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Abstract

We consider the problem of local controllability from the origin

for a coupled nonlinear shell via boundary controls.

1 Introduction and Problem Statement

We consider the problem of controlling a nonlinear model of a thin, shallow

spherical shell from the origin to a point in some neighborhood of the origin

by means of boundary controls. The motion of the shell in question is

described by the following system of nonlinear equations in Q � (0; �0) �
(0;1):

utt + e
R
vtt + b21(�)ut � L(u) + 1+


R
w0 � e

R
L(v)

�[v0 + 1�

2�

v]v + vs
R

= 0

wtt � e(v0 + v
�
)tt + b22(�)wt +

e
�
[L(v)�]0

� 1+

�
( u
R
�)0 + 2(1+
)

R2 w � 1+

2R

v2 � 1
�
(vs�)0 = 0

9>>>>>=
>>>>>;
; (1.1)

where we have introduced the notation,

v � u
R
+ w0; s � N + 
N0; N � u0 � w

R
+ 1

2
v2;

N0 � u
�
� w

R
; L(u) � u00 + u0

�
� u

�2

�
: (1.2)

Here, R denotes the radius of the middle surface of the spherical cap,


 2 (�1; 1
2
) is Poisson's ratio, u and w represent meridional and radial
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displacements, respectively, with respect to arclength, � = R�. We assume

the shallowness condition for this shell, � 2 [0; �0], where �0 is su�ciently

small so that sin �0 � �0 and �0 = R�0 � 1
2
. Since this is a problem

in one spatial dimension, we denote di�erentiation with respect to � by
0. The functions bi 2 L1(0; �0) represent a light damping in the system

and are assumed to be positive (but not necessarily uniformly positive) on

(0; �0). Moreover, we assume that these functions are \su�ciently small"

in L1(0; �0), as will be described more fully later. Also, e = 1
2
h2, where h

is the thickness of the shell.

To control from the origin to a point, we impose the initial conditions

u(0; � ) = 0; ut(0; � ) = 0; w(0; � ) = 0; wt(0; � ) = 0: (1.3)

We will control the shell by means of boundary controls, implemented

through moments and forces applied to the open edge of the shell, while

keeping the shell clamped at the apex:

u = w = w0 = 0; at � = 0 for t > 0 (1.4)

and 8<
:

s = a1
ev0 = a2

eL(v)� vs� evtt = a3

at � = �0; t > 0: (1.5)

In order to handle the nonconstant, singular coe�cients in this model,

we will need to adapt the traditional Sobolev spaces to incorporate these

factors. We now recall the appropriate weighted Sobolev spaces, which

were �rst introduced with regard to the linear problem associated with

(1.1) in [8].

Function spaces

The �rst step is to introduce an appropriate replacement for the space

L2(0; �0). This space will be the pivot space for �nding the duals of the

other Hilbert spaces, soon to be introduced.

L2
�(0; �0) with norm kuk2

L2
�
=

�Z �0

0

u2� d�

� 1
2

: (1.6)

We now describe what will be the state space for our variable u:

U1
� (0; �0) =

�
u :

up
�
; u0
p
� 2 L2(0; �0); u(0) = 0

�
; (1.7)

with norm

kuk
U
1
�
=

�Z �0

0

�
u2

�
+ (u0)2�

�
d�

� 1
2

: (1.8)
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Note that since up
�
and u0

p
� are in L2(0; �0), we have that uu

0 2 L1(0; �0)

and hence the function

u2(�) = u2(�0) +

Z �

�0

d

dr
(u2)dr = u2(�0) + 2

Z �

�0

uu0dr (1.9)

is absolutely continuous on [0; �0]. In particular, this implies that u(0) is

well-de�ned for all u 2 U1
� .

For the variable w, we de�ne the space:

W2
� (0; �0) = fw : w

p
� 2 L2(0; �0); w

0 2 U1
� (0; �0)g (1.10)

with norm

kwk
W

2
�
=

�Z �0

0

w2�d� + kw0k2
U
1
�

� 1
2

: (1.11)

By the same argument as was used for u, we have that w 2 W2
� implies

that w is absolutely continuous on [0; �0].

We de�ne the product space which will be the state space for the velocity

terms, [ut; wt] by:

V1� (0; �0) = f(u;w) 2 L2
� � L2

� : v = u
R
+ w0 2 L2

�(0; �0)

or; equivalently; w0 2 L2
�(0; �0)g

(1.12)

with norm

k(u;w)k
V
1
�
= fkuk2

L2
�
+ kwk2

L2
�
+ ekvk2

L2
�
g 1

2 : (1.13)

For the space of the controls, we de�ne U � [L2([0; T ];R�0)]
3, where

R3
�0

is the usual R3 with a weight of �0:

([l1; l2; l3]; [k1; k2; k3])R3
�0

= (l1k1 + l2k2 + l3k3)�0: (1.14)

Finally, we introduce the state space for the system, E , which is de�ned

as

E = [U1
� �W2

� ]� V1� : (1.15)

Note : We will henceforth drop the speci�cation (0; �0) in the notation

of the above spaces.

2 Statement of the Main Result

We now state the main theorem of this paper.
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Theorem 2.1 The system (1.1) with bi(�) su�ciently small, is locally con-

trollable from the origin on the space E � U1
� �W2

� � V1� within the class

of controls a 2 U for T > eT0, where eT0 is the time for exact controllabil-

ity for the linearized system corresponding to (1.1). That is to say, given

homogeneous initial data,

u(0; �) = w(0; �) = ut(0; �) = wt(0; �) = 0 (2.1)

and T > eT0, there exist boundary controls a 2 U such that the reachable

set for the system (1.1) contains some ball of radius R > 0 in the space E:

f[u(T; �); w(T; �); ut(T; �); wt(T; �)] : a 2 Ug � BR(E): (2.2)

Remark: We note that the system (1.1) is well-posed for the time reversed

system, t�!� t. Consequently, we have for b2i (�)�! � b2i (�) that this is

equivalent to driving a su�ciently small initial state to the origin in time

T > eT0.
An outline for the proof is as follows. First, we develop the abstract

formulation of the system (1.1) in terms of the underlying semigroup. We

will then prove exact controllability for the linearized system corresponding

to (1.1), extending the results in [14] to the present model. Following this,

we prove that the nonlinear abstract model is well-posed on a space E which

is norm equivalent to E . We then will construct a control to state mapping

and prove that this mapping is a homeomorphism of a neighborhood of the

origin in the control space U onto a neighborhood of the origin in the state

space E.

3 Abstract Formulation of the System (1.1)

In order to prove the main result, we will use a technique developed �rst

by Lee and Markus (see [10]) for systems of ordinary di�erential equations.

This technique has since been adapted for in�nite dimensional systems.

(See, for example, [5, 12, 6]. We note that the results in [6] correspond

to global controllability results. This work is also quite bene�cial for the

current problem, with modi�cations on the assumptions). To employ this

technique, we �rst must put the system (1.1) into an abstract o.d.e. frame-

work over the Hilbert spaces de�ned above. To do this, we will recall several

operators, which have previously been developed in [8, 14] for the linear

system and in [1] for the nonlinear system.

The operators A;M;B and P . Let the operators A; M and B be as

in [8] and P as in [14]. We recall here some of the properties of these

operators. By Section 3 in [8], we have that
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(i) A is positive, self-adjoint on L2
��L2

�, continuous on U1
��W2

��![U1
��

W2
� ]
0;

(ii) M is positive, self-adjoint on L2
��L2

�, and is an isomorphism V1� onto

[V1� ]0, (duality w.r.t. L2
� � L2

�);

(iii) E = D(A
1
2 )�D(M

1
2 ) is norm equivalent to E = U1

� �W2
� � V1� ;

(iv) B�
�
u

w

�
=

2
4 �u(�0)
�v(�0)
w(�0)

3
5 : D(A1=2) = U1

� �W2
��!R3

�0
:

From [14], we have that P is a self-adjoint perturbation on L2
��L2

�, which

satis�es

P : U1
� �W2

��!L2
� � L2

� is continuous. (3.1)

Note: Throughout this work, the notation k � k without subscript will de-
note the operator norm over the appropriate space(s) as indicated by the

operator in question.

The nonlinear boundary operator f . We de�ne the nonlinear operator

f : D(A1=2)�!R3
�0

as in [1]:

f(u) =

0
@ � 1

2
v2(�0)

0

0

1
A ; u = (u;w); v =

u

R
+ w0: (3.2)

Then we have that�
Bf(u);

�
�u

�w

� �
L2
��L

2
�

=
1

2
�u(�0)v

2(�0)�0: (3.3)

Moreover, by [1](Lemmas 4.1 & 4.2), we have that f , as de�ned in (3.2) is

continuous on D(A1=2)�!R3
�0

and is Frech�et di�erentiable with derivative,

Df(u)[h] =

0
@ [( u

R
+ w0)(h1

R
+ h02)](�0)

0

0

1
A ; h 2 D(A1=2): (3.4)

The nonlinear operator F . We de�ne the operator F : D(A1=2)�![V1� ]0
as in [1]:

(Fu; g) = �(v0v; g1)L2
�
� 1� 


2
(v2;

g1

�
)L2

�
+

1

R
(vs; g1)L2

�
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� 1 + 


2R
(v2; g2)L2

�
+ (vs; g02)L2

�

= �(v0v; g1)L2
�
� 1� 


2
(v2;

g1

�
)L2

�
� 1 + 


2R
(v2; g2)L2

�

+ (vs; vg)L2
�
; (3.5)

where (�; �) represents the duality pairing between V1� and [V1� ]0, u = (u;w);

g = (g1; g2) and vg =
g1
R
+ g02.

By Lemmas 5.1 & 5.2 in [1], we have that F : D(A1=2)�![V1� ]0 is
continuous and continuously Frech�et di�erentiable, with derivative given

by

(DF(u)[h]; g) = �([v0vh + vv0h]; g1)L2
�
� (1� 
)(vvh;

g1
�
)L2

�

� (1+
)

R
(vvh; g2)L2

�
+ (v[h01 + 
 h1

�
� 1+


R
h2]; vg)L2

�

+ (vh(v
2 + s); vg)L2

�

(3.6)

for g 2 V1� and with vh = h1

R
+ h02, where h � (h1; h2) 2 V1� .

Remark: We note that both Df(u) and DF(u) are continuous near the
origin, with Df(0) = 0 in R3

�0
and DF(0) = 0 in [V1� ]0.

We now introduce the perturbation operator, P2 : V1��!L2
��L2

�, which

is bounded and self-adjoint over L2
� � L2

�:

P2

�
u

w

�
=

�
b21(�) 0

0 b22(�)

��
u

w

�
: (3.7)

Combining the above de�nitions proves

Proposition 3.1 The abstract second order model of the system (1.1) with

u = (u;w) and a 2 U is given by

Mutt + (A+ P )u + P2ut + B(a) + B(f(u)) = �F(u) (3.8)

where the operators A; B; M , and P are as in [8] and f; F and P2 are

de�ned in (3.2), (3.5) and (3.7), respectively.

The �rst-order model corresponding to (3.8) is

d
dt

�
u

ut

�
�
�

0 I

�M�1(A+ P ) 0

��
u

ut

�
� P2

�
u

ut

�

� B(a) � B(f(u)) = Fi

�
u

ut

�
;

(3.9)
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or equivalently,

d

dt
(u) � A(u) + P2(u) + B(a) + B(f(u)) +Fi(u); (3.10)

where u = (u; ut) 2 E. Here, for convenience, we have introduced the

boundary operator B : U�![E]0, the interior nonlinear operator Fi :

E�!E and the perturbation operator P2 : E�!E, which are de�ned as:

B(�) =
�

0

�M�1B(�)
�
; P2(u) =

�
0

�M�1P2(ut)

�

and Fi(u) =

�
0

�M�1F(u)
�
:

(3.11)

4 Proof of Main Result

Exact controllability of linearized system

It was proven in [14] that the linearized version of system (3.10) with the

operator P2 � 0 (i.e. P2 = f = F � 0), is exactly controllable on the space

E. We extend this result to the linearized system for (3.10) with P2 6= 0.

Lemma 4.1 Let b21(�) and b22(�) su�ciently small in L1(0; �0). Then the

linear system (3.10) with f = F = 0, given by

ut(t) = Au(t) + P2u(t) + B(a); u(0) � u0 = 0; (4.1)

is exactly controllable on the space E in time T > eT0 su�ciently large.

This eT0 is related to the constants T0; C of equation (4.3) in [14] by

eT0 = T0 +
1

C
kP2k: (4.2)

Proof: Since P2 : C([0; T ];E)�!C([0; T ];E) is a self-adjoint, lower order

perturbation of the operator A, the \controllability inequality" (see (4.3)

in [14]) becomes

Z T

0

kB�eA�(T�t)hkUdt+ kP�2hkE � CT khkE for all h 2 E; (4.3)

so that Z T

0

kB�eA�(T�t)hkUdt � (CT � kP�2k)khkE (4.4)

� eCT khkE;

7
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where CT = C(T � T0) > 0 and eCT = C(T � T0 � 1
C
kP�2k) > 0 as long as

T > T0 +
1

C
kP�2k = T0 +

1

C
kP2k: (4.5)

But this holds whenever (kb21(�)kL1(0;�0) + kb22(�)kL1(0;�0)) is su�ciently

small. In particular, (4.4) implies that the perturbed system, (4.1) is ex-

actly controllable using the same controls as for the unperturbed system

(i.e. with P2 � 0).

Remark: Since P2 is a lower order perturbation of the operator A, we
may include it as part of the generator of the semigroup for the linearized

system: eA = A+ P2: (4.6)

For use in the proof of Theorem 2.1, we introduce four operators which

will simplify the writing of the solution to (3.10). Similar operators are

developed in the arguments found in [6] for a global controllability result

concerning semilinear waves.

Let (La)(t) : U�!C([0; T ];E) be given by

(La)(t) =
Z t

0

e
eA(t��)B(a(�))d� (4.7)

and LT a = (La)(T ). Also, let (Ru)(t) : C([0; T ];E)�!C([0; T ];E) be

given by

(Ru)(t) =
Z t

0

e
eA(t��)u(�)d� (4.8)

with RTu = (Ru)(T ). With these de�nitions and Lemma 4.1, we have the

continuity of the operators L; LT ; R; RT , and in particular,

LT : U�!E is continuous

and

RT : C([0; T ];E)�!E is continuous:

(4.9)

Lemma 4.2 Well-posedness. Let

[u(0; �); w(0; �); ut(0; �); wt(0; �)] � u0 2 E

be given and let a 2 U : Then the system (1.1) admits a unique weak solution

u(t) � [u(t; �); w(t; �); ut(t; �); wt(t; �)] 2 C([0; T ];E).

Proof: By the results of [1], we have a solution of the form:

u(t) = e
eAu0 + L(a + f(u))(t) +RFi(u)(t); (4.10)

8



NONLINEAR SHALLOW SPHERICAL SHELL

where L and R are as in (4.7) and (4.8), respectively.

Construction of the control to state map. By Lemma 4.1, we know

that given any desired terminal state, u(T ) = uT , for the system (4.1)

there exists a control a 2 U so that

LTa � (La)(T ) = uT : (4.11)

We note that by its very nature, a 2 [N (LT )]? � U , which denotes the

orthogonal compliment of the null space of LT in U :
U = N (LT )� [N (LT )]?: (4.12)

Here, � denotes the orthogonal decomposition of U . We will follow the

notation as in [6], de�ning the pseudoinverse,

L#T = (LT j[N(LT )]?)
�1 : E�![N (LT )]?; (4.13)

where8>>>>>>><
>>>>>>>:

LT j[N(LT )]? = LT restricted to [N (LT )]?;

LTL#T = Identity on E;

L#T LT = �T = orthogonal projection of E onto [N (LT )]?;

L#T LT = Identity on [N (LT )]?:

(4.14)

We will henceforth restrict our attention to controls a 2 [N (LT )]?, re-
de�ning our problem to consider only this subset of the controls. We note

that once such a control is found for our system, any control ~a 2 U which

produces the desired terminal state may be written in the form �T~a = a

with a 2 [N (LT )]?.
We now return to the solution to the nonlinear system, (3.10), which is

guaranteed to exist by Lemma 4.2:

u(t) = La(t) + Lf(u(a))(t) +RFi(u(a))(t); u(0) � u0 = 0; (4.15)

where a 2 [N (LT )]?. De�ning the control to state map MT : U�!E by

MT (a) = LTa+ LT f(u(a)) +RTFi(u(a)); (4.16)

we wish to show that there exist constants, r; R > 0 such that MT :

Br([N (LT )]?)�!BR(E) is a homeomorphism. To do this, we will employ

the implicit function theorem for Banach spaces (see [2]).

We �rst show thatMT (0) = 0. Since u0 = 0 and a = 0 together imply

that u(t) � 0, and since Fi(0) = 0 and f(0) = 0, we haveMT (0) = 0.

9
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Di�erentiability of the Map MT .

To prove that MT is Frech�et di�erentiable in a neighborhood of the

origin, we will need the following lemma.

Lemma 4.3 The solution u(t) = u(a; t) is di�erentiable with respect to

the control a in a neighborhood of the origin, with derivative,

du

da
= [I �LDf(u)�RDFi(u)]

�1L: (4.17)

Proof: We begin by formally di�erentiating the equation (4.15) with re-

spect to the control a:

du

da
= L+ LDf(u(a))

du

da
+RDFi(u(a))

du

da
; (4.18)

or equivalently,

[I �LDf �RDFi]
du

da
= L: (4.19)

Claim: The operator, I �LDf(u)�RDFi(u), is boundedly invertible on

a ball of radius eR in E, B
eR
(E), for some eR > 0, su�ciently small.

Proof of Claim: Since Df(u) and DFi(u) are both continuously Frech�et

di�erentiable in a neighborhood of the origin, with Df(0) = 0 in U and

DFi(0) = 0 in E, we have that, for h 2 E,

kDFi(u)[h]kC([0;T ];E) � C1(kukC([0;T ];E))khkC([0;T ];E) (4.20)

and

kDf(u)[h]kU � C2(kukC([0;T ];E))khkC([0;T ];E); (4.21)

where Ci(kukC([0;T ];E))�!0 as kukC([0;T ];E)�!0. In fact, it follows from the

results in [1],that

C1(kukC([0;T ];E)) = C � (kukC([0;T ];E) + kuk2C([0;T ];E)
);

C2(kukC([0;T ];E)) = C � kukC([0;T ];E):
(4.22)

Consequently, we may take kukC([0;T ];E) < eR, su�ciently small so that

1� C eRkLk � C( eR+ eR2)kRk > 0: (4.23)

Then, for u 2 C([0; T ];B
eR
(E)) we have the invertibility of the operator

[I �LDf(u)�RDFi(u)], as desired.

We can see now that the derivative, du
da

as given by (4.18) is well-de�ned

for a 2 [N (LT )]? and may be written as in (4.17), as desired.

10



NONLINEAR SHALLOW SPHERICAL SHELL

Lemma 4.4 The control to state map, MT as de�ned in (4.16) is Frech�et

di�erentiable in a neighborhood of the origin in [N (LT )]?, with derivative

DMT (a) given by

DMT (a)[�] = LT [�]

+ fLTDf(u) +RTDFi(u)g [I �LDf(u)�RDFi(u)]
�1L[�]:

(4.24)

Moreover, DMT (0) is well-de�ned and boundedly invertible for

� 2 [N (LT )]?.

Proof: Di�erentiating equation (4.16) with respect to a, substituting

(4.17) in for du
da

gives us (4.4), which is a well-de�ned and bounded op-

erator for � 2 U . Then, for � 2 [N (LT )]?, we have

DMT (0)[�] = LT�: (4.25)

Since LT is invertible on [N (LT )]?, with inverse L#T , as de�ned in (4.13),

we have the lemma.

Completion of the proof of Theorem 2.1

By an application of the implicit function theorem, we have that MT :

Br([N (LT )]?)�!BR(E) is an homeomorphism for some r; R > 0. This

guarantees the existence of a solution to the equation

MT (a) = uT (4.26)

for any uT 2 BR(E) via control a 2 [N (LT )]?. Consequently, we have the
local controllability of system (3.10), or equivalently, for system (1.1), as

desired.
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