
n+1 with induced

riemannian metric of constant curvature +1, with s0 = t(0; : : : ; 0; 1), col-
umn vector, with K = SO(n+ 1) rotation group, and with M = SO(n).

LetD be a closedK{invariant di�erential operator on S. In the example
of Sn, D could be any polynomial in the positive de�nite Laplace{Beltrami

operator �. In any case consider the invariant evolution equation with

initial data b(s), given by

Dxf(x : t) +
@

@t
f(x : t) = 0; f(s : 0) = b(s) (2.1)

for x 2 X; t = 0. Invariance and the Peter{Weyl Theorem show that D is

a normal operator on L2(S) and that

L2(S) =

1X
j=0

A(�j) where A(�j) = �j{eigenspace of D: (2.2)

Here D has discrete spectrum, again by K{invariance of D and the Peter{

Weyl Theorem. In the special case S = Sn and D = � one has �j =
(n�1)j+j2

2n�2
and dimA(�j) =

n�1+2j
n�1

Qn�2
k=1

k+j
k
. In general, choose

f�j;1; : : : ; �j;djg : orthonormal basis for A(�j): (2.3)
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Then the general solution to (2.1) with L2 initial data is

f(s : t) =

1X
j=0

djX
i=1

cj;ie
�t�j�j;i(s) for s 2 S; t = 0 with

X
jcj;ij

2 <1:

(2.4)

The observability problem is to recover the coe�cients cj;i, 1 5 j 5 r, from
the appropriate number d0 + � � �+ dr = nr of point evaluations

fr(s : t0) =

rX
j=0

jX
i=1

cj;ie
�t0�j�j;i(s) (2.5)

of the truncated sums for f(s : t). The acuity problem is to �nd the speed

of convergence of the ffrg ! f . This is done in [12] and [13].

3 Noncompact Symmetric Spaces

We now consider a situation in which the manifold and the group are non-

compact, the case whereX is a riemannian symmetric space of noncompact

type, G is the largest connected group of isometries, and D is a G{invariant
di�erential operator on X . Here the analysis combines that of the compact

case described in Section 2 above, with somewhat more classical methods

for the euclidean case.

We recall some of the basic structural results on X and G. First, G is a

connected semisimple Lie group with center reduced to f1g. The isotropy

subgroups of G on X are just the maximal compact subgroups. Choose

a base point x0 2 X , or, equivalently, the maximal compact subgroup

K = fg 2 G j g(x0) = x0g in G.
The �rst example, real hyperbolic space, is the open unit ball X = fx 2

R
n j jjxjj < 1g. The connected special orthogonal group eG = SO(n; 1) acts

on X by �
a b
c d

�
: x! (ax+ b)(cx+ d)�1 (3.1)

where a is n�n, b and x are n� 1, c is 1� n and d is 1� 1. Here we take

x0 to be the zero vector, so K = f( a 0
0 1 )g

�= SO(n).
Write g and k for the respective Lie algebras (algebras of in�nitesimal

generators) of G and K. Conjugation g 7! sx0gs
�1
x0

by the symmetry sx0
of X at x0 , is an involutive automorphism � of G with �xed point set K.

We also write � for its di�erential. Now the decomposition of g into (�1){

eigenspaces of � is g = k+p. Choose a maximal abelian subspace a � p and

let A denote the corresponding analytic subgroup of G. De�neM = ZK(a)
andM 0 = NK(a), centralizer and normalizer of a (or, equivalently, of A) in
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K. We write m for their Lie algebra. The quotientW =M 0=M is the Weyl

group, a �nite group that acts by conjugation on a and, by duality, on a
�.

We will need it below. The quotient K=M , which we also need below, is the

Furstenberg boundary or minimal boundary of X , ideal boundary on which

bounded harmonic functions take their maximal values [5]. We will use it

for an extension of the idea of polar coordinates and only tangentially for

its potential{theoretic properties.

Some basic facts: A(x0) is a maximal 
at totally geodesic submanifold

of X and G = KAK. Thus X = KA(x0) and we have surjective maps

(K=M 0)�A(x0)! X and (K=M)� (M 0nA(x0))! X (3.2)

de�ned by (kM; a(x0)) 7! ka(x0) .
Let's look at this when X is the real hyperbolic n{space H n . We view

H
n in Poincar�e's model, as the open unit ball in real euclidean n{space

R
n . Its geodesics are the circular arcs or straight line segments inside the

unit ball that meet the boundary sphere orthogonally. We parameterize H n

using polar coordinates (t; �) where t is radial distance (in the hyperbolic

metric) from the base point x0 = 0 2 R
n and � is the coordinate on the unit

sphere in the tangent space at x0 . Thus k�at(x0) has coordinates (t; �)

where at =
�
0 0 t
0 0 0
t 0 0

�
2 G and k� is any

�
k0� 0

0 1

�
2 K such that � = k0� (

1
0 ) is

the �rst column of k0� 2 SO(n). In other words a =
n�

0 0 t
0 0 0
t 0 0

���� t realo, so

A =
n�

cosh t 0 sinh t
0 I 0

sinh t 0 cosh t

���� t realo and A(x0) =

8<
:
0
@ tanh t

0

...
0

1
A
������ t real

9=
; ;

and any element k =
�
k0 0
0 1

�
; k0 2 SO(n), acts linearly as k on the ambient

R
n . Note that the range of tanh t is the open interval (�1;+1). Now

M =
n�

1 0 0
0 m 0
0 0 1

����m 2 SO(n� 1)
o
;

M 0 =
n�

� 0 0
0 �m 0
0 0 1

����m 2 SO(n� 1) and � = �1
o
;

and

M 0nA(x0) =

( u
0

...
0

!����� 0 5 u < 1

)
:

The adjoint representation of g is the Lie algebra representation of g on

itself de�ned by ad(�) : � 7! [�; �]. Here [�; �] is the Lie algebra product. If g
is a matrix Lie algebra it is given by the commutator, [�; �] = �����. In any
case ad(a) is simultaneously diagonalizable. The joint eigenvalues are linear

functionals � 2 a
�. The nonzero ones are called the a{roots or restricted
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roots. Write � = �(g; a) for the set of a{roots. If � 2 � the corresponding

root space is the joint eigenspace g� = f� 2 g j [�; �] = �(�)� for all � 2 ag.

If � 2 � then �� 2 � as well. A positive a{root system is a subset

�+ = �+(g; a) � � such that (i) � = �+ [ (��+), disjoint, and (ii) if

�; � 2 �+ and � + � 2 � then � + � 2 �+ . The Weyl group W acts

simply transitively on the set of all positive a{root systems. Fix a choice

of �+ . Let � denote half the sum of the positive roots, with multiplicity,

in other words � = 1
2
��2�+(dim g�)�.

Every � 2 a
� de�nes a positive de�nite spherical function �� : X ! C ,

by the equation

��(kax0) = e�(i�+�)(�); k 2 K; a 2 A; � = log a 2 a: (3.3)

Here �w� = �� for all w 2 W . The spherical transform on X is the map

from functions f : X ! C to functions bf : (a�=W )� (K=M)! C , given by

bf(�; kM) =

Z
G

f(g)��(g
�1k)dg (3.4)

whenever the integral converges. Fact: if f 2 C1c (X) then bf 2 C((a�=W )�

(K=M)), the space of rapidly decreasing C1 (Schwartz class) functions on

(a�=W )� (K=M). See (4.1) below.

If � 2 � we write m(�) for its multiplicity, m(�) = dim g� . If � is a

multiple of another a{root, say � = n�, then n = �1 or n = �2. We write

m(�=2) for m(�) if � = 2�, for 0 if �=2 62 �.

Write �0 for the system of indivisible roots, that is, a{roots � 2 � such

that 1
2
� =2 �. Denote �+

0 = �0 \ �+ .

The Plancherel density on X is de�ned by the famous c{function of

Harish{Chandra1. If � 2 a
�
C
then

c(�) = c0
Y

�2�+
0

2�hi�;�0i�(hi�; �0i)

�( 1
2
( 1
2
m� + 1 + hi�; �0i))�(

1
2
( 1
2
m� +m2� + hi�; �0i))

where �0 = �
h�;�i

and c0 is the constant speci�ed by c(��) = 1. The

Plancherel density is jc(�)j�2. It occurs in both the Plancherel Theorem

and the Fourier Inversion Formula below. An example: if X is the real

hyperbolic plane fx 2 R
2 j jjxjj < 1g then jc(�)j�2d� = 1

2�
� tanh(��)d�.

Theorem 3.5 (Plancherel Theorem). Let f 2 C1c (X) and de�ne bf as

in (3.4). Then

1Harish{Chandra determined the c{function both for G complex and for G of real

rank 1 in 1958 [7]. Then in 1960 Bhanu{Murthy determined c(�) for all but one of the

classical simple groups G that are normal real forms ([1], [2]). Finally, in 1962 Gindikin

and Karpelevi�c proved the general product formula for c(�) based on Harish{Chandra's

rank 1 formulae [6]. See Helgason ([8] or [9]) for expositions.
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(a) bf 2 C((a�=W )� (K=M)),

(b) bf 2 L2(a�=W; jc(�)j�2d�)b
L2(K=M),

(c) jj bf jjL2 = jjf jjL2 , and

(d) the norm{preserving linear map f 7! bf extends by continuity to an

isometry L2(X) �= L2(a�=W; jc(�)j�2d�)b
L2(K=M).

Theorem 3.6 (Fourier Inversion Theorem). Let f 2 C1c (X). View

f as a function on G. Then

f(g) =
1

jW j

Z
a
�

Z
K=M

bf(�; kM)���(g
�1k)jc(�)j�2d�dk: (3.7)

In Theorems 3.5 and 3.6 it is useful to note that (i) c(��) = c(�), (ii)
jc(�)j = jc(w�)j for all w 2 W , and (iii) there are integers u; v > 0 such

that jc(�)j�1 5 u(1 + jj�jj)v . From (iii) we see that integration against

1=c(�) is a tempered distribution on a
�.

4 The Product Decomposition

Theorems 3.5 and 3.6 play on a product decomposition for L2(X) and for

C(X) which comes out of the analog (3.2) of polar coordinates on X . Here

we indicate how that product decomposition carries some observability and

approximation questions from K=M to X .

Let � 2 a
�. The positive de�nite spherical function �� de�nes a Hilbert

space H� , and G acts on H� by a unitary representation �� . We can view

the elements of H� as limits of linear combinations of G{translates of ��
and conclude H� � C1(G). See [9]. Let D(X) denote the algebra of G{
invariant di�erential operators on X . It is commutative, and (a.e. � 2 a

�)

the H� are its joint eigenspaces on C1(G).
The Schwartz space version of the Plancherel Theorem 3.5 says that the

Fourier{Plancherel{Harish-Chandra transform f 7! bf is an isomorphism

F : C(X) �= C(a�=W; jc(�)j�2d�)b
C(K=M) (4.1)

of nuclear Fr�echet spaces. Here C(K=M) = C1(K=M) because K=M is

compact, and C(a�=W; jc(�)j�2d�) denotes the space of all C1 and W{

invariant functions  on a
� such that

p(
@

@�
) 2 L2(a�=W; jc(�)j�2d�) (4.2)

for every W{invariant polynomial di�erential operator p( @
@�
) on a

� .
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We now view C(X) as the space of C(a�=W; jc(�)j�2d�){valued C1

functions on K=M . Then the method of [12] and [13] speci�es observability

and acuity for T � f : K=M ! C whenever (i) f(x : t) solves the evolution
equation (1.1) and (ii) T is a tempered distribution on a

�=W relative to

the measure jc(�)j�2d�. Here we are, in e�ect, imposing a certain degree

of uniformity in K=M for tempered distributions on X .

Observability and approximation by methods of harmonic analysis on

X is now reduced to two separate issues. They are consideration of the

compact space K=M , by the method of [12] and [13], and an appropriate

consideration of the euclidean space (modulo a �nite symmetry group)

a
�=W �= A(x0)=W . The appropriate methods for the latter are not yet

clear, though of course they should re
ect the action of A on the maximal


at totally geodesic submanifold A(x0) � X as euclidean translations and

also the symmetries from the Weyl group W . Certainly the Sinc{Galerkin

methods described by Stenger (see [10] and [11]), and Bowers and Lund

(see, for example, [3] and [4]) appear to represent the best approach here.
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