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Sharp Trace Regularity for the Solutions of

the Equations of Dynamic Elasticity�

Mary Ann Horny

Abstract

Sharp trace regularity results are obtained for the system of linear

elasticity, relating the norm of the tangential derivative of the solu-

tion on the boundary to the norm of the time derivative. To prove

this relationship, we take advantage of the techniques of pseudodif-

ferential calculus and microlocal analysis. Via a partition of unity,

a smoothing of the boundary procedure, and a change of variable,

the system can be shown to be equivalent to a more general problem

on a half-space. This transition to a half-space problem facilitates

localization of the solution and, thus, its behavior, near the bound-

ary. By studying the symbol of the resulting di�erential operators

after the problem has been converted to a half-space, a bound of the

tangential derivative in terms of the time derivative is obtained.
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1 Introduction

Sharp trace regularity results have proven themselves to be of critical im-

portance in the study of controllability and stabilizability of various sys-

tems, as well as being of great interest in their own right. Particular cases

include the wave equation (see [9]) and both linear and nonlinear plate

equations (see [5], [8]). In our study of the three-dimensional system of

linear elasticity, we focus on results for the wave equation. This is due to

the fact that, under appropriate assumptions, the system of elasticity can
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be decoupled into three wave equations. Thus, we would hope that results,

analogous to those available for the wave equation, would hold in the fully

coupled case.

Our motivation in developing these trace estimates arises from the de-

sire to eliminate the strong geometric constraints assumed to hold in most

results on boundary stabilization for the system of elasticity (see e.g. [6, 7]).

In the case of the wave equation, stabilization results are numerous. How-

ever, until the works of Lasiecka and Triggiani [9] and Bardos, Lebeau and

Rauch [2], most results were based on the assumption that the geometry

of the domain satis�ed strict constraints. A critical step in removing these

constraints in [9] was a pseudodi�erential analysis which permits certain

boundary traces of the solution to the wave equation to be expressed in

terms of other traces modulo lower-order interior terms.

Estimates of solutions near the boundary have a long history, dating

back to such works as that of Agmon, Douglis and Nirenberg [1]. In what

follows, we will focus on the proof of trace regularity, while the question

of stabilization without geometric constraints will be addressed in a subse-

quent paper.

To formulate the system of elasticity, we begin with the following de�-

nitions. Let u = (ui), 1 � i � n be the displacement vector. Since we are

considering a homogeneous, isotropic body, the strain tensor (�ij) is given

by

�ij �
1

2
(
@ui

@xj
+
@uj

@xi
); 1 � i; j � n:

The stress-strain relation can be expressed as

�ij = �

nX
k=1

�kk�ij + 2��ij = �(divu)�ij + �(
@ui

@xj
+
@uj

@xi
);

where �; � > 0 are Lame's coe�cients and are constant. (In more general

cases, � and � are assumed to be functions of position.) In the above

equation, �ij is the Kronecker delta, i.e., �ij = 1 if i = j and �ij = 0 if

i 6= j.

With the above de�nitions in mind, we now consider the system of linear

elasticity de�ned in the open domain 
 � R
n with smooth boundary @
.

utt �r � �(u) = f in 
� (0; T ) (1.1.a)X
i

�ij�j j@
 = gj on @
� (0; T ) (1.1.b)

u(x; 0) = �(x); ut(x; 0) =  (x) in 
; (1.1.c)

and �i represents the components of the unit outward normal vector to @
.
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For this system, when g � 0, the following well-posedness results can

be shown to hold using standard linear semigroup theory (see, e.g. [10]).

Alternatively, this can also be established via elliptic theory (see [11]).

Theorem 1.1 (Wellposedness on H1(
)� L
2(
).)

Let (�(x);  (x)) 2 (H1(
))n � (L2(
))n. Then there exists a unique solu-
tion (in the sense of distributions),

(u(x; t); ut(x; t)) 2 C([0; T ]; (H
1(
))n � (L2(
))n)

satisfying system (1.1).

We wish to address the question of trace regularity for the solution of

this system. Our goal is to prove the following result that is in some sense

better than what can be achieved by using standard trace theory.

Theorem 1.2 (Trace regularity.)
Let u be the solution to (1.1) and let 0 < � < T=2. Then u satis�es the
following inequality:

kru � �k2
(L2(�; T � �; @
))n

� Cfkutk
2

(L2(0; T ; @
))n
+ k�(u) � �k2

(L2(0; T ; @
))n

+kfk2
(H�1=2(0; T ; 
))n

+ kuk2
(L2(0; T ;H1=2+�(
)))n

g;

(1.2)

where � and � are, respectively, the unit normal and the unit tangent to
the boundary.

Notice that to get this sharper bound on the trace, we must sacri�ce part

of the time interval. However, for some purposes, this bound is more useful

than the bounds we would achieve using trace theory, bounds which would

be in a higher norm than the natural energy space for this system, which

is (H1(
))n � (L2(
))n.

2 Preliminaries

In order to facilitate the proof of Theorem 1.2, we intend to take advantage

of the techniques of pseudodi�erential calculus. For further information on

the inner workings of pseudodi�erential operators, we refer the reader to

Taylor [11]. In the remainder of the paper, we work in a half-space. Via a

partition of unity, a smoothing of the boundary procedure, and a change

of variable, system (1.1) can be shown to be equivalent to a more general

problem which may be stated as follows. (See the books of H�ormander,

e.g., [3], for further information on proving this equivalence of systems.)
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Let x > 0 be a real-valued scalar variable and y = (y1; :::; yn�1) 2 R
n�1

be a (n�1)-dimensional vector with real components. In symbol notation,

x 2 R1x+ , y 2 R
n�1
y , t 2 R1t . The domain 
 � R

1
x+ �R

n�1
y is the half-space

with boundary @
 � 
jx=0 = R
n�1
y , where n = dim
 � 2. In 
, following

second order system is considered:

Pu = �T (x; y)D2
t u+ P (x; y;Dx; Dy)u = f (2.1.a)

B(0; y;Dx; Dy)uj@
 = g; (2.1.b)

with the di�erentials, Dt; Dx; Dyj , de�ned by

Dt �
1p
�1

@
@t
; Dx �

1p
�1

@
@x
; Dyj �

1p
�1

@
@yj

: (2.1.c)

P (x; y;Dx; Dy) is an elliptic operator of order 2 in the variables x and

y with symbol p(x; y; �; �). Without loss of generality, the entries in the

matrix p(x; y; �; �) may be assumed to have the following form (modulo

lower order terms):

pij(x; y; �; �) �

�
�
2 +Dij(�; �k ; �

2
k) i = j; k = 1; 2

Dij(�; �k; �
2
k) i 6= j; k = 1; 2:

(2.2)

T (x; y) is a positive de�nite diagonal matrix with entries tii(x; y) > 0

8(x; y) 2 
 and for i = 1; :::; n.

In the de�nition of the symbols corresponding to the operators in (2.1),

� = % � i
, 
 > 0, % 2 R, will denote the Laplace transform variable

corresponding to t, i.e., Dt �! � , while � 2 R and � 2 R
n�1 are the

Fourier transform variables corresponding to x and y, respectively, i.e.,

Dx �! �, Dyj �! �j .

On the boundary, @
, the symbol of the operator B has the form (mod-

ulo lower order terms)

~bij(y; �; �) =

�
� + bij(�k) i = j; k = 1; :::; n� 1;

bij(�k) i 6= j; k = 1; :::; n� 1:
(2.3)

In the above de�nitions, Dij(�; �k; �
2
k) may be second order and contain

second order combinations, e.g. ��k, but does not contain �
2 terms. Ad-

ditionally, Dij(�; �k; �
2
k) may depend on the spatial variables x and y, but

is independent of t. In the boundary operator, bij(�k) is assumed to be no

worse than linear in all variables �k, k = 1; :::; n�1, and may depend on y.

Remark: Note that the symbol associated with P (resp. B), quadratic
terms in � (resp. linear terms in �) appear only on the diagonal. Due to

the form of the symbol of B, this boundary operator may be thought of as
a generalized normal derivative. These operators, P and B arise from the

original problem, (1.1).
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3 Proof of Theorem 1.2

Localization in (x; y; %; �) Space

To establish the estimate of Theorem 1.2, the operator P is studied by

considering subregions of the space-time place in which the symbol of P
is de�ned. This idea is formulated more precisely in the following seven

steps. Our goal is to take advantage of the behavior of the symbol within

these subregions and use the results to compare the norms of the time and

tangential derivatives.

With the de�nition of P in (2.1.a), and the symbol p(x; y; �; �) in (2.2)

corresponding to P , the matrix wpij(x; y; �; �; �) with entries

}ij(x; y; �; �; �) =

�
�tii(x; y)�

2 + pij(x; y; �; �) i = j

pij(x; y; �; �) i 6= j
(3.1)

is the symbol corresponding to P . Since � = %� i
, this can be rewritten

as

}ij(x; y; �; �; �) =

�
�tii(x; y)(%

2 � 

2) + 2i%
tii + pij(x; y; �; �) i = j

pij(x; y; �; �) i 6= j

(3.2)

Without loss of generality, we may assume 
 = 0, as extension to the case


 > 0 follows similarly to the results for the wave equation considered in

[9]. With this assumption, the symbol corresponding to P becomes

}ij(x; y; �; �; �) =

�
�tii(x; y)%

2 + pij(x; y; �; �) i = j

pij(x; y; �; �) i 6= j
(3.3)

Because of the symmetry of }ij in % and � at the highest order, we may

restrict our focus to the region IR2n
+ = f(x; y; %; �) : (x; y) 2 
; %; �j >

0; j = 1; :::; g.

Step 1: Cuto� in time

Although we only consider the quarter space R2n+ , the following arguments

hold in any quarter and can then be combined to cover the entire space.

To avoid di�culties near the origin, we begin by de�ning a cuto� solution

uc(t). Let �(t) 2 C
1
0 (R) be a cuto� function de�ned such that 0 � �(t) �

1 8t 2 R and

�(t) =

�
1 t 2 (�; T � �)

0 t 2 (�1; 0) [ (T;1):
(3.4)

De�ne a cuto� solution uc(t) � �(t)u(t), where u is the solution to (2.1).

Then uc(t) satis�es

Puc = [P ; �]u+ �f

Buc = �g
(3.5)
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Note that this step forces the restriction of the time interval on the left-

hand side of the estimate in Theorem 1.2 to (�; T � �).

Step 2: Localization in %=� plane

Consider the regions in Figure 1. Despite the two-dimensional drawing,

keep in mind that � 2 IR and thus, the full % � � region lies in R: Let

 (%; �) 2 C
1 be a homogeneous symbol of order zero in both % and �

de�ned such that 0 �  (%; �) � 1 8%; � and

 (%; �) =

�
1 in R1

0 in R2
(3.6)

with supp� � R1 [ Rtr.

��
��
��
��
��
��

��
��

��1

�
�
�
�
�
�
�
�
�
�
�
���

-

6
� = %

�

� = 2c0j�j

� = c0j�j

R2

Rtr

R1

Figure 1: Elliptic Region R1 [ Rtr and Non-elliptic Region R2 [ Rtr

Let 	 2 OPS
0(IRn+1

tyx ) denote the pseudodi�erential operator corre-

sponding to  . Then, with reference to (3.5), 	uc satis�es the following

system.
P(	uc) = [P ;	]uc +	[P ; �]u+	�f

B(	uc) = [B;	]uc +	�g:

(3.7)

Step 3: Estimates in E1 � R1 [ Rtr

Within the region E1, % � 2c0j�j. Since P is an elliptic operator of or-

der two, there exists a constant � > 0 such that the symbol, p(x; y; �; �),

corresponding to P satis�es the inequality,

p(x; y; �; �)u � u � �(j�j2 + j�j2)juj2:

6
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Therefore, recalling the de�nition of

}(x; y; %; �; �) = diag(�ti%
2) + p(x; y; �; �);

the symbol corresponding to P satis�es

}(x; y; %; �; �)u � u = �
Pn

1 ti%
2
u
2
i + p(x; y; �; �)u � u

� �(mini=1;:::;n ti)%
2juj2 + �(j�j2 + j�j2)juj2

� �4c0(mini=1;:::;n ti)j�j
2juj2 + �(j�j2 + j�j2)juj2

� �4c0(mini=1;:::;n ti)j�j
2juj2

�4c0(mini=1;:::;n ti)j�j
2juj2

+�(j�j2 + j�j2)juj2

= [� � 4c0(mini=1;:::;n ti)](j�j
2 + j�j2)juj2 in E1:

Hence, choosing c0 to be su�ciently small and setting

~� � � � 4c0( min
i=1;:::;n

ti) > 0

we �nd

}(x; y; �; �)u � u � ~�(j�j2 + j�j2)juj2:

Thus, P is elliptic of order two within the region E1 and system (3.7)

satis�es elliptic estimates in all variables. In particular,

k	uck(H3=2(�1;1; 
))n
+ k	uck(H1(�1;1; @
))n

� fkB(	uc)k(L2(�1;1; @
))n
+ k[P ;	]uck(H�1=2+�(�1;1; 
))n

+k	[P ; �]uk
(H�1=2+�(�1;1; 
))n

+ k	�fk
(H�1=2(�1;1; 
))n

g:

(3.8)

Step 4: Estimates in E2 � R2 [ Rtr

Within the region E2, % � c0j�j. Recall the de�nition of the symbol of an

operator, the tangential derivative may be estimated directly.
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kr(1�	)uc � �k
2

(L2(�1;1; @
))n

�
R1
�1

R n�1
R

j�j2(1�  )ûc(%; x; �)jx=0j
2
d�d%

� 1
c2
0

R1
�1

R n�1
R

j%(1�  )ûc(%; x; �)jx=0j
2
d�d%

= Ck((1� �)uc)tk
2

(L2(�1;1; @
))n
� Ck(uc)tk

2

(L2(�1;1; @
))n
;

(3.9)

where ûc is a Fourier-Laplace transform of uc, i.e., the Fourier transform

in the tangential direction and the Laplace transform in time.

Step 5: Estimates in the entire region

To summarize what we have achieved by estimating the norm of the solu-

tion in localized regions, we combine the results of the previous two steps.

Beginning by rewriting the norm of the tangential derivative as

kruc � �k(L2(�1;1; @
))n
= kr(1�	)uc � �k(L2(�1;1; @
))n

+kr	uc � �k(L2(�1;1; @
))n

� kr(1�	)uc � �k(L2(�1;1; @
))n

+Ck	uck(H1(�1;1; @
))n:

Now using the estimates in (3.8) and (3.9), we arrive at

kruc � �k(L2(�1;1; @
))n

� Cfkr(1�  )uc � �k(L2(�1;1; @
))n
+ kB(	uc)k(L2(�1;1; @
))n

+k[P ;	]uck(H�1=2+�(�1;1; 
))n
+ k	[P ; �]uk

(H�1=2+�(�1;1; 
))n

+k	�fk
(H�1=2(�1;1; 
))n

g

� Cfkutk(L2(0; T ; @
))n + kB(	uc)k(L2(�1;1; @
))n

+k[P ;	]uck(H�1=2+�(�1;1; 
))n
+ k	[P ; �]uk

(H�1=2+�(�1;1; 
))n

+k	�fk
(H�1=2(�1;1; 
))n

g:

(3.10)
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Step 6: Commutator estimates

In the previous steps, terms arising the principal part of the operator in

system (3.7) have been estimated. However, in de�ning cuto� solutions,

a number of lower order terms have arisen due to the commutators of the

operators. To achieve the �nial estimate, these terms must be removed as

well.

By using formulas for an asymptotic expansion of the symbols corre-

sponding to the appropriate commutators (see [4], page 70) and recalling

that supp � E1, we obtain

�
symbf[P ;	]g = O(j�j+ j�j) in E1
supp symbf[P ;	]g � E1

(3.11)

�
symbf	[P ; �]g = O(j�j+ j�j) in E1
supp symbf	[P ; �]g � E1

(3.12)

�
symbf[B;	]g = O(1) in E1
supp symbf[B;	]g � E1

: (3.13)

Hence, in particular for any 0 < � <
1
2
,

[P ;	] 2 L((L2(�1;1;H1=2+�(
))n ! (H�1=2+�(�1;1; 
))n) (3.14)

	[P ; �] 2 L((L2(�1;1;H1=2+�(
))n ! (H�1=2+�(�1;1; 
))n) (3.15)

[B;	] 2 L((L2(�1;1; @
))n ! (L2(�1;1; @
))n): (3.16)

From (3.14) and (3.15),

k[P ;	]uck(H�1=2+�(�1;1; 
))n
� Ckuk

(L2(0; T ;H1=2+�(
)))n
; (3.17)

k	[P ; �]uck(H�1=2+�(�1;1; 
))n
� Ckuk

(L2(0; T ;H1=2+�(
)))n
; (3.18)

hence, the last three terms in (3.10) are bounded by

Cfkuk
(L2(0; T ;H1=2+�(
)))n

+ kfk
(H�1=2+�(0; T ; 
))n

g: (3.19)

The second term on the right-hand side of (3.10) is estimated by
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kB(	uc)k(L2(�1;1; @
))n

� k[B;	]uck(L2(�1;1; @
))n
+ k	�gk

(L2(�1;1; @
))n

� Cfkuck(L2(�1;1; @
))n
+ kgk

(L2(0; T ; @
))n
g

� Cfkuk
(L2(0; T ; @
))n

+ kgk
(L2(0; T ; @
))n

g:

(3.20)

Step 7: Final estimate

Combining (3.19) and (3.20) with (3.10), we arrive at our desired estimate,

kru � �k
(L2(�; T � �; @
))n

� kruc � �k(L2(�1;1; @
))n

� Cfkutk(L2(0; T ; @
))n + kuk(L2(0; T ;H1=2+�(
)))n

+kfk
(H�1=2(0; T ; 
))n

+ kgk
(L2(0; T ; @
))n

g:

(3.21)

Application of this result to system (1.1) gives us the estimate of Theorem

1.2 once we note that g = �(u) � �.
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