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On an Inverse Dynamic Problem for

Goursat{Darboux System�
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Abstract

The problem of dynamical modelling of unknown distributed and

boundary disturbances in Goursat{Darboux system is considered.

The �nite-step dynamical regularizing algorithms for solution of this

problem are constructed. These algorithms work in real time on

feedback scheme. The estimations of convergence degree in L2, L1,

C- spaces are obtained.
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1 Introduction

Wide class of inverse problems consists in determination (estimation) of

unknown parameters of dynamical systems by not precise measurement of

systems' state. An approach to solving such type problems on the basis

of �nite-step dynamical algorithms was proposed by Yu. S. Osipov and

A. V. Kryazhimskii [1]. These algorithms use the input information at

the �nite number of points of a time interval and process this informa-

tion between points. Outputs of these algorithms are approximate value

of unknown parameters. The algorithms work in real time mode, i.e., they

reconstruct the parameters simultaneously with the dynamic of the pro-

cess. Note, that these algorithms possess property of physical realizability

(Volterra property). The algorithms also possess the regularizing property:

the smaller error of measurement and the smaller distance between time
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points are, the more precise is the reconstruction (in the appropriate sense).

The method [1] is based on the ideas of the theory of positional con-

trol [19] and the theory of ill-posed problems [20, 21]. According with this

approach we construct an auxiliary controlled model which functions simul-

taneously with the original system. The model is controlled positionally

(by feedback scheme): at every time moment the control is formed on the

basis of informations on the model state and approximate measurements

the original system state realized up to this time moment.

We construct the control low for this model on the basis of ideas of

extremal shift in such a way that the control realization approximates (re-

constructs) the unknown parameter of the original system in the appropri-

ate sense. Hence we reduce the inverse problem to a direct problem for an

auxiliary controlled model.

Dynamical algorithms of reconstruction of distributed and boundary

controls for some classes linear and non-linear parabolic systems and vari-

ation inequalities were constructed in [2, 3, 4, 5]. In [2, 3, 7] problems of

reconstruction of unknown coe�cients of elliptical operators in parabolic,

hyperbolic and elliptical systems were considered. The problem of dy-

namical reconstruction of unknown streams of disturbances was solved in

[5]. Similar problems for hyperbolic systems were discussed in [6, 8, 9].

In [2, 4, 5, 6, 7, 9] some accuracy estimations of reconstruction prob-

lem for system with distributed and boundary disturbances are obtained.

The analogous non-dynamical constructions for inverse problems based on

theory of control and theory of parameter estimation of dynamical sys-

tems are worked out in [10]. The analogous problems was considered in

[14, 15, 16, 17].

In the present paper dynamical reconstructing algorithms for Goursat{

Darboux system are constructed. The Gursat{Darboux models describe

processes in chemical reactors, sorbing (desorbing) processes and etc. [11,

12]. Some inverse problems in the a posteriori non-dynamical state are

considered in [11]. The present paper is connected with [14, 15, 16, 17] and

continue [8, 9]. In paper [8] the inverse problem for reconstruction of un-

known distributed and boundary parameters of Goursat-Darboux system

was solved. This problem was analogous to problem from present paper but

one was solved with another conditions in the parameters of the system. In

particular, in [8] the inverse problem with fuzzy coe�cients of the system

was considered. In the paper [9] the �nite-dimensional approximation for

the problem of [8] was constructed. Conditions of convergence the �nite-

dimensional algorithm's realization were worked out. The present paper

continue [8, 9]. The constructive accuracy estimates of the algorithms and

convergence of approximations in stronger metrices are obtained.
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2 Statement of the Problem

Let us consider the boundary Goursat-Darboux problem:8>>>><
>>>>:

ytx=f1(t; x)yt + f2(t; x)yx + f3(t; x; y)u(t; x);

y(t0; x) = '(x); x 2 S; (t; x) 2 �;

y(t; 0) =  1(t) +
tR
t0

 2(�)v(�)d�; t 2 T;
'(0) =  1(t0);

(2.1)

where S = [0; l] is the variation segment of space variable x, T = [t0; �]

is the time interval, � = [t0; �] � [0; l]. Assume the following restrictions

are satis�ed: functions f1(�; �), f2(�; �) are continuous on � and satisfy the

Lipschitz condition by t (i.e. there exist constants Lipi � 0 such that

j fi(t1; x) � fi(t2; x) j� Lipi j t1 � t2 j for all x 2 S; t1; t2 2 T ); the

function f3 is continuous by all variables (t; x; y) 2 T �S �R and satis�es

the Lipschitz condition by (t; y) (i.e. there exists a constant Lip3 � 0 such

that j f3(t1; x; y1) � f3(t2; x; y2) j� Lip3(j t1 � t2 j + j y1 � y2 j) for all
x 2 S; t1; t2 2 T; y1; y2 2 R); functions '(�),  1(�),  2(�) belong to spaces
W

1
1
(S), W 2

1
(T ), W 1

1
(T ) respectively; parameters of the system u and v

(disturbances and controls) satisfy restrictions u 2 U , v 2 V . Here U is

the set of all measurable (by Lebesgue) mappings �! R taking values in

convex closed bounded set Pu � L2(S) for almost all t 2 T ; V is the set

of all measurable (by Lebesgue) mappings T ! R taking values in convex

closed bounded set Pv � R for almost all t 2 T . Sets U � L1(T ;L2(S))

and V � L1(T ;R) are convex and weak compact in spaces L2(T ;L2(S))

and L2(T ;R) respectively. Notation yt, yx, yyx are used for corresponding

generalized partial derivatives of the function y = y(�; �) de�ned on T � S.

One can �nd de�nitions and properties of functional spaces, for example,

in [13].

Under the above assumptions there exists a unique function y = y(�; �) 2
W

1
2 (�) \ C(�) \ C(T ;W 1

2 (S)) which satis�es the equation from (2.1) for

almost all (t; x) 2 � and boundary conditions from (2.1) for all t 2 T ,

x 2 S. The existence and uniqueness of this solution is proved in [18].

Systems ot the Goursat-Darboux type describe the processes of substances

interaction in linear chemical reactor [12]. The function y = y(t; x), t 2 T ,
x 2 S, describes the concentration one of the interaction substances. The

coe�cients of the equation (2.1) specify the chemical reactor and a chemical

process. The parameters u and v characterize catalizators of the chemical

process or reaction's speed. The simplest restriction on the parameters u

and v can have the forms:

ju(t; x)j � Const; jv(t)j � Const; t 2 T; x 2 S:
If we �xed a time moment t 2 T then the solution y(t; �), as the function

of variable x, belongs to W 1
2 (S). We will call y(t; �) a state of the system
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at the time moment t, and the space W 1
2 (S) will be called a phase space

of the system. In order to emphasize dependence y on u and v we will also

write y(�;u; v). The solution y = y(�;u; v) : T ! W
1
2 (S) of the boundary

problem (2.1) is the motion of the system which corresponds to parameters

u 2 U and v 2 V . The set Y = fy = y(�;u; v) : u 2 U; v 2 V g is a

compactum in the space C(�) and a weak compactum in W 1
2 (�).

Let us describe the informative part of the problem. Let y� 2 Y be

the real (observable) motion of the system on the time interval T = [t0; #],

W� =W (y�) be the set of all pairs of parameters (u; v) 2 U�V generating

the motion y
� (this set is not empty and can content several elements).

The measurement of the system state y�(t) = y
�(t; �) is available at each

current moment t and the result of the measurement �(t) 2W 1
2 (S) satis�es

the estimation

k�(t; �)� y
�(t; �)k

W
1
2 (S)

� h; t 2 T: (2.2)

Using results of measurement, we should restore (in real time) one of pairs

(u; v) 2W�. If W� is one-element, then the true pair of parameters gener-

ating the motion y� will be restored approximately.

We will suppose the following: the equation of the system is known; the

initial state y(t0; �) is known with error h in the metric of the spaceW 1
2 (S);

disturbances u and v are satisfy the condition u 2 U , v 2 V and sets U

and V are given.

Let � be the set of all mappings � : T ! W
1
2 (S), �h(y

�) be the

set of � 2 � satisfying condition (2.2). We will say that an operator

D : �! U �V possesses Volterra property if: (D�1)(t) = (D�2)(t); t0 �
t � � , when �1(t) = �2(t); t0 � t � �; t0 < � � �. Here (u�; v�) is

the element of the set W (y�) which has the minimal norm in the space

L2 = L2(T ;L2(S))� L2(T ;R).

Let us formalize the statement of the problem. Using a priori informa-

tion about system (2.1), it is necessary to construct the family (Dh)h>0 of

Volterra operators Dh : �! U � V which possess the property

supf�(Dh�; (u�; v�)) : � 2 �h(y
�)g ! 0 as h! 0;

for arbitrary motion y
� 2 Y . Here � is a metric of one of functional

spacesL2(T ;L2(S))�L2(T ;R), L1(T�; L2(S))�L1(T�;R), C(T�;L2(S))�
C(T�;R), T� = [t�; #], t0 < t� < #.

3 Solution of the Inverse Problem

We will construct the solution of the inverse problem as �nite-step dynami-

cal algorithms FSDA [1]. Let us de�ne formally the family of one parameter
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FSDA (Dh)h>0 by the following conditions

Dh = ((�hi )i = 0;m
; (rhi )i = 0;m� 1

; (�hi )i = 0;m� 1
); (3.3)

where m = m(h) 2 N = f1; 2; :::g, h > 0,

(�i
h)
i = 0;m

is the partition of segment T , (t0 = �
h
0 < �

h
1 < ::: < �

h
m = #),

r
h
i :W 1

2 (S)�W
1
2 (S)! U [�i

h
; �

h
i+1)� V [�i

h
; �

h
i+1); i = 0;m� 1;

�
h
i :W

1
2 (S)�W

1
2 (S)�W

1
2 (S)!W

1
2 (S)�W

1
2 (S); i = 0;m� 1:

Here �(h) = maxfj �hi+1 � �
h
i j: i = 0;m� 1g, U [t1; t2) is the set of all

measurable mappings from [t1; t2) into Pu, V [t1; t2) is the set of all mea-

surable mappings from [t1; t2) into Pv . Let � = �(h) � Cminf�hi+1 � �hi :

i = 0;m� 1g for some C > 0. For the sake of simplicity the index h in the

notation will be omitted.

For FSDA (3.3) and the function � : T ! W
1
2 (S) we will call (Dh; �) -

sequence the family of the elements (ui; vi; zi)i = 0;m� 1
such that

(ui; vi) = ri(�(�i); zi); (zi+1; wi+1) = �i(�(�i); zi; wi); i = 0;m� 1;

z0 = �(t0), w0 is the solution on S of Cauchy problem for the ordinary

di�erential equation

dw0(x)

dx
= f1(t0; x)w0(x) + f2(t0; x)�x(t0; x)+

+f3(t0; x; �(t0; x))~u0(x); x 2 S;
w0(0) =  1t(t0) +  2(t0)~v0;

where

~u0(x) =
1

�1 � �0

�1Z

�0

u0(�; x)d�; ~v0 =
1

�1 � �0

�1Z

�0

v0(�)d�

(obviously, the solution of this problem can be founded in the explicit

form).

Pair of functions (u; v) 2 U � V of the form u(t) = ui, v(t) = vi,

t 2 [�i; �i+1), i = 0;m� 1 is called (Dh; �) - realization. This is the FSDA

output, Dh� = (u; v).

Let us describe, informally, how the FSDA (3.3) works in time. Be-

fore the initial moment t0 the partition (�i)i = 0;m
is de�ned and �xed

in accordance with the error value h. Every point �i will be the initial

point of the next step of calculation. At moment t = �i, i = 0;m� 1,
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the input information �(�i) is supplied. Using this information and val-

ues zi, wi (of some auxiliary variables), at the moment t = �i+1 new

values of the auxiliary variables zi+1, wi+1 by low �i and the element

(ui; vi) = ri(�(�i); zi) 2 U [�i; �i+1) � V [�i; �i+1) by low ri are determined.

At the �nal time moment # the (Dh; �) - realization (u; v), Dh� = (u; v) is

constructed. It is clear, that this operator Dh possesses Volterra property.

Let us determine now the concrete family FSDA (3.3).

The mapping ri(�; z) = (ui; vi), i = 0;m� 1, is constructed by the fol-

lowing rules: ui(t) = ~ui; �i � t < �i+1, where

~ui = argminf2 < zx(�)� �x(�); f3(�i; �; �(�))u(�) >L2(S)
+ (3.4)

+�(h)ku(�)k2
L2(S)

: u(�) 2 Pug;

vi(t) = ~vi; �i � t < �i+1, where

~vi = argminf2 < z(0)� �(0);  2(�i)v >R + (3.5)

+�(h) j v j2: v(�) 2 Pvg:
Here �(�) is a function �(�) : [0;1)! (0;1) (a parameter of the regular-

ization).

Let us determine (�i), i = 0;m� 1, as: �i(�; z; w) = (~z(�i+1; �); �),
where

~z(t; x) = z(x) + (t� �i) 2(�i)~vi +  1(t)�  1(�i)+ (3.6)

+(t� �i)

xZ

0

(f1(�i; �)�i(�) + f2(�i; �)�x(�)+

+f3(�i; �; �(�))~ui(�))d�; t 2 [�i; �i+1); i = 0;m� 1; x 2 [0; l];

z(t0; x) = �(t0; x):

Here

�0[�;w](�) = w0(�); �i[�;w](�) =
w(�) � �(�)

�i�1 � �i
; i = 1;m:

Condition 1 Functions u�, v� have generalized derivatives u�t 2 L1(�),
v�t 2 L1(T ) and there exists the generalized derivative y�tt 2 L1(�).
Condition 2 There exist constants k1 and k2 such that for all (t; x) 2 �

and y 2 R
0 < k1 �j f3(t; x; y) j� k2;

there exist constants k3 and k4 such that for every t 2 T
0 < k3 �j  2(t) j� k4:
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Let us show that the family of FSDA (3.3)-(3.6) solves the inverse problem

under the Conditions 1,2.

Lemma 1 Let conditions 1 and 2 hold. Then for almost all t 2 T

kz�tx(t; �)� y
�

tx(t; �)kL2(S) � a1�(h) + a2exp(
k
2
1(t0 � t)

�(h)
)(1 + �(h));

kz�x(t; �)� y
�

x(t; �)kL2(S) � �(h)(M1 +M2exp(
k
2
1(t0 � t)

�(h)
));

j z�t (t; 0)� y
�

t (t; 0) j� a3�(h) + a4exp(
k
2
3(t0 � t)

�(h)
)(1 + �(h));

j z�(t; 0)� y
�(t; 0) j� �(h)(M3 +M4exp(

k3(t0 � t)

�(h)
));

where z� is the solution of the boundary problem

8>>>><
>>>>:

z
�

tx = f1(t; x)y
�

t + f2(t; x)y
�

x + f3(t; x; y
�)u�(t; x);

z
�(t0; x) = y

�(t0; x); x 2 S; (t; x) 2 �;

z
�(t; 0) =  1(t) +

tR
t0

 2(�)v�(�)d�; t 2 T;
z
�(t0; 0) = y

�(t0; 0);

(3.7)

u�(t; x) = �f3(t; x; y
�(t; x))

�(h)
(z�x(t; x)� y

�

x(t; x));

v�(t) = � 2(t)
�(h)

(z�(t; 0)� y
�(t; 0)):

Constants ai, Mi, i = 1; 4, depend only on a priori known parameters

of the boundary problem (2.1).

Proof: Let us introduce the following notation:

F (t; x) = f1(t; x)y
�

t (t; x) + f2(t; x)y
�

x(t; x);

B(t; x) = f3(t; x; y
�(t; x)); A(t; x) = B(t; x)B(t; x);

Z(�; �) = z
�

x(�; �)� y
�

x(�; �);
k1 �j B(t; x) j� k2; k

�1
2 �j B(t; x)�1 j� k

�1
1 ;

ess sup
(t;x)2�

j [B(t; x)�1]t j� b;

ess sup
t2T

ku�(t; �)kL2(S) � u; ess sup
t2T

ku�t(t; �)kL1(S) � u:

7



A.I. KOROTKII AND I.A. TSEPELEV

It follows from properties of the function f3(�) that there exists the gener-
alized derivative [B(�)�1]t 2 L1(�). From (2.1), (3.7) we have

z
�

tx(t; x) = �A(t; x)
�(h)

(z�x(t; x) � y
�

x(t; x)) + F (t; x);

Zt(t; x) = �A(t; x)
�(h)

Z(t; x)�B(t; x)u�(t; x); Z(t0; x) = 0: (3.8)

By X(�; �) we denote the solution of the following Cauchy problem

Xt(t; x) = �A(t; x)
�(h)

X(t; x); X(t0; x) = 1:

The function X(�; �) is called the fundamental solution. Then the solution

of (3.8) can be written as

Z(t; x) = �
tZ

t0

X(t; x)[X(�; x)]�1B(�; x)u�(�; x)d�: (3.9)

Di�erentiating (3.9) with respect to (3.8) we have

Zt(t; x) = �B(t; x)u�(t; x)+ (3.10)

+
A(t; x)

�(h)
X(t; x)

tZ

t0

[X(�; x)]�1B(�; x)u�(�; x)d�:

Let us show that the integral in (3.10) has the following form

Z t

t0

[X(�; x)]�1B(�; x)u�(�; x)d� = u�(�; x)P (�; x)

����
t

t0

� (3.11)

��
tZ

t0

P (�; x)u0
�t(�; x)d�;

where

P (�; x) =

�Z

t0

[X(s; x)]�1B(s; x)ds: (3.12)

Note, that

�(h)[X(t; x)�1]t[B(t; x)
�1] = [X(t; x)]�1B(t; x); (3.13)

P (�; x) = �(h)([X(�; x)]�1[B(�; x)]�1 � [B(t0; x)]
�1)� (3.14)

8
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��(h)
�Z

t0

[X(s; x)]�1[B(s; x)�1]tds:

Substituting (3.14) and (3.11) into (3.10) we obtain

Zt(t; x) = �A(t; x)u�(t; x)X(t; x)[B(t0; x)]
�1�

��A(t; x)u�(t; x)X(t; x)

tZ

t0

[X(�; x)]�1[B(�; x)�1]td��

�� A(t; x)

�(h)
X(t; x)

tZ

t0

�Z

t0

[X(s; x)]�1B(s; x)u�t(�; x)dsd�:

The following estimate for almost all t 2 T is valid

kZt(t; �)kL2(S) � 3k22k
�1
1 uexp(

k
2
1(t0 � t)

�(h)
)+

+3�(h)k22k
�2
1 ub j 1� exp(

k
2
1(t0 � t)

�(h)
) j +

+3k32
p
lu(k

�2
1 mes(T )exp(

k
2
1(t0 � t)

�(h)
)+

+k�41 �(h) j 1� exp(
k
2
1(t0 � t)

�(h)
) j) �

� a1�(h) + a2exp(
k
2
1(t0 � t)

�(h)
)(1 + �(h))

kZ(t; �)kL2(S) � �(h)k�21 k2(u +mes(T )
p
lu) j 1� exp(

k
2
1(t0 � t)

�(h)
) j�

� �(h)(M1 +M2exp(
k
2
1(t0 � t)

�(h)
)):

All constants depend only on a priori known parameters of the boundary

problem (2.1). Third and fourth inequalities of the lemma can be obtained

analogously.

2

Lemma 2 Let conditions 1 and 2 hold and the function � 2 �h(y
�). Then

for all t 2 T the following estimations are valid

kzx(t; �)� z
�

x(t; �)kL2(S) � L(
p
�(h) �(�; h) + h); (3.15)

9



A.I. KOROTKII AND I.A. TSEPELEV

j z(t; 0)� z
�(t; 0) j� L(� + h); (3.16)

where

�(�; h) =
h

�
+

h

�(h)
+ �q(�) + �p(�) +

�

�(h)
+ � + h+

�p(�)

�(h)
;

�q(�) = max
i=1;m

max
t2[�i�1;�i)

k�i[y�(�i; �); y�(�i�1; �)](�) � y
�

t (t; �)kL2(S);

�p(�) = max
i=0;m�1

max
t2[�i;�i+1)

ky�x(�i; �)� y
�

x(t; �)kL2(S);

z
� is determined by (3.7), z is determined by equality

z(t; x) = z(�i; x) + (t� �i) 2(�i)vi +  1(t)�  1(�i)+

+(t� �i)

xZ

0

(f1(�i; �)�i[�(�i; �); �(�i�1; �)](�) + f2(�i; �)�x(�i; �)+

+f3(�i; �; �(�))ui(�))d�;

z(t0; x) = �(t0; x); x 2 [0; l]; t 2 [�i; �i+1); i = 0;m� 1;

ui(t; x) = �f3(�i; x; �(�i; x))
�(h)

(zx(�i; x)� �x(�i; x));

vi(t) = � 2(�i)
�(h)

(z(�i; 0)� �(�i; 0)); t 2 [�i; �i+1); i = 0;m� 1:

The constant L > 0 depends only on a priori known parameters of the

boundary problem (2.1).

Proof: Let us introduce the following notation:

A(t; x) = f3(t; x; y
�(t; x))f3(t; x; y

�(t; x)); Z = zx � z
�

x:

Taking into account the forms of functions z, z� and parameters (ui,

vi, u�, v�) it follows that

ztx(t; x) = f1(�i; x)�i[�(�i; �); �(�i�1; �)](x) + f2(�i; x)�x(�i; x)�

�� f
2
3 (�i; x; �(�i; x))

�(h)
(zx(�i; x)� �x(�i; x)); t 2 [�i; �i+1); i = 0;m� 1;

zx(t0; x) = �x(t0; x); x 2 S;
z
�

tx(t; x) = f1(t; x)y
�

t (t; x) + f2(t; x)y
�

x(t; x)�

�� A(t; x)

�(h)
(z�x(t; x)� y

�

x(t; x)); t 2 T;

10



ON AN INVERSE DYNAMIC PROBLEM

z
�

x(t0; x) = y
�

x(t0; x); x 2 S:
Then for almost all t 2 [�i; �i+1); i = 0;m� 1, we have

Zt(t; x) = �A(t; x)
�(h)

Z(t; x) + �(t; x); Z(t0; x) = �x(t0; x)� y
�

x(t0; x);

where

�(�; �) = S1(�; �) + S2(�; �) + S3(�; �) + S4(�; �);
S1(t; x) = f1(�i; x)�i[�(�i; �); �(�i�1; �)](x) � f1(t; x)y

�

t (t; x);

S2(t; x) = f2(�i; x)�x(�i; x)� f2(t; x)y
�

x(t; x);

S3(t; x) =
A(t; x)

�(h)
zx(t; x) � f

2
3 (�i; x; �(�i; x))

�(h)
zx(�i; x);

S4(t; x) =
f
2
3 (�i; x; �(�i; x))

�(h)
�x(�i; x)� A(t; x)

�(h)
y
�

x(t; x):

The functions fi, i = 1; 2; 3, satisfy the Lipschitz condition, the norms

kytkL1(T ;L2(S)), kyxkL1(T ;L2(S)) are bounded by a constant depending only

a priori known parameters, hence from inequality (2.2) we have

S1(t; x)=f1(�i; x)(�i[�(�i; �); �(�i�1; �)](x)� �i[y
�(�i; �); y�(�i�1; �)](x)+

+�i[y
�(�i; �); y�(�i�1; �)](x) � y

�(t; x))� (f1(t; x)� f1(�i; x))y
�

t (t; x);

kS1(t; �)kL2(S) � L1(
h

�
+ �q(�) +�); t 2 T;

S2(t; x) = f2(�i; x)(�x(�i; x)� y
�

x(�i; x) + (y�x(�i; x)� y
�

x(t; x))�
�(f2(t; x) � f2(�i; x))y

�

x(t; x);

kS2(t; �)kL2(S) � L2(h+ �p(�) +�); t 2 T ;

S3(t; x) =
A(t; x) � f

2
3 (�i; x; �(�i; x))

�(h)
zx(t; x)+

+
f
2
3 (�i; x; �(�i; x))

�(h)
(zx(t; x)� zx(�i; x));

kS3(t; �)kL2(S) � L3(
� + h

�(h)
+

�

�(h)
); t 2 T ;

S4(t; x) = �A(t; x) � f
2
3 (�i; x; �(�i; x))

�(h)
y
�

x(t; x)�

�f
2
3 (�i; x; �(�i; x))

�(h)
(y�x(t; x)� �x(�i; x));

11
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kS4(t; �)kL2(S) � L4(
� + h

�(h)
+
�p(�)

�(h)
+

h

�(h)
); t 2 T ;

k�(t; �)kL2(S) � L�(
h

�
+

h

�(h)
+ �q(�) + �p(�) +

�

�(h)
+ (3.17)

� + h+
�p(�)

�(h)
) = L��(�; h);

where L� = maxfL1; L2; L3; L4g. Using Cauchy formula one can obtain

Z(t; x) = �
tZ

t0

X(t; x)[X(�; x)]�1�(�; x)d�+

+X(t; x)[X(t0; x)]
�1(�x(t0; x)� y

�

x(t0; x)):

Then

kZ(t; �)kL2(S) � L(
p
�(h) �(�; h) + h); t 2 T: (3.18)

One can prove analogously that

z(t; 0) = z(�i; 0) +  1(t)�  1(�i)� (t� �i)
 
2
2(�i)

�(h)
(z(�i; 0)� �(�i; 0));

z
�(t; 0) = z

�(�i; 0) +  1(t)�  (�i)� 1

�(h)

tZ

�i

 
2
2(�)(z

�(�; 0)� y
�(�; 0))d�;

zt(t; 0)� z
�

t (t; 0) = ��  
2
2(t)

�(h)
(z(t; 0)� z

�(t; 0)) + 	(t);

z(0; 0)� z
�(0; 0) = 0;

where

	(t)=� 
2
2(�i)

�(h)
z(�i; 0) +

 
2
2(t)

�(h)
z(t; 0) +

 
2
2(�i)

�(h)
�(�i; 0)�  

2
2(t)

�(h)
y
�(t; 0):

Then

j 	(t) j� L5(
�

�(h)
+

h

�(h)
): (3.19)

The previous inequality and properties of the solution of the problem (2.1)

imply the inequality

j z(t; 0)� z
�(t; 0) j� L(h+�); t 2 T: 2 (3.20)

12
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Lemma 3 Let (u; v) be (Dh; �)-realization of FSDA (3.3)-(3.6). Then for

almost all t 2 T the following inequality is valid

ku(t; �)� u�(t; �)kL2(S)
+ j v(t)� v�(t) j�

� ku(t; �)� u�(t; �)kL2(S)
+ j v(t)� v�(t) j :

The proof of this lemma follows from the facts that (u; v) is the nearest

element from Pu�Pv to the point (u; v) in the metric of the space L2(S)�R
and the set Pu � Pv is convex.

Lemma 4 Let conditions 1, 2 hold and � 2 �h(y
�). Then for almost all

t 2 T the following inequality

ku(t; �)� u�(t; �)kL2(S)+ j v(t)� v�(t) j� �(h; t);

is valid, where

�(h; t) = L[� + h+ �(h) +
�(�; h)p
�(h)

+ (1 + �(h))�

�(exp(k
2
1(t0 � t)

�(h)
) + exp(

k
2
3(t0 � t)

�(h)
))];

and L is some positive constant, depending on a priori known parameters

of boundary problem (2.1).

Proof: For almost all t 2 [�i; �i+1), i = 0;m� 1, we have

ku(t; �)� u�(t; �)kL2(S)+ j v(t)� v�(t) j�

� ku(t; �)� u�(t; �)kL2(S) + ku�(t; �)� u�(t; _)kL2(S)+
+ j v(t)� v�(t) j + j v�(t)� v�(t) j�

� k � f3(�i; �; �(�i; �))
�(h)

(zx(�i; �)� �x(�i; �))+

+
B(t; �)
�(h)

(z�x(t; �)� y
�

x(t; �))kL2(S)+

+ j � 2(�i)
�(h)

(z(�i; 0)� �(�i; 0)) +
 2(t)

�(h)
(z�(t; 0)� y

�(t; 0)) j +

+ku�(t; �)� u�(t; �)kL2(S) ++ j v�(t)� v�(t) j�

� k � f3(�i; �; �(�i; �))
�(h)

[(zx(�i; �)� z
�

x(t; �))� (�x(�i; �)� y
�

x(t; �))]kL2(S)+

13
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+k 1

�(h)
(f3(t; �; y�(t; �))� f3(�i; �; �(�i; �)))(z�x(t; �)� y

�

x(t; �))kL2(S)+

+ j � 2(�i)
�(h)

[(z(�i; 0)� z
�(t; 0))� (�(�i; 0)� y

�(t; 0))] j +

+ j 1

�(h)
( 2(t)�  2(�i))(z

�(t; 0)� y
�(t; 0)) j +

+k[B(t; �)]�1(z�tx(t; �)� y
�

tx(t; �))kL2(S)+ j [ 2(t)]�1(z�t (t; 0)� y
�

t (t; 0)) j

� ~L[
h

�(h)
+
�(�; h)p
�(h)

+
�p(�)

�(h)
+ (� + h)(M1 +M2exp(

k
2
1(t0 � t)

�(h)
))+

+(
�

�(h)
+

h

�(h)
+
�p(�)

�(h)
+ �(M3 +M4exp(

k
2
3(t0 � t)

�(h)
)) + a1�(h)+

+a2exp(
k
2
1(t0 � t)

�(h)
)(1 + �(h)) + a3�(h) + a4exp(

k
2
3(t0 � t)

�(h)
)(1 + �(h))]

� L[� + h+ �(h) +
�

�(h)
+

h

�(h)
+
�p(�)

�(h)
+
�(�; h)p
�(h)

+

+(1 + �(h))(exp(
k
2
1(t0 � t)

�(h)
) + exp(

k
2
3(t0 � t)

�(h)
))]: 2

Theorem 1 Let conditions 1, 2 hold, � 2 �h(y
�) and parameters of FSDA

(3.3)-(3.6) satisfy the conditions �(h)! 0, �(h) ! 0,
�(�(h); h)p

�(h)
! 0 as

h! 0. Then for almost all t 2 T

k(Dh�)(t; �) � (u�(t; �); v�(t))kL2(S)�R � �(h; t); �(h; t)! 0 as h! 0;

supf�(Dh�; (u�; v�)) : � 2 �h(y
�)g � �(h; t�);

�(h; t�) = �(h; t�) + L
p
3(1 + �(h))

p
�(h)(

1

k1
+

1

k3
)! 0 as h! 0;

where � is the metric of the space L2(T ;L2(S)) � L2(T ;R) or the space

L1([t�; #];L2(S))�L1([t�; #];R), t� is an arbitrary �xed value t0 < t� < #.

The proof of this theorem follows from lemmas 1-4.

Now, let us prove the statement on reconstruction of disturbances in

the metric of the space L2(�)� L2(T ) for another type of u� and v�.

Condition 3 Functions u� : T 3 t ! u�(t; �) 2 L2(S) and v� : T 3 t !
v�(t) 2 R have the bounded variations on T .

14
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Theorem 2 Let conditions 2,3 hold, � 2 �h(y
�) and parameters of FSDA

(3.3)-(3.6) satisfy the conditions �(h)! 0, �(h) ! 0,
�(�(h); h)p

�(h)
! 0 as

h! 0. Then

supf�(Dh�; (u�; v�)) : � 2 �h(y
�)g � ��(h); ��(h)! 0 as h! 0;

where � is the metric of the space L2(T ;L2(S))� L2(T ;R),

��(h) = L
p
3[�(h) +h+�(h) +

�(�(h); h)p
�(h)

+ (1+�(h))
p
�(h)(

1

k1
+

1

k3
)]:

One can prove this theorem by analogy with theorem 1.

Remark 1 One can �nd the �nite dimension approximation of the inverse

problem in [9].

Remark 2 (On convergence in the space C).

Let us de�ne (Dh; �) = (u; v) - realization by the following conditions

u(t; �) = ~ui(�) + ~ui+1(�)� ~ui(�)
�i+1 � �i

(t� �i); t 2 [�i; �i+1); i = 0;m� 1;

v(t) = ~vi +
~vi+1 � ~vi

�i+1 � �i
(t� �i); t 2 [�i; �i+1); i = 0;m� 1:

Then if the conditions of the theorem 1 hold we have

supf�(Dh�; (u�; v�)) : � 2 �h(y
�)g ! 0 as h! 0;

where � is the metric of the space C([t�; #];L2(S))�C([t�; #];R), t� is an

arbitrary �xed value t0 < t� < #. The validity of this statement follows from

the form of (Dh; �)-realization and can be proved analogously to theorem 1.

Remark 3 If the condition 2 is not satis�ed (for example, functions f3 and

 2 are equal to zero on some set of positive measure), then the observed

motion of the system can be generated by several parameters. Following to

the constructions of the present paper we can �nd a simple dynamical proce-

dure for reconstruction (in Hausdor� metric) of the whole set of generating

parameters (u; v). Let, for example, function f3 = f3(t; x) be continuous in

�; W� be the set of all pairs of parameters (u; v) 2 U�V generating the ob-

served motion y�; (uh; vh) be reconstructed by the described law parameters

and let

Wh[�] = f(u; v) 2 U � V : f3 � u = f3 � uh;  2 � v =  2 � vhg:

15
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Then if �(h) and �(h) satisfy the conditions of theorem 1 or theorem 2 we

have

supf�H(Wh[�];W�) : � 2 �h(y�)g ! 0 as h! 0;

where �H is Hausdor� metric on corresponding subsets of U �V generated

by the metric of the space L2(T ;L2(S))� L2(T ;R).

Remark 4 Let conditions 1, 2 be ful�lled and additional conditions

f1 � 0; f2 � 0; f3 � 1;  2 � 1

be hold. Then the family FSDA (3.3)-(3.6) with parameters �(h) = h
1=2,

�(h) = h has the asymptotical accuracy equal to 1=4 in the metric of space

L2 and there exist positive constants C1 and C2 such that for all su�ciently

small h > 0 the following inequalities are valid

C1 � h1=4 � supf�L2(Dh�; (u�; v�)) : � 2 �h(y
�)g � C2 � h1=4:

In this case, the problem under consideration is identical to the problem

of numerical di�erentiation. It is known that the degree of the optimal al-

gorithms of dynamical di�erentiation is equal to 1=3. The degree of our

algorithm is equal to 1=4. However, our approach allows to construct the

algorithms of numerical di�erentiation functioning in real time mode (syn-

chro with the process) by the feedback principle. This approach is useful in

some technical processes and the operating data processing [1].

Example 1. Let us consider the concrete variant of the reconstruction

problem. The unknown parameters are distributed disturbances (controls).

Let the system have the form8<
:

ytx(t; x) = yx(t; x) + y(t; x) + sin(x); (t; x) 2 [0; 1]� [0; 1];

y(0; x) = 0; x 2 [0; 1];

y(t; 0) = 0; t 2 [0; 1]:

The following restriction holds: maxt2T ku(t; �)kL2(S) � 1: Let us choose a

priori partition (�i)i=0;m such that �(h) =j �i+1 � �i j= 1
m
, i = 0;m� 1.

The point t� = 0:1. In the table the results of the numerical experiment

are carried out.

h m �(h) �(h) kuh � u�kL2 kuh � u�kL1
0 10 0.1 �1=2 0.3031 0.4835

0 50 0.02 �1=2 0.1930 0.3158

0 50 0.02 �3=4 0.1284 0.0450

0 100 0.01 �1=2 0.1607 0.2281

0 100 0.01 �3=8 0.0970 0.0172

0.005 100 0.01 �1=2 0.5307 0.7961

0.0025 100 0.01 �1=2 0.3406 0.4987
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Example 2. Let us consider the system from example 1. Numerical

experiments show that

ess sup
t2[t�;#]

kuh � u�kL2(S) 6! 0 as t� ! t0; h! 0:

h m �(h) �(h) t� = �1 kuh � u�kL1
0 10 0.1 �1=2 0.1 0.4835

0 20 0.05 �1=2 0.05 0.5490

0 50 0.02 �1=2 0.02 0.6071

0 100 0.01 �1=2 0.01 0.6364

0 10 0.1 �3=4 0.1 0.3095

0 20 0.05 �3=4 0.05 0.3727

0 50 0.02 �3=4 0.02 0.4412

0 100 0.01 �3=4 0.01 0.4835

Example 3. Let us consider the concrete variant of the reconstruction

problem. The unknown parameter is boundary disturbance (control). Let

the system have the form8>><
>>:

ytx(t; x) = yt(t; x) + yx(t; x) + y(t; x); (t; x) 2 [0; 1]� [0; 1];

y(0; x) = 0; x 2 [0; 1];

y(t; 0) =
tR
t0

sin(�)d�; t 2 [0; 1]:

The following restriction holds: maxt2T j v(t) j� 1: Let us a priori choose

the net (�i)i=0;m such that �(h) =j �i+1 � �i j= 1
m
; i = 0;m� 1. The

point t� = 0:1. In the table, the results of the numerical experiment are

carried out.

h m �(h) �(h) kuh � u�kL2 kuh � u�kL1
0 10 0.1 �7=8 0.0715 0.0899

0 50 0.02 �7=8 0.0224 0.0198

0 100 0.01 �7=8 0.0138 0.0106

0 10 0.1 �1=2 0.0979 0.1687

0 50 0.02 �1=2 0.0471 0.0874

0 100 0.01 �1=2 0.0332 0.0613

0.01 10 0.1 �1=2 0.0927 0.1555

0.004 50 0.02 �1=2 0.0470 0.0870

0.001 100 0.01 �1=2 0.0332 0.0612
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