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in Electromagnetic Dispersion�
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Abstract

We present a time domain approach for the investigation of dis-

persion mechanisms of a medium in electromagnetic �eld problems.

Maxwell's equations coupled with a generalized electric polarization

model are considered. The polarization is given in terms of a convolu-

tion of the electric �eld with an impulse response function. Existence,

uniqueness and continuous dependence of solutions on data are pre-

sented for a one-dimensional dispersive medium case. Estimation of

electromagnetic properties of media is demonstrated via numerical

examples. Parameters representing the electromagnetic property of

a medium may include the static permittivity, relaxation time, natu-

ral frequency, static conductivity, etc. depending on the polarization

model chosen.

1 Model Formulation

Microwave images of tissue structures and soils play very important roles

in many areas, including clinical and environmental medicine. These mi-

crowave images are useful in detection=enhanced treatment of abnormality
of human organs and tissue, and detection= remediation of underground

toxic wastes. The electromagnetic properties of a medium are generally

characterized by its electric and magnetic polarization mechanisms and its

static conductivity. Here we focus on the development of partial di�er-

ential equation (Maxwell's equations) based identi�cation techniques for
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physical and biological distributed parameter systems, with those for liv-

ing tissue being a special case. We attempt to estimate the conductivity

and parameters which characterize the polarization of media such as living

tissue using incident and scattered electromagnetic signals. The functions

of permittivity and conductivity are determined by a general polarization

mechanism which includes as special cases those governed by an n-th order
ordinary di�erential equation (see [18, 24] for the cases n = 1; 2), multi-
ple coupled oscillators, and delay systems. We note that in the literature

(which is dominated by frequency domain approaches) complex permit-

tivity and conductivity depending on the frequency of the emitting signal

are commonly used as electromagnetic characteristics. Since our approach

is in the time domain, we focus directly on the polarization equations and

any resulting parameterizations may contain parameters depending on time

and space, but not directly on frequency.

Variations of the electromagnetic inverse problem have been studied for

at least several decades. A good survey of existing methods is given by

Albanese et al. in [1].

However, there is a paucity of literature on studies of electromagnetic

inverse problems in the time domain which employ variational formula-

tions. This variational formulation approach has been successfully applied

to damped hyperbolic systems in [7, 12, 13] and hybrid systems in [6]. A

similar approach with the focus on well posedness and control problems

involving Maxwell's equations can be found in [16]. In this reference, Du-

vaut and Lions proved existence and uniqueness of Maxwell's equations for

a three-dimensional inhomogeneous medium with totally re
ective bound-

ary. The medium is stable (nonzero static conductivity) and polarization

is assumed instantaneous and proportional to the electric �eld. E�orts by

other authors on controllability and stabilization in the context of semi-

groups and variational formulations can be found in [3, 19, 20, 21, 23].

Our investigations focus on a class of dispersion models (i.e., models for

polarization) in the context of Maxwell's equations. We consider the type

and rate of attenuation of signals associated with a given dispersion model

for biological media.

We begin by considering a three-dimensional inhomogeneous medium

with no free charges. The macroscopic equations governing electromagnetic

phenomena in time and space are Maxwell's equations

r�D = 0

r�B = 0

r�E = �
@B

@t

r�H =
@D

@t
+ Js + Jc

(1)
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and along with the constitutive relations

Jc = �E
D = �0E+P

B = �0H+ �0M:
(2)

Here E is the electric �eld intensity, D is the electric 
ux density, H

is the magnetic �eld intensity, B is the magnetic 
ux intensity, Js is the

source electric current density, Jc is the conduction current density, P is

the electric polarization, M is the magnetic polarization, � is the space

dependent static conductivity, �0 and �0 are are physical constants repre-
senting the permittivity and permeability in vacuum, respectively, In the

mks system of units, �0 � 8:85�10�12 [Fm�1] and �0 = 4��10�7 [Hm�1].

The bold faced characters are vectors in Cartesian coordinates.

z1 z2

H(t,z)

x

y

z

E(t,z)

Figure 1: Geometry of Physical Problem

In our initial studies, we concentrate on the propagation of a pulsed

plane wave. Assuming the plane wave is uniform in planes parallel to the

x-y plane and propagates in z direction (see Figure 1), then the electric

and magnetic �eld intensities are reduced to

E = E(t; z)̂{ in the x direction

3



H.T. BANKS, M.W. BUKSAS, AND Y. WANG

H = H(t; z)|̂ in the y direction:

For ease in notation, we use henceforth the scalar �elds E and H with

the understanding that E is polarized in the x or {̂ direction and H is

polarized in the y or |̂ direction. Furthermore, we assume that the magnetic
polarization is zero, i.e.,M(t; z) = 0, which is a good approximation for

biological media [2]. With the above assumptions, Maxwell's equations

coupled with the constitutive relations yield a second order equation

@2E

@t2
+
�

�0

@E

@t
+

1

�0

@2P

@t2
� c2

@2E

@z2
= �

1

�0

@Js
@t

; (3)

t > 0; 0 � z � 1;

where c2 = 1=�0�0.
To specify boundary conditions we consider the speci�c geometry of

Figure 1 and assume that the one-dimensional inhomogeneous dispersive

slab occupies the region [z1; z2] such that 0 < z1 < z2 < 1. The medium

outside the slab is �lled with air in which � = 0 and P = 0 while in the

slab those quantities are nonzero and depend on conductivity and disper-

sive properties of the medium. We assume totally absorbing boundary

conditions for (3) at z = 0 and z = 1. That is, we take

@E

@t
(t; 0)� c

@E

@z
(t; 0) = 0;

@E

@t
(t; 1) + c

@E

@z
(t; 1) = 0:

(4)

While biological media are thought to have magnetic properties of vac-

uum, dispersion of electromagnetic signals in such heterogeneous media is

a complex phenomenon which is usually accounted for in the polarization

vector P . In the case of dispersive media (here, we adopt the de�nition

by Stratton [24] which states that a medium is said to be dispersive if the

phase velocity in the medium is a function of frequency), one may consider

a general representation for the electric polarization described by the n-th
order ordinary di�erential equation

@nP

@tn
+

nX
i=1

ai
@n�iP

@tn�i
= a0E; (5)

where the coe�cients faig
n

i=0 are space dependent variables. This rep-

resentation of polarization takes into account the molecular constitution

of matter and treats the molecules as dynamical systems possessing nat-

ural frequencies. For the case of n = 0; 1; 2 the polarization mechanisms

have been studied extensively [18, 24]. The case n = 0 is called an Ideal

medium whereas n = 1 and 2 correspond to the so-called Debye medium
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and Lorentz medium, respectively. A medium characterized by multiple

Debye models and/or multiple Lorentz models can also be represented by

(5) if the coe�cients in this equation satisfy certain conditions.

For our investigations we assume a much more general polarization

model of the form

P (t; z) =

Z
t

0

g(t� s; z)E(s; z) ds: (6)

This model can be found in the research literature on studies of elec-

tromagnetic wave propagation in time domain, see for example [14, 22].

It, of course, includes the various n-th order models of (5) as special cases

whenever the initial polarization is zero. (To readily see this, rewrite (5) as

an n-vector �rst order system and use the standard variation-of-parameters

representation in terms of the impulse response and the input E). The inte-
gral formulation (6) will be used in stating precisely general well posedness

results while the special cases of the di�erential formulation are used in

some of our computational examples to study speci�c mechanisms.

The above model (6) also includes as special cases systems with memory,

generally referred to in the mathematical literature as time delay systems,

systems with hysteresis or hereditary systems [4, 9]. For example, if the

polarization rate depends not only on the current polarization but also on

the previous values, then one may write

@P

@t
(t; z) =

NX
i=1

aiP (t� ri; z) +

Z 0

�r

a(t; s)P (t+ s; z)ds+ a0E(t; z) (7)

or, more generally, in terms of Stieltjes measures for memory

@P (t; z)

@t
=

Z 0

�r

P (t+ s; z)ds�(t; s) + a0E(t; z): (8)

It is well known that solutions of (7) or (8) can be written (again assum-

ing no initial polarization) in the form (6) by using variation-of-parameters

representations in terms of the fundamental solution X(t� s) and taking

g(t�s) = X(t�s)a0 (see [4, 9] for details). It is accepted engineering prac-
tice to sometimes approximate the complicated systems (7) or (8)|which

are actually in�nite dimensional state systems|by �nite dimensional high

order systems similar to (5) which yield appropriate approximations, e.g.,

see [5].
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2 Well-posedness: Existence, Uniqueness,

Continuous Dependence

To treat questions related to existence, uniqueness and continuous depen-

dence of solutions on data, it is convenient to write the system (3), (4),

(6) in weak or variational form. We do this in the usual manner using test

functions � 2 V � H1(0; 1) and a state space H = L2(0; 1). Multiplying

(3) by �, integrating over z 2 [0; 1], integrating by parts and using (4) and

(6), we obtain

Z 1

0

 
@2E

@t2
(t; z)�+

�

�0

@E

@t
(t; z)�+ c2

@E

@z
(t; z)

@�

@z

+
1

�0

Z
t

0

g(t� s; z)
@2E

@s2
(s; z) ds �

!
dz

+ c
@E

@t
(t; 1)�(1) + c

@E

@t
(t; 0)�(0) (9)

=

Z 1

0

�
1

�0

@Js
@t

(t; z)� dz; t > 0:

With the notation � = @

@t
; 0 = @

@z
and h�;  i =

R 1
0
� dz, this equation

can be written succinctly as

h �E(t); �i+ h
�

�0
_E; �i+ h

1

�0

Z
t

0

g(t� s) �E(s)ds; �i

+ hc2E0(t); �0i = +c _E(t; 1)�(1) + c _E(t; 0)�(0)h�
1

�0
_Js(t); �i (10)

for all � 2 V . We seek solutions satisfying initial conditions E(0) =

�; _E(0) = 	 for � 2 V; 	 2 H . We note that the functions z ! �(z)
and z ! g(t� s; z) vanish outside ~
 = [z1; z2] for the geometry of Figure 1
(which is our focus here). Further integration by parts in the fourth term

of (10) and some tedious calculations enable us to write (10) in the form

we use as our basic equation here. It is given by:

h �E(t); �i + h
 _E(t); �i+ h�E(t); �i + h

Z
t

0

�(t � s)E(s)ds; �i

+ hc2E0(t); �0i+ c _E(t; 1)�(1) + c _E(t; 0)�(0) = hJ (t); �i (11)

for all � 2 V . Here

J (t) = �
1

�0
_Js;
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(z) =
1

�0
�~
[�(z) + g(0; z)];

�(z) =
1

�0
�~
 _g(0; z);

�(t� s; z) =
1

�0
�~
�g(t� s; z):

The initial conditions are still given by

E(0; z) = �(z)

z 2 
 = (0; 1): (12)

_E(0; z) = 	(z)

Using an approach similar to that of [8],[11, Chapter 4], one can obtain the

following well-posedness results for (11), (12) which is the variational form

of (3), (4), (6).

Theorem: Suppose that �; � and 
 2 L1(0; 1), J 2 L2(0; T ;L2(0; 1))
and � 2 H1(0; 1), 	 2 L2(0; 1). Then there exists a unique solution E
to (11), (12) with E 2 L2(0; T ;H1(0; 1)), _E 2 L2(0; T ;L2(0; 1)), �E 2
L2(0; T ;H1(0; 1)�), _E(�; 1) 2 L2(0; T ), _E(�; 0) 2 L2(0; T ). This solution of

(11) is in the usual sense of L2(0; T ;H1(0; 1))� �= L2(0; T ;H1(0; 1)�), i.e.,
(11) is solved in the sense of V � where V � H1(0; 1) and the h�; �i must be

interpreted as the duality product h�; �iV �;V in the �rst term of (11).

While this result can be obtained using the approach of [8, 11], the

details are somewhat tedious and will be presented elsewhere. Estimates

obtained in proving the above theorem can be used to obtain continuous

dependence results. We �nd that the mapping

(�;	;J ) in H1(0; 1)� L2(0; 1)� L2(0; T ;H1(0; 1)�)

to

(E; _E) in L2(0; T ;H1(0; 1))� L2(0; T ;L2(0; 1))

is continuous.

We note that the arguments for existence also yield that t! E(t; 0) is
continuous even though in general one cannot establish the continuity E 2
C(0; T ;H1(0; 1)) in the usual manner. This will be useful in formulating

the inverse problems of the next section.

3 Inverse Problems

One can formulate the identi�cation of electric polarization mechanisms as

parameter estimation problems in the time domain and this is the approach
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we take here. For given incident (pulse modulated microwave signals { for

the importance of such input signals see [2]) and scattered electric �elds, the

parameter estimation problems consist of �nding a set of parameters such

that the computed electric �eld corresponding to the parameters matches

in some sense the measured data. In general, one wishes to estimate the

parameters �; �; 
 of (11) (equivalently � and g in (10)) or some �nite

dimensional parameterization of these functions. For example, if one as-

sumes that � is constant in the slab ~
 = [z1; z2] (see Figure 1) and assumes
the special case (5) of the polarization model (6), then one might choose

q = (�; a0; a1; : : : ; an) as the vector of unknown parameters to be estimated
using observed data at z = 0 from the re
ected electric �eld. More gener-

ally, let q be a vector parameterization for �; �; 
 with values ranging over

some admissible set Q. We assume that we have measurements ~E = f ~Eig
of the electric �eld E at z = 0 for times ftig. Then we consider the least

squares estimation problem of minimizing over q 2 Q the criterion

J( ~E; q) =

NtX
i=1

jE(ti; 0; q)� ~Eij
2 (13)

where E(ti; 0; q) are solutions corresponding to q of (11), (12) evaluated at

(t; z) = (ti; 0).
The minimization in our parameter estimation problems involves an in-

�nite dimensional state space and approximations must be made to obtain

solutions. We thus consider Galerkin type approximations in the context

of the variational formulation (11). Solving the associated approximate es-

timation problems, we obtain a sequence of estimates f�qNg where N is an

index of approximation - see [11, Chapter 5] for a general description and

convergence results for similar problems. For the problems considered here,

parameter estimate convergence and continuous dependence (with respect

to the observations f ~Eig) results can be given under certain assumptions

but involve nontrivial extensions of arguments such as those found in [8, 11].

These will be given elsewhere.

One can also give more general convergence results which allow function

space approximation of the parameter set for �; �; 
 directly. These ideas

provide a sound theoretical basis for the reconstruction of conductivity and

the general kernel in the polarization equation (6) and will also be discussed

fully elsewhere.

It is well known that evaluation of electric and magnetic �elds in the

microwave range is computationally expensive in the time domain. To

minimize the number of function evaluations, an iterative Trust Region

algorithm [15] was employed in solving the above minimization problem in

a series of computational examples we used to test our ideas. In addition to

good convergence properties, the algorithm has the potential to provide a

global minimum for our problem. We combined the trust region algorithm

8
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with a piecewise linear spline approximation scheme for the states in (11)

to produce the numerical results reported in the next section.

4 Numerical Results

In some preliminary computational examples, we have tested the ideas

presented above with a special case of (6), the so-called Debye model for

polarization. Speci�cally, we replaced D given in (2) by D = �(z)E + P
where �(z) = �0 for z 62 ~
, �(z) = �0�1 for z 2 ~
 and P is given by

� _P + P = �0(�s � �
1
)E; (14)

where �s and �1 are the static relative permittivity and high frequency rel-

ative permittivity, respectively, and � is the relaxation time. This de�nition
for D allows for some instantaneous polarization in ~
 and maintains pa-

rameterization equivalent to that found in the frequency domain literature.

The theory presented above readily treats this modi�cation.

We �rst carried out a series of simulations for the electric �eld corre-

sponding to a time \windowed" point source input at the boundary point

z = 0 given by

J (t; z) = ��(z)�[0;tf ] sin!t: (15)

We present below a series of �gures depicting the �eld at various times

for one such example. These calculations were performed using piecewise

linear splines in the state approximation with an approximation index of

N = 450. Time stepping was discretized with �t = 33:� 10�5 nsec. The

input is one pulse with a pulse duration of 3.33 nsec. The carrier frequency

f = !=2� was given by f = 1:8� 109 Hz and parameters �s = 35, �
1
= 5,

� = 1�10�11, c = 3:0�108 were used in the simulation depicted. The slab

was located in ~
 = [z1; z2] = [:33; :89] and Figure 2 depicts the incoming

pulse before it has reached the slab. Figure 3 is a plot of E(t; z) at t = 5

nsec. and the �eld at this time consists of the partially re
ected (at

the z = z1 interface) �eld in free space and the partially transmitted �eld

inside the slab. In Figure 4 we see the initiation of precursor formation (the

familiar Brillouin precursors) in the slab while Figure 5 reveals a clearer

precursor pair formulation. Numerous simulations similar to these were

carried out and compared to other methods (e.g., Fourier series solutions) to

verify the accuracy of our computational packages before we began testing

of the inverse problem algorithms.
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Figure 2: Electric Field E at Time t = :7 nsec.
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Figure 3: Electric Field E at Time t = 5 nsec.
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Figure 4: Electric Field E at Time t = 7 nsec.
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Figure 5: Electric Field E at Time t = 10 nsec.
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To test our inverse algorithms, we used simulations as described above

to generate \simulated data" - see [10] for a general description of this

procedure for testing inverse algorithms - to which \relative noise" was

added before it was employed as \observations" in (13). We report here

brie
y on one such test. The simulated data was generated with \true"

values (\water" - see [2]): �� = 10�5, �� = 8:1�10�12, ��
s
= 80:1, ��

1
= 5:5

with f = 1:8� 109 Hz as the carrier frequency in (15) and pulse duration

of tf = 3:3 nsec. \Data" was produced over the time interval [0; T ] with

T = 10 nsec and sampling at ti = if�t, i = 1; : : : ; 100, f�t = :1 nsec.

Several di�erent levels of relative noise were added to test performance of

the algorithm in the presence of increasing noise.

For no noise in the data, the algorithm essentially converged from initial

estimates �0 = 1:5� 10�5, �0 = 10� 10�12, �0
s
= 73, �0

1
= 6, to the true

values �� � ��, ��s � ��
s
, ��

1
� ��

1
with the exception for �� = 0. It was

found in this case as well as in other tests that the data was such that the

algorithm either converged to �� = 0 with convergence to ��
1
� ��

1
or to

�� � �� with ��
1

= 0. That is, sensitivity of the solutions to � and �
1

in

this range of values tested was such that it was not possible to identify �
and �

1
independently. Results for several levels of noise are presented in

the table below. As expected, the performance deteriorated with increasing

noise levels.

Noise Estimated Values

Level �� �� ��s ��
1

2% 1:69� 10�5 8:43� 10�12 79.88 0

3% 9:29� 10�5 8:9� 10�12 79.8 0

5% 9:47� 10�5 9:8� 10�12 79.64 0

Table 1: Estimated Parameters in the Presence of Noise
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