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Weak Attractor for Damped Abstract

Nonlinear Hyperbolic Systems�
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Abstract

This paper is concerned with a class of damped abstract non-

linear hyperbolic systems that arise in the study of certain smart

material structures. The present work can be considered as a con-

tinuation of the work of H.T Banks, D.S.Gilliam and V.I. Shubov in

which the existence and uniqueness of weak solutions for this class

of systems was recently established. In particular, with the addi-

tion of one technical assumption, we prove the existence of a weak

dynamical system, a weak compact global attractor, the existence

of a global Lyapunov function and make some statements concern-

ing the asymptotic behavior of solutions for these systems. We note

that, even though the existence of a strong dynamical system for

this class has not been proven, it would not imply the existence of

a weak dynamical system which is typically harder to characterize.

The advantage of a weak dynamical system is that it is often easier

to prove the existence of the weak compact attractor.

Key words: abstract hyperbolic systems, weak dynamical system, weak compact

attractor

AMS Subject Classi�cations: 35B40

1 Introduction

In this work we consider a class of abstract nonlinear damped hyperbolic

systems evolving in a complex separable Hilbert space. This class of non-

linear systems, �rst studied in the recent papers [3, 4], arise as dynamical

models for smart material structures, or more precisely, for elastomers.

These are rubber based products with a variety of applications in modern
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material sciences. One such application is the development of active and

passive vibration devices. The nonlinearity in these systems comes from

a nonlinear relationship between stress and strain that these elastomers

are known to exhibit. The study of these systems is also important for

the development of computational methodologies for the identi�cation and

control of smart material structures. For a detailed discussion see [4, 6].

The class of systems can be described by damped nonlinear hyperbolic

equations of the form

wtt +A1w +A2wt +N �
g(Nw) = f(t) (1.1)

w(0) = '0 (1.2)

wt(0) = '1 (1.3)

in a separable Hilbert spaceH. The equation is actually to hold in the sense
of a larger space V� the dual of V . Here A1, A2 andN are unbounded linear

operators, g is a continuous nonlinear operator in H and f is a, possibly

distributional, external forcing term. Precise conditions on the spaces and

operators involved are given in Section 3.

The global in time existence and uniqueness of the weak solution for the

problem (1.1)-(1.3) was established in [3, 4]. As a continuation of this work,

we have adopted all the notation introduced in [4]. In [4] the authors were

primarily interested in proving existence and uniqueness of solutions, there-

fore they did not treat the question of whether the systems de�ne a weak

or strong dynamical system, nor did they consider the asymptotic behav-

ior of solutions. In the present work we examine some of these issues and

show, in particular, that the problems de�ne a weak dynamical system and

prove the existence of a weak compact attractor. We note that it is usually

easier to prove that the system de�nes a strong dynamical system in the

state space, but theorems guaranteeing the existence of an attractor usu-

ally require proving that the trajectories of the system are precompact in

the state space [8, 10, 13]. This property is essential to insure the existence

of a limit point for bounded trajectories. However, this precompactness is

often di�cult to establish. One alternative is to use the weak topology on

the state space, in which case boundedness su�ces for precompactness of

the trajectories. This idea was introduced and developed in several papers

[9, 7, 12, 1, 2]. Once the existence of a weak dynamical system is shown,

it is su�cient to prove that the system is bounded and point dissipative to

insure the existence of a weak compact attractor.

The paper is organized in the following manner. In Section 2 we have

included the necessary de�nitions and a theorem from [9] which give the

extensions of the usual concepts and statements to weak dynamical sys-

tems. In Section 3 we give all necessary assumptions about the problem

(1.1)-(1.3). In Section 4 (as we mentioned earlier) we prove that (1.1)-(1.3)
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gives rise to a weak dynamical system. In Section 5 we state and prove our

main result concerning the existence of a weak compact attractor. Section

6 is devoted to showing the existence of a Lyapunov function and describing

the asymptotic behavior of weak solutions.

2 Weak Dynamical Systems and Weak Compact At-

tractor

To examine the behavior of weak solutions we introduce the notion of a

weak dynamical system [9, 12].

De�nition 2.1 Let X be a reexive Banach space, and let ~X denote the

space X endowed with the weak topology. A weak dynamical system on
~X is a function T: IR+ � ~X ! ~X with the following properties:

(i) T (0)x = x for all x 2 X.

(ii) T (t+ �)x = T (t)T (�)x for all t; � 2 IR+
; x 2 X.

(iii) T (:)x : t! T (t)x is continuous from IR
+ into ~X for �xed x 2 X.

(iv) T (t) : x ! T (t)x is weakly sequentially continuous for �xed t 2 IR+

(i.e. if xn ! x weakly in X, then T (t)xn ! T (t)x weakly in X).

In Section 3 we show that (1.1)-(1.3) gives rise to a weak dynamical system

on V �H.

De�nition 2.2 A set K � ~X is a weak compact attractor for T (t)

in ~X, if it is maximal, weak compact, invariant and weakly attracts the

bounded sets of ~X; i.e. for any bounded set B � X and any " > 0, there is

a t0 = t0(";B;K) such that T (t)B � ~N"(K) for t � t0, where ~N"(K) is a

weak "-neighborhood of K.

De�nition 2.3 The weak dynamical system T(t) is said to be weak point

dissipative if there is a bounded set K � ~X, which weakly attracts the

points of X.

De�nition 2.4 A set K is said to be weakly stable if, for any " > 0,

there is a �(") > 0 such that T (t) ~N�(K) � ~N"(K), for all t � 0.

Theorem 2.1 Let X be a separable reexive Banach space, T (t) : IR+ �
X ! X be a weak dynamical system with T (t; :) weak point dissipative.

Also assume that +(B) (the set of positive semi-trajectories starting from

B) is a bounded subset of X. Then there exists a weak compact attractor

which is weakly stable and weakly connected.
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3 Formulation of Problem

Using the same notations as in [4], we assume that there is a sequence of

separable Hilbert spaces V , V2, H, V�, V�2 that form a Gelfand quintuple

[5, 14]:

V ,! V2 ,! H ,! V�2 ,! V�:
The embedding V ,! V2 is dense and continuous with k'kV2 � ck'kV for

' 2 V and V2 ,! H is a dense compact embedding with k'k � ~ck'kV2 .
We denote by h ; iV�;V , etc., the usual duality products [14]. These duality
products are the extensions by continuity of the inner product in H which

is denoted by h ; i. The norm in H will be denoted by k � k while those in
V ; V2 etc. will have an appropriate subscript. The operators A1 and A2

are de�ned in terms of their sesquilinear forms �1 : V � V ! Cl and �2 :

V2 �V2 ! Cl . That is, A1 2 L(V ;V�);A2 2 L(V2;V�2 ) and hA1';  iV�;V =

�1(';  ); hA2';  iV�
2
;V2 = �2(';  ).

Let LT denote the space of functions w : [0; T ]! H such that

w 2 CW ([0; T ];V2) \ L1([0; T ];V)

(W means weak continuity), and

wt 2 CW ([0; T ];H) \ L2([0; T ];V2);

where the time derivative wt is understood in the sense of distributions

with values in a Hilbert Space (see, e.g., [11]). The space LT is equipped

with the norm

kwkLT = ess sup
t2[0;T ]

(kwt(t)k+ kw(t)kV) +
 Z T

0

kwt(t)k2V2dt
!1=2

: (3.1)

De�nition 3.1 We say that w 2 LT is a weak solution of the problem

(1.1) { (1.3) if it satis�es the equation:Z t

0

�
� hw� (�); �� (�)i + �1 (w(�); �(�)) + �2 (w� (�); �(�)) +

+hg (Nw(�)) ;N�(�)i
�
d� + hwt(t); �(t)i =

= h'1; �(0)i+
Z t

0

hf(�); �(�)iV�
2
;V2d�; (3.2)

for any t 2 [0; T ] and any � 2 LT , as well as the initial condition

w(0) = '0: (3.3)
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Equivalently,

hwtt; �iV�;V + �1(w; �) + �2(wt; �) + hg(Nw);N�i = hf; �iV�
2
;V2 (3.4)

is satis�ed for all � 2 LT and for almost all t 2 [0; T ].

We make the following assumptions (these assumptions are the same as

in [4] except that in A5) we require the real part of �2 to be strictly coercive

and in A6), since we are interested in the existence of a weak attractor, we

assume that f does not depend on t; moreover, we introduce one additional

assumption A12) ):

A1) The form �1 is a Hermitian sesquilinear form: for ';  2 V
�1(';  ) = �1( ; '): (3.5)

A2) The form �1 is V bounded: for ';  2 V
j�1(';  )j � c1k'kVk kV : (3.6)

A3) The form �1 is strictly coercive on V : for ' 2 V
Re�1('; ') = �1('; ') � k1k'k2V ; k1 > 0: (3.7)

A4) The form �2 is bounded on V2: for ';  2 V2
j�2(';  )j � c2k'kV2k kV2 : (3.8)

A5) The real part of �2 is strictly coercive and symmetric on V2:
Re�2('; ') � k2k'k2V2 ; k2 > 0 (3.9)

Re�2(';  ) = Re�2( ; '); for any ';  2 V2: (3.10)

A6) The forcing term f is time-independent, f 2 V�2 .
A7) The operator N satis�es

N 2 L(V2;H) with kN'k �
pek k'kV2 (3.11)

and the range of N on V is dense in H.
Note that (3.11) together with V2 ,! H implies

N 2 L(V ;H) with kN'k �
p
k k'kV (3.12)

with k = ~c2~k.
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A8) The nonlinear function g : H ! H is a continuous nonlinear mapping

of real gradient (or potential) type. This means that there exists a

continuous Frechet-di�erentiable nonlinear functional G : H ! IR
1,

whose Frechet derivative G0(') 2 L(H; R1) at any ' 2 H can be

represented in the form

G
0(') = Rehg(');  i for any  2 H: (3.13)

We also require that there are constants C1; C2; C3 and " > 0 such

that

�1

2
k
�1(k1 � ")k'k2 � C1 � G(') � C2k'k2 + C3; (3.14)

where k is from (3.12) and k1 from (3.7).

A9) The nonlinear function g also satis�es

kg(')k � eC1k'k+ eC2; ' 2 H; (3.15)

for some constants ~C1;
~C2.

An additional condition is necessary for uniqueness of solutions.

A10) For any ' 2 H the Frechet derivative of g exists and satis�es

g
0(') 2 L(H;H) with kg0(')kL(H;H) � eC3: (3.16)

A11) We assume that for any u; v 2 LT , the following inequality is satis�ed
for any t 2 [0; T ]:Z t

0

n
Rehg(Nu(�)) � g(N v(�));Nu(�) �Nv(�)i

+k1k
�1kNu(�)�Nv(�)k2

o
dt (3.17)

+a

 �Z t

0

ku(�)� v(�)k2 dt
�1=2

!
� 0;

where a(�) � 0 is a continuous function in � � 0 such that

i) a(0) = 0,

ii) there exists a �rst derivative such that a0(0) = 0.

Note that (3.17) is satis�ed if, for example,

Rehg(')� g( ); '�  i+ k1k
�1k'�  k2 � 0 (3.18)

for any ';  2 H, where k and k1 are the constants in (3.12) and

(3.7).

A12) The embedding V ,! V2 is compact.
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4 The Weak Dynamical System

At this point we recall the following result from [4].

Theorem 4.1 Under conditions A1)-A11) the system (2.1) has a unique

weak solution w 2 LT for every initial condition

�
'0

'1

�
2 V � H. The

weak solution satis�es

hwtt; �iV�;V + �1(w; �) + �2(wt; �) + hg(Nw);N�i = hf; �iV�
2
;V2 (4.1)

for all � 2 LT and for almost all t 2 [0; T ]: Moreover, w 2 CW ([0; T ];V).

Using this Theorem we can de�ne the solution operator St : V �H !
V �H by

St

�
'0

'1

�
=

�
w(t)

wt(t)

�
;

where w is the weak solution of (1.1) corresponding to the initial condition�
'0

'1

�
. Now we can prove the following theorem:

Theorem 4.2 If conditions A1)-A12) are satis�ed, then fSt; t � 0;V�Hg
is a weak dynamical system in the sense of De�nition 2.1.

Proof: It is clear that fSt; t � 0;V�Hg satis�es the semigroup properties
(i)-(ii) (since by A6) f does not depend on t). Weak continuity in t (i.e.

property (iii) ) also comes immediately from Theorem 4.1. So the main

di�culty lies in establishing property (iv), the weak continuous dependence

on initial conditions. Suppose that

�
'
n
0

'
n
1

�
2 V � H and

�
w
n(t)

w
n
t (t)

�
are the corresponding weak solutions of (1.1). We want to show that if�
'
n
0

'
n
1

�
!
�
'0

'1

�
weakly in V � H, then

�
w
n(t)

w
n
t (t)

�
!
�

w(t)

wt(t)

�
weakly in V � H, where

�
w(t)

wt(t)

�
is the weak solution corresponding

to

�
'0

'1

�
. To achieve this, we closely follow the steps of the proof of

Theorem 6.1. in [4]. There it is shown, that for given initial condition�
 0

 1

�
the Galerkin approximations wN (t); wN

t (t) satisfy the following

inequality:

kwN
t (t)k2 + "kwN (t)k2

V
+ k2

Z T

0

kwN
� (�)k2V2d� � ~C( 0;  1; f; T ): (4.2)
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Using the weak convergences wN (t) + w(t) in V , wN
t (t) + wt(t) in H

and w
N
t + wt in L

2([0; T ];V2) (see Lemma 5.1. in [4]), and the lower

semicontinuity of norms we get:

kwt(t)k2 + "kw(t)k2
V
+ k2

Z T

0

kw� (�)k2V2d� �

limN!1kwN
t (t)k2 + "kwN (t)k2

V
+ k2

Z T

0

kwN
� (�)k2V2d� �

~C( 0;  1; f; T ):

Since weak convergence of

�
'
n
0

'
n
1

�
implies norm boundedness, there exist

K1;K2 such that k'n0kV � K1 and k'n1k � K2. Thus, we can conclude

that there exists C > 0 depending on K1;K2; f; T such that

kwn
t (t)k2 + "kwn(t)k2

V
+ k2

Z T

0

kwn
� (�)k2V2d� � C(K1;K2; f; T ) (4.3)

for every n � 1. It follows from (4.3) that fwng is bounded in L1([0; T ];V)
� L

2([0; T ];V) and that fwn
t g is bounded in L2([0; T ];V2). So there exists

a subsequence such that

w
n �! w weakly in L2([0; T ];V) (4.4)

w
n
t �! wt weakly in L2([0; T ]);V2): (4.5)

Now we can establish the following convergences:

a)

w
n(t)! w(t) weakly in V2 (4.6)

uniformly in t 2 [0; T ];

b)

w
n
t (t)! wt(t) weakly in H (4.7)

uniformly in t 2 [0; T ];

c)

w
n
t ! wt strongly in L2([0; T ];H); (4.8)

d) there exists h 2 L2([0; T ];H) such that

g(Nwn)! h weakly in L2([0; T ];H); (4.9)
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Assuming A12), i.e. V ,! V2 is compact, (4.6)-(4.9) can be obtained

by the same arguments as the similar convergences in [4] for Galerkin

approximations, since in that case fwng � CW ([0; T ];V) implies that

fwng � C([0; T ];V2). However, (4.6)-(4.9) can also be established with-

out the assumption A12), but then we have to utilize a di�erent version of

the Ascoli-Arzela Theorem (see [2] p.253). Once the above convergences

are obtained, we can again proceed similarly as in [4] and complete the

proof. The only place where the additional assumption A12) plays a crucial

role (and therefore cannot be omitted) is the following: in the calculations

showing that

�
w

wt

�
is a weak solution corresponding to

�
'0

'1

�
we need

that

w
n(0) = '

n
0 ! '0 strongly in V2: (4.10)

(This is needed for example to get that �2(w
n(0); wn(0)) ! �2('0; '0).)

Since originally 'n0 ! '0 only weakly in V , (4.10) does not necessarily take
place unless we assume that the embedding V ,! V2 is compact.

Q.E.D.

5 Existence of a Weak Attractor

In this section we prove the following theorem:

Theorem 5.1 Under conditions A1)-A12) the weak dynamical system

fSt; t � 0;V � Hg possesses a weak compact attractor K which is weakly

stable and weakly connected.

Proof: We prove that weak solutions satisfy an inequality which guaran-

tees the boundedness of +(B) when B � V �H is bounded and the weak

point dissipativeness of the weak dynamical system fSt; t � 0;V � Hg.
Then by Theorem 2.1 the proof is complete. We proceed formally. Choos-

ing � = wt in (4.1) and taking real part we obtain:

d

dt

�
1

2
kwtk2 + 1

2
�1(w;w) +G(Nw)

�
+Re�2(wt; wt) = Rehf; wtiV�

2
;V2

(5.1)

where we have used the fact that due to (3.13) we have

d

dt
G(Nw) = Rehg(Nw);Nwti:

Using A5) and multiplying by 2 we get:

d

dt

�kwtk2 + �1(w;w) + 2G(Nw)	 + 2k2kwtk2V2 � 2�kwtk2V2 +
1

2�
kfk2

V
�

2
:

(5.2)
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Choosing � such that k2 � � > 0 we get 2(k2 � �)kwtk2V2 �
2(k2��)

~c
kwtk2.

Let l =
2(k2��)

~c
. Multiplying by elt and then integrating from 0 to t we

obtain:

e
ltkwt(t)k2 � kwt(0)k2 +

Z t

0

e
ls d

ds
�1(w(s); w(s))ds

+

Z t

0

2els
d

ds
(GNw(s))ds � 1

2�

Z t

0

e
lskfk2

V
�

2
ds:

Using integration by parts we have:

e
ltkwt(t)k2 � k'1k2 + e

lt
�1(w(t); w(t)) � �1(w(0); w(0))

�
Z t

0

le
ls
�1(w(s); w(s))ds + 2eltG(Nw(t)) � 2G(Nw(0))

�
Z t

0

2lelsG(Nw(s))ds � 1

2�

Z t

0

e
lskfk2

V
�

2
ds; (5.3)

which gives (using A3), A2) ):

kwt(t)k2 + k1kw(t)k2V + 2G(Nw(t)) �
e
�lt
�k'1k2 + c1k'0k2V + 2G(Nw(0))�

+l

Z t

0

e
l(s�t)

�1(w(s); w(s))ds + 2l

Z t

0

e
l(s�t)

G(Nw(s))ds

+
1

2�

Z t

0

e
l(s�t)kfk2

V
�

2
ds: (5.4)

By A8), A7), A3) we obtain:

kwt(t)k2 + k1kw(t)k2V + 2

�
�1

2
k
�1(k1 � ")kkw(t)k2

V
� C1

�
�

e
�lt
�k'1k2 + c1k'0k2V + 2C2kk'0k2V + 2C3

�
+ lc1

Z t

0

e
l(s�t)kw(s)k2

V
ds

+2l

Z t

0

e
l(s�t)(C2kkw(s)k2V + C3)ds

+
1

2�

Z t

0

e
l(s�t)kfk2

V
�

2
ds: (5.5)

This gives

kwt(t)k2 + "kw(t)k2
V
� e

�lt
K +

 
2lC3 +

kfk2
V
�

2

2�

!Z t

0

e
l(s�t)

ds

10
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+2C1 + L

Z t

0

e
l(s�t)(kw(s)k2

V
+ kws(s)k2)ds; (5.6)

where K =
�k'1k2 + c1k'0k2V + 2C2kk'0k2V + 2C3

�
, and L = lc1 + 2lC2k.

Let ~" = min(1; "), L1 = L
~"
, K1 = K

~"
, K2 =

�
2lC3 + kfk2

V
�

2
(2�)�1

�
1
~"l

and K3 =
2C1

~"
. With these, using Gronwall's inequality, we get:

kwt(t)k2 + kw(t)k2
V
� K1e

�lt +K2(1� e
�lt) +K3

+L1

Z t

0

e
l(s�t)

�
K1e

�ls +K2(1� e
�ls) +K3

�
e

R
t

s

L1e
l(��t)d�

ds

� K1e
�lt +K2(1� e

�lt) +K3

+L1

Z t

0

�
e
�lt(K1 �K2) + (K2 +K3)e

l(s�t)
�
e
L1
l ds

� K1e
�lt +K3 +K2(1� e

�lt) + L1e
L1
l jK1 �K2jte�lt

+L1e
L1
l

K2 +K3

l
: (5.7)

Here only K1 =
1
~"

�k'1k2 + c1k'0k2V + 2C2kk'0k2V + 2C3

�
depends on the

initial conditions (L1;K2;K3 are independent of them), so given any � =�
'0

'1

�
2 V �H and " > 0 there exists a t0 > 0 such that for t > t0, we

have je�ltK1j < "
2
and jK1 �K2jte�lt < "

2
, so

kwt(t)k2 + kw(t)k2
V
� "+K3 +K2 + L1e

L1
l (K2 +K3) l

�1
: (5.8)

This means that the weak dynamical system is weak point-dissipative, i.e.,

a ball of radius

R =

r
K3 +K2 + L1e

L1
l

K2 +K3

l

in V �H attracts the trajectories starting from any element of V�H. (Ac-
tually, (5.7) shows strong point dissipativeness, which implies weak point

dissipativeness.) The estimate (5.7) also shows that the dynamical system

is bounded. To justify that these estimates are true for the weak solution

we have to consider the Galerkin approximations and their properties (see

Lemma 5.1 [4]). Q.E.D.

6 Asymptotic Behavior of Weak Solutions

Our �rst observation is that the system (1.1)-(1.3) possesses a Lyapunov

function, i.e. there exist a function F : V �H ! IR such that

F (St (�)) � F (�) (6.1)
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for every � =

�
'0

'1

�
2 V �H; t � 0. Indeed, take

F

��
u

v

��
=

1

2
kvk2 + 1

2
�1(u; u) +G(Nu)�Rehf; uiV�

2
;V2 :

For the weak solution

�
w

wt

�
of (1.1)-(1.3), (5.1) gives:

d

dt

�
1

2
kwtk2 + 1

2
�1(w;w) +G(Nw)

�
�Rehf; wtiV�

2
;V2

� �Re�2(wt; wt) � �k2kwtk2V2 :
Integrating from 0 to t we get:

1

2
kwtk2 + 1

2
�1(w;w) +G(Nw) �Rehf; wiV�

2
;V2 �

1

2
kwt(0)k2 + 1

2
�1(w(0); w(0)) +G(Nw(0)) �Rehf; w(0)iV�

2
;V2

�k2
Z t

0

kw�k2V2d�;

which shows that F is decreasing, so it satis�es (6.1).

Let !(�) denote the weak !-limit set of � 2 V �H, i.e.

!(�) = \s�0
�
[t�sSt(�)w

�
:

Since trajectories are bounded, we know that !(�) is invariant under St,

i.e. St(!(�)) = !(�) (see [9], Lemma 2.1). Since our Lyapunov function is

bounded on compact subsets of V �H and the map 	! F (	)�F (St(	))
is lower semicontinuous in V �H, where V �H is equipped with the weak

topology, it follows that if 	 2 !(�) then
F (St(	)) = F (	) for all t � 0; (6.2)

i.e., in the !-limit set the Lyapunov function is constant along trajectories

(see [7], Proposition 3.1.). However, our Lyapunov function can satisfy

(6.2) only if 	 =

�
 

0

�
is a stationary solution of (1.1). So we arrive at

the following:

Theorem 6.1 Let

�
w

wt

�
be the weak solution of (1.1)-(1.3). Then for

any sequence ftng; tn ! 1, there exists a subsequence again denoted by

ftng such that �
w(tn)

wt(tn)

�
! 	 =

�
 

0

�
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weakly in V �H as tn !1, where 	 is a stationary solution of (1.1).
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