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Numerical Stationary Solutions for a Viscous

Burgers' Equation�

J. Burnsy A. Balogh D.S. Gilliamz V.I. Shubovz

Abstract

This paper is concerned with an interesting numerical anomaly

associated with steady state solutions for the viscous Burgers' equa-

tion. In particular, we consider Burgers' equation on the interval

(0; 1) with Neumann boundary conditions. In this work we show

that even for moderate values of the viscosity and for certain ini-

tial conditions, numerical solutions approach nonconstant shock type

stationary solutions. This is rather curious since we also show that

the only possible actual stationary solutions are constants. In order

to provide a reasonable explanation for this numerical anomaly, we

show that the solutions obtained correspond to solutions of a related

problem considered recently by L.G. Reyna and M.J. Ward [15].

1 Introduction

In this paper we are concerned with the long time behavior of solutions to

Burgers' equation on the interval (0; 1) with Neumann boundary conditions.

We note that the constants are equilibria for this problem. For the related

linearization about zero of the Burgers' equation { one dimensional heat

equation with Neumann boundary conditions { it is well known that the

steady state temperature is a constant, namely, the mean value of the initial

temperature distribution. For the Burgers' equation and small initial data
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this same type of result holds as a consequence of the Center Manifold

Theorem. Namely, Burgers' equation with Neumann boundary conditions

possesses a one dimensional center manifold (constants) and it can be shown

that for a small initial condition the solution converges exponentially to a

constant value. In contrast to the heat equation, the steady state constant

is not simply the integral of the initial condition, but also depends in some

complicated way on both the viscosity parameter and the shape of the

initial condition, cf., [6].

Since the Center Manifold Theorem is only a local result, a natural

question is whether, for arbitrary initial data, the corresponding solution

of Burgers' equation tends to a constant steady state. The answer to this

question is still unresolved. In this paper we do answer the intermediate

question: If, for a given initial condition, the solution approaches a time

independent steady state, even in the L
2
(0; 1) sense, then is this steady

state a constant? The answer, given in Theorem 2.2, is a�rmative.

In spite of this result, after considerable numerical testing, one is faced

with the reality that, for moderately small viscosity and larger \antisym-

metric" (odd about 1=2 in (0; 1)) initial conditions, the solutions approach a

nonconstant, time independent steady state, cf., [2]. We can only conclude

that what we see in practice is simply a numerical anomaly. Nevertheless,

due to the relevance of hydrodynamic problems in applications, it is worth-

while endeavor to attempt to understand what these numerical stationary

solutions might be.

In particular, numerical calculations have been used to \suggest" that

Euler equations do not have unique solution, cf., [12]. The justi�cation for

this claim is that a \very �ne mesh" is used in the calculation. In this note

we suggest that \numerical based" proofs of non-existence must be done

with extreme care.

The reason for the anomaly, of course, is that numerical solutions, for

a �xed mesh size or degree of approximation, are approaching solutions of

the equation that satisfy the boundary conditions to within values that are

approximately machine precision zero (or smaller). A similar and related

situation can be found in the recent work of L.G. Reyna and M.J. Ward

[15] which is, in turn, related to the work of G. Kreiss and H.O. Kreiss [13]

on the convergence to steady state of solutions of Burgers' equation with

Dirichlet boundary conditions.

The paper is organized into 4 sections. In Section 2 we describe the

Burgers' problem, present certain motivating remarks and prove the main

result (based on a recent theorem from [4]) concerning the convergence to

time independent stationary solutions. In Section 3 we discuss the sta-

tionary Burgers' problem and present some related information from [15].

Also in Section 3 we give some numerical illustrations of solutions to the

Burgers' problem. Finally in Section 4 we describe a possible mathematical
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explanation for the observed numerical behavior.

2 Burgers' Equation and Motivating Remarks

Burgers' equation on the interval (0; 1) subject to Neumann Boundary Con-

dition is given by the dynamical system

wt � �wxx + wwx = 0; (2.1)

x 2 (0; 1); t > 0

wx(0; t) = wx(1; t) = 0

w(x; 0) = �(x):

Clearly, as mentioned in the introduction, w(x; t) = c for (x; t) 2 (0; 1) �
[0;1) for any c 2 IR is a stationary solution.

The linearization about zero of (2.1) in L
2
(0; 1) is the one dimensional

heat equation with Neumann boundary conditions

wt = �wxx; (2.2)

x 2 (0; 1); t > 0

wx(0; t) = wx(1; t) = 0

w(x; 0) = �(x):

A well-known consequence of the Fourier representation of the solution

to (2.2)

w(x; t) = �0 + 2

1X
n=1

exp(�n2�2t)�n cos(n�x)

�0 =

Z 1

0

�(x) dx; �n =

Z 1

0

�(x) cos(n�x) dx; n = 1; 2; � � �

is that for any � > 0 and every initial condition � 2 L2
(0; 1)

lim
t!1

w(x; t) = �0:

A deeper result for (2.1), based on an in�nite dimensional version of

the Center Manifold Theorem (cf, [7], [9]), is that for small initial data in

H
1
(0; 1), the solution w(x; t) of (2.1) tends to a constant as t!1.

More speci�cally, the result states the following: For each �xed � > 0

and for small enough initial conditions (the size of this ball shrinks with

decreasing �) the solution w to (2.1) can be decomposed as w(x; t) = c(t)+
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v(x; t); where c(t) 2 IR, v(x; t) 2 H
1
m(0; 1), the subspace of functions of

mean zero,

H
1
m(0; 1) = f� 2 H1

(0; 1) :

Z 1

0

�(x) dx = 0g:

Furthermore, there exists a constant c�;� such that

c(t)@ > t!1 >> c�;�;

and there exist constants 
 and M > 0, such that kv(�; t)kH1 � Me
�
t

.

Thus the solution to Burgers' equation satis�es

w(x; t) = c(t) + v(x; t)@ > t!1 >> c�;�:

The way in which c�;� depends upon � and � is not simple as it is in the

case of the heat equation (cf., [6]) and this explicit relationship, to our

knowledge, remains an unsolved problem.

Since the Center Manifold Theorem is a local result we still cannot say

anything about the long time behavior of solutions (2.1) for larger initial

data. In fact, it is not clear without further information that solutions

should even exist for all time. The answer to this question is contained in

the recent work [4] which for the special case of (2.1) gives the following

result.

Theorem 2.1 [4] For (2.1) with arbitrary initial data ' 2 L
2
(0; 1) and

0 < T <1,

a) There is a unique weak solution

w 2 L1([0; T ]; L2
(0; 1)) \ L2

([0; T ]; H
1
(0; 1));

b) w 2 H2;1
([0; 1]� [t0; T ]) for any 0 < t0 < T <1. Here H2;1

([0; 1]�
[t0; T ]) consists of functions possessing square integrable derivatives
up to order 2 with respect to x and 1 with respect to t.

c) There is a globally de�ned dynamical system on the state space L2
(0; 1).

d) The dynamics de�ne a nonlinear semigroup fTt; t � 0g.
� Tt is continuous in t and ' 2 L2

(0; 1).

� Tt is compact for t > 0.

� There exists a positive continuous monotone increasing function a(�),
� � 0 such that a(0) = 0 and

kTt'k � a(k'k); t 2 [0;1); ' 2 L2
(
);

which means that the system is globally Lyapunov stable.
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� There is a global, locally compact attractor.

We should comment that since the attractor contains all stationary

solutions and, as we have already mentioned above, every scalar is a sta-

tionary solution, the attractor is unbounded. Due to Theorem 2.1 it is

locally compact. The exact composition of the attractor is still not known

but we expect that it consists of the one dimensional subspace consisting

of constants.

We are now in a position to answer the question posed in the intro-

duction. Even though we cannot, at this time, say that solutions of (2.1)

approach a constant steady state, we can prove the following intermediate

result.

Theorem 2.2 Fix � > 0 and � 2 L2
(0; 1). Let w(�; t) be a weak solution

of (2.1). If there is a function h 2 L2
(0; 1) such that

lim
t!1

kw(�; t) � h(�)kL2(0;1)@ > t!1 >> 0

Then h(�) = c�;� for some constant c�;�.

Note that because it is only assumed that the solution w(x; t) converge

in the L
2
-norm as t tends to in�nity, we cannot immediately conclude that

h is a stationary solution of Burgers' equation. However, based on the

result stated above from [4], we can conclude that such a limit must be a

stationary solution.

Proof: Fix � > 0, and let � 2 L
2
(0; 1). From Theorem 2.1 and our

hypothesis that the solution converges to a time independent function in

the L
2
sense, we conclude that

lim
t1!1

Tt1(�) = h:

Also, since for any t > 0, Tt is continuous and Tt is a semigroup, we have

Tt(h) = lim
t1!1

Tt(Tt1(�)) = lim
t1!1

Tt1+t(�) = h:

Therefore for every t > 0

Tt(h) = h:

That is, h is a weak stationary solution of the system (2.1).

On the other hand, a weak stationary solution must satisfy�
��vx + v

2

2

�
x

= 0; (2.3)
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where all the derivatives are understood as weak derivatives and the equal-

ity holds a.e.. One possibility is that v is a constant, in which case we

have,

c0 =
v
2

2
: (2.4)

Clearly a constant provides a stationary solution since, in addition, it sat-

is�es the boundary conditions.

Now, the only distributional solution of the equation

 
0

= 0

is a constant, we see that any other stationary solution to (2.1) must satisfy

��vx + v
2

2
= c0; c0 2 IR: (2.5)

This equation can be solved explicitly and we obtain:

v(x) =
p
2c0 tanh

�p
2c0

2�
(c1 � x)

�
; (2.6)

where c0 and c1 are arbitrary constants.

A straightforward calculation gives

vx(x) = �c0
�

sech
2

�p
2c0

2�
(c1 � x)

�
; (2.7)

which cannot vanish at x = 0 or x = 1 (unless c0 = 0). Thus the only

stationary solutions are constants. Q.E.D.

3 Numerical Stationary Solutions

For �xed � and for small initial data numerical approximation of the so-

lutions to (2.1) supports the conclusion of the Center Manifold Theorem,

namely, solutions tend to a constant as t tends to in�nity. But for small �

and \certain" initial data (not to small), the numerical solution converges

to a nonconstant function, cf. [2]. These same nonconstant steady state

limits are readily obtained using many di�erent numerical algorithms and

on various di�erent computer platforms. We are lead to conjecture the

existence of some type of Numerical Stationary Solutions for the problem

(2.1).

One class of initial data for which we obtain this anomaly are functions

in the class S consisting of \antisymmetric" functions, that is, functions

that are odd about x = 1=2 in the interval (0; 1),

S =
�
� 2 L2

(0; 1) : �(x) = ��(1� x)
	
: (3.1)
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For initial data � 2 S, a straightforward consequence of Theorem 2.1,

is that w(�; t) 2 S for all t. This can easily be seen from the uniqueness and

the fact that if � 2 S and w(x; t) is the solution of (2.1), then the function

z(x; t) = �w(1� x; t) also satis�es (2.1) and hence

w(x; t) = �w(1� x; t)

i.e., w(�; t) 2 S. Note that a continuous function � in S must satisfy

�(1=2) = 0 and so, for t > 0 a solution with initial data � 2 S will satisfy

w(1=2; t) = 0 for all t > 0. Thus if

lim
t!0

w(x; t) = c�;�

exists then the constant c�;� must be zero.

The nonconstant solutions to the stationary Burgers' equation (not the

boundary conditions) given in (2.6) form a two parameter family depending

on the parameters c0 and c1. In order that such a function be in S it follows

that c1 = 1=2. De�ne,

h(x) =
p
2c0 tanh

�p
2c0

2�
(1=2� x)

�
; h 2 S: (3.2)

We now demonstrate that for suitable initial data and c0 the functions

(3.2) are actually numerical stationary solutions to (2.1), i.e., they sat-

isfy the Burgers' equation and they approximately satisfy the boundary

conditions (to within exponentially small terms).

Namely, the functions in (3.2) satisfy (2.5) and

h
0

(x) = �c0
�

sech
2

�p
2c0

2�
(1=2� x)

�
; (3.3)

which for small � and/or large c0 gives

h
0

(0) = h
0

(1) = �c0
�

sech
2

�p
2c0

4�

�
= �
; (3.4)

where 
 is an exponentially small positive number.

There is no reason to believe that numerical solutions to Burgers' equa-

tion should approach a function of the type (3.2), especially in light of

Theorem 2.2 which suggests they should approach a constant. Neverthe-

less, this does happen for larger initial data and/or smaller �.

One possible numerical explanation for this behavior can be found in

the work of L.G. Reyna and M.J. Ward [15]. The authors are primarily
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interested in the following problem

wt � �wxx + wwx = 0; (3.5)

x 2 (0; 1); t > 0

w(0; t) = � > 0;

w(1; t) = ��
w(x; 0) = �(x):

It is shown in [15] that, just as above, there is a one parameter family of

solutions of the associated stationary equation

��uxx + uux = 0 (3.6)

given by

u(x) = �� tanh(���1(x� x0)=2); x0 2 (0; 1);

but these functions only satisfy the boundary conditions to within expo-

nentially small terms for all x0.

In order to obtain a problem for which the boundary conditions are sat-

is�ed exactly, the authors in [15] replace the problem (3.5) by the problem

wt � �wxx + wwx = 0; (3.7)

x 2 (0; 1); t > 0

��wx(0; t) + �[w(0; t)� �] = 0

�wx(1; t) + �[w(1; t) + �] = 0

w(x; 0) = �(x); with �; � > 0:

For (3.7), the associated stationary problem

��uxx + uux = 0; (3.8)

��ux(0) + �[u(0)� �] = 0

�ux(1) + �[u(1) + �] = 0

has a nontrivial stationary solution given by

u(x) = �� tanh(���1(x� 1=2)=2) (3.9)

provided that � is chosen to satisfy the transcendental equation

��
2

2
sech

2

�
��
�1

4

�
+ �

�
�� � tanh

�
��
�1

4

��
= 0: (3.10)

For � � 0 the authors give the following asymptotic formula

� � �+ 2�

�
1� �

�

�
e
����1=2

+ � � � :
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Furthermore, they show that the largest eigenvalue of this linearization

about the equilibrium solution satis�es

�0 � �2�2
�
1� �

�

�
e
����1=2

+ � � �

which is negative for � > � and positive for � < �.

It turns out that numerically this problem is related to our problem, at

least to within exponentially small error terms in satisfying the boundary

conditions. Most importantly, and for reasons which we cannot explain,

for small � and larger initial conditions, numerical solutions to (2.1) can
approach a stationary function given by (3.9) for suitable choices of � and
�.

The main di�erence in these problems is that for (2.1) we cannot, at

this time, predict the values of � and hence � in (3.9) and (3.10). This

translates into not knowing the appropriate limiting value

lim
t!1

w(0; t) = v(0): (3.11)

Here v(0) is the value at x = 0 of the limiting stationary solution given in

(2.3) which turns out to be strongly dependent on the initial condition for

(2.1). The value of v(0) is related to the indeterminacy of the constant c0

in (2.5),

c0 = ��vx(0) + v
2
(0)

2

which in turn is related to the values of � in (3.7) and � in (3.9).

The upshot is that if we numerically solve (2.1) to obtain a value v(0)

from (3.11) and de�ne � = v(0) then, for almost any value of � > �, and �

determined from (3.10), we see that, to within exponentially small terms,

the stationary solution obtained numerically coincides with (3.9).

We now present several numerical examples of the above discussion.

These numerical exercises were carried out using a Gear method. For rela-

tively large values of � and and not to large initial conditions �, numerical

solutions behave as predicted by by Theorem 2.2. We consider � = :1 and

initial conditions �(x) = C cos(�x) and �(x) = C(1=2 � x)
3
(note that

these � are antisymmetric so we expect the solution to converge to zero).

For smaller values of C we obtain the results depicted in Figures 1 and 2.
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Figure 1: � = :1, � = cos(�x), trajectories tend to zero
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Figure 2: � = :1, �(x) = 5(1=2� x)
3
, trajectories tend to zero

On the other hand, for the same � = :1 and slightly larger values of C

in the initial conditions we have the results depicted in Figures 3 and 4.
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Figure 3: �(x) = 5 cos(�x) trajectories do not tend to zero
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Figure 4: �(x) = 50(1=2� x)
3
, trajectories do not tend to zero

On the left in Figures 5 and 7 we have plots of the initial conditions

and the corresponding solution for large t. On the right we have plotted

the corresponding stationary solution (3.9) for suitable �. In Figures 6 and

8 we have plotted the di�erence between the numerical stationary solution

at t = :5 and the corresponding hyperbolic tangent function (3.9).
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Figure 6:
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4 An Alternate Explanation

As noted in section 3 the function (3.2) satis�es stationary Burgers' equa-

tion and the derivative at x = 0; 1 satis�es (3.4). For a small positive

number 
 let us consider replacing the stationary problem (2.5) with Neu-

mann boundary conditions by the following problem:

��hx + h
2

2
= c0; c0 2 IR (4.1)

where we seek a solution in the class S subject to the boundary conditions

h
0

(0) = h
0

(1) = �
: (4.2)

It is easy to see the problem (4.1), (4.2) can only have solutions in the

form (3.2) where c0 is chosen to satisfy the boundary condition (4.2).

12



SOLUTIONS FOR A VISCOUS BURGERS' EQUATION

In the space S (odd functions about 1=2) there are exactly two solutions

of (2.5) for 
 small enough: Namely, there exist c
<
0 � 0 and c

>
0 � 0 giving

h
<
(x) =

q
2c

<
0 tanh

 p
2c

<
0

2�
(1=2� x)

!
(4.3)

h
>
(x) =

q
2c

>
0 tanh

 p
2c

>
0

2�
(1=2� x)

!
(4.4)

and these functions satisfy

hx(0) = �
; hx(1) = �


with c
<
0 and c

>
0 chosen to satisfy

c0

�

sech
2

�p
2c0

4�

�
= 
: (4.5)

To see that there are exactly two such values of c0 for small 
 let

s =
p
c0=(2

p
2�) so that equation (3.4) becomes

s
2
sech

2
(s) =




8�
:

The function f(s) = s
2
sech

2
(s) has a critical value at s0 � 1:2. This

allows us to conclude that the maximum value of f is M� = 8�s
2
0 sech

2
(s0).

From the graph of f in Figure 7, it is clear that this maximum imposes a

smallness constraint on 
. Namely, in order for the boundary condition in

(3.4) to be satis�ed, we need


 �M�:

For �xed � and 
 su�ciently small, we see that there are two solutions given

by (4.3) and (4.4) and both functions satisfy the boundary conditions

hx(1) = hx(0) = �
:

The solution h
<
is very nearly the zero function, whereas the solution

h
>
is not usually small.
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Figure 9: Graph of f , for � = :01 and 
 = :007
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In each of Figures 10 and 11 there is actually two functions plotted, h

computed numerically and also from the formula (3.2).

A complete analysis of the mathematical validity of these stationary

solutions for Burgers equation would involve a careful analysis of the long
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time behavior of solutions to the dynamical system:

wt � �wxx + wwx = f


wx(0; t) = wx(1; t) = 0;

w(x; 0) = �(x);

f
 = 
(�0 � �1) 2 H�1(0; 1)
where by �a we denote the �-function concentrated at x = a, and by

H
�1
(0; 1) we denote the dual of H

1
(0; 1) which consists of all distribu-

tions from H
�1
(IR) whose support belongs to [0; 1]. For small 
 and small

initial conditions � result from [3] imply the global in time existence of so-

lutions to the above system and the existence of a compact local attractor.

Unfortunately, for larger initial conditions the results of [3] do not apply

for f
 as above.

Furthermore, it is not easy to numerically test whether these are actu-

ally the stationary solutions obtained in Section 2 since realistic values of


, for most problems of interest, a much smaller than machine precision

zero.
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