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A Computational Study of the Representation

Problem for Flow Control�

Diana Rubio
y

Abstract

The problem of existence of functional gains for boundary con-

trol of parabolic problems remains incomplete. In particular, it is

not yet known when LQR feedback operators have integral represen-

tations and even in the case where an integral representation exists

there is no theory concerning the regularity of the kernels. There are

cases where the feedback operator is known to be Hilbert-Schmidt

and hence one has an integral representation with L2 kernels. These

kernels are called functional gains. Functional gains can be used to

address sensor/actuator location problems and to design low dimen-

sional compensators [2]. In this note we investigate this question for

a ow control problem by using �nite element numerical methods.

Key words: incompressible viscous ow, Boussinesq equations, analytic semi-

groups, feedback control, �nite element method
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1 Problem Description

We consider a boundary control problem for a two dimensional thermal

convection loop. A thermal convection loop consists of a viscous uid con-

tained in a circular pipe standing in a vertical plane. When the walls of the

pipe are heated from below (creating a thermal di�erence between the top

and the bottom of the pipe) a temperature gradient is caused by thermal

expansion and the uid tends to ow. On the other hand, the viscosity
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and the thermal di�usivity resists these motions. When dissipative terms

are overcome by the buoyancy force, uid motion is created. This e�ect is

called buoyancy driven free convection.

A simpli�ed version of this problem is obtained when the Boussinesq

model is considered. The Boussinesq approximation assumes that all uid

properties are constant, except for the density in the buoyancy term. The

body force per unit mass, ~F , is due only to gravitational acceleration and

the buoyancy force per unit mass. This force is given by

~F = ~g + � (T (t; r; ')� T0)(�~g);

where ~g is the gravity acceleration, � is the thermal expansion coe�cient

and T0 is the bulk uid temperature.
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Figure 1.1: Description of the thermal convection loop

Figure 1.1 illustrates the thermal convection loop. The inner radius

of the pipe is denoted by r1 and the outer radius by r2. The variable

' measures the angle counterclockwise from the horizontal position. We

restrict ourselves to the case of a thin pipe where the width of the pipe

is small as compared with the interior radius, i.e., r2 � r1 << r1. In this

case, the ow may be considered as a Poiseuille ow in a straight pipe of

width r2 � r1, so that the velocity depends only on the radial coordinate.

Therefore, we have

~v(t; r; ') = v(t; r)'̂ (1.1)

where '̂ is a unit vector along the pipe.

The dynamics of an incompressible viscous uid is modeled by the

Navier-Stokes equation

@~v

@t
+ (~v:r)~v = �~F �

1

�
rp+

�

�
r2~v (1.2)
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where p; � and � are the uid's pressure, density and viscosity, respectively.

We assume zero velocity at the walls and that the uid's temperature

equals the wall's temperature. Thus, we have a Dirichlet boundary control

problem. Following [4],[5], we integrate the Navier-Stokes equation along a

circular path at a �xed radius r. It can be shown that after integrating, the

term (~v:r)~v and the pressure term are eliminated.

The Laplacian operator is given in polar coordinates by

r2 =
1

r

@

@r

�
r
@

@r

�
+

1

r2
@2

@2'
;

and we letr2
r =

1
r

@

@r

�
r @

@r

�
. The dynamics of the uid ow may be described

by the following quasilinear in�nite-dimensional distributed parameter sys-

tem (see [7], [10]),

@v

@t
(t; r) = �r2

rv(t; r) +
g�

2�

Z 2�

0

T (t; r; ') cos' d'; (1.3)

@T

@t
(t; r; ') = �

v(t; r)

r

@T

@'
(t; r; ') + � r2T (t; r; '); (1.4)

with boundary conditions

v(t; r1) = v(t; r2) = 0;

T (t; r1; ') = T1(t; ') + w1(t; '); T (t; r2; ') = T2(t; ') + w2(t; '):

Here v denotes the uid's velocity, T the uid's temperature, � the kinematic

viscosity of the uid, g the gravity acceleration constant, � the thermal ex-

pansion and � the coe�cient of thermal di�usivity. Note that the system is

invariant under translation of T , thus the state T (t; r; ') may be interpreted

as a di�erence in temperature from the bulk temperature. Here we take a

bulk temperature of 60�F .

The system (1.3)-(1.4) can be written in abstract form as follows

_z(t) = Az(t) + f(z(t)) +Bu(t); t > 0; z(0) = z0 (1.5)

on the state space H = L2(
1) � L2(
), where 
1 = [r1; r2], 
2 = [0; 2�),


 = 
1 � 
2 and � = fr1; r2g � 
2. Here, z(t) = (v(t; :); T (t; :; :))T is the

state. The linear operator A is de�ned on

D(A) = D(A0) = [H2(
1) \H
1
0 (
1)]� [H2(
) \H1

0 (
)] (1.6)

by A = A0 +A1 where

A0 =

�
�

�
r2
r

0

0 � r2

�
; A1 =

�
0 I
0 0

�
; (1.7)
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where I : L2(
)! L2(
1) is the bounded linear operator

[I!](r) =
g�

2�

Z 2�

0

cos' !(t; r; ')d': (1.8)

The nonlinear operator f : H1
0 (
1)�H1

0 (
)! H is de�ned by

[f(v(:); T (:; :))](r; ') =

�
0;�

v(r)

r

@T

@'
(r; ')

�T

: (1.9)

The control space is U = L2(�) and the input operator B is the un-

bounded linear operator

B = �ÂD̂: (1.10)

Here Â is the lifting of A from D(A) to H and D̂ : L2(�) ! H is given by

D̂u = (0; Du)
T
. The operator D : L2(�) ! L2(
) is the Dirichlet map for

the Laplacian r2 on 
, i.e., D is the bounded linear operator satisfying

Du = ! if and only if r2! = 0 and !j� = u: (1.11)

It is well known that the Laplacian operator r2 is dissipative and has

only point spectrum �(r2) on the real axis. This observation leads to the

following result.

Lemma 1 The operator A0 generates an analytic semigroup of contractions

S0(t) de�ned on H. Moreover, there is a constant �0 > 0 such that

kS0(t)k � e��0t: (1.12)

Theorem 1 The operator A de�ned in (1.6)-(1.8) generates an analytic

semigroup S(t) on H. Moreover, there are constants M; > 0 such that

kS(t)k �Me�t: (1.13)

Proof: Observe that A is a bounded (compact) perturbation of A0, thus

A generates an analytic semigroup S(t) on H (see [6], p.81). Let �(A0) be

the resolvent set of the operator A0 and �(A) be the resolvent set of A. It

is easy to see that �(A0) � �(A) and �(A) � �(A0). Thus,

� = supfRe� : � 2 �(A)g � supfRe� : � 2 �(A0)g = �0 < 0:

Consequently, (1.13) follows from Theorem 4.3, Chapter 4, in [6]. 2

Since A0 generates an analytic semigroup with 0 2 �(A), (�A0)
1=2 is

well de�ned (see [6], p. 69). Let V be the Hilbert space H1
0 (
1) �H1

0 (
)

equipped with the norm kzkV = k(�A0)
1=2zkH . We have the following

lemma.
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Lemma 2 Consider the non-linear operator f : V ! H de�ned by

f(z) =

�
0

� v

r

@T

@'
(:; :)

�
: (1.14)

For any z 2 V there is a neighborhood N and a constant C such that

kf(u)� f(w)k � Cku� wkV (1.15)

for all u;w 2 N .

Proof: If u;w 2 V , then f is well-de�ned and we have

kf(u)� f(w)kH =

u1 @u2@'
� w1

@w2

@'


H

�

@u2@'


H

ku1 � w1kH + kw1kH

@u2@'
�
@w2

@'


H

� kukV ku� wkV + kwkV ku� wkV : (1.16)

Let z0 2 V and assume that N (z0; �) is a neighborhood of z0. There

is a constant C1 such that if z 2 N (z0; �), then kzkV � C1. Hence, if

u; w 2 N (z0; �), then

kf(u)� f(w)kH � 2C1ku� wkV ;

and (1.15) holds for C = 2C1. 2

Theorem 2 If u = 0 and z0 is su�ciently smooth, then there exists a T > 0

such that (1.5) has a unique local solution z(t) on [0; T ).

Proof: We consider the uncontrolled system

_z = Az + f(z); t > 0;

z(0) = z0:

We have shown that A generates an analytic semigroup with 0 2 �(A) and

f satis�es (1.15). Then, the existence and uniqueness of a local solution to

(1.5) with u = 0 follows from Theorem 3.1, Chapter 6, in Pazy [6]. 2

2 LQR Feedback Control

We linearize the system at the equilibrium point v = 0; T = 0. Since

f(0; 0) = (0; 0)T , the linearized system becomes

_z(t) = Az(t) +Bu(t); t > 0; z(0) = z0; (2.17)
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where A and B are the operators de�ned on 1.6-1.8 and 1.10, respectively.

The LQR problem is to minimize the quadratic cost de�ned by

J(u) =

Z
1

0

[hQz(t); z(t)i
H
+ hRu(t); u(t)i

U
] dt (2.18)

over all controls u 2 L2([0;1);U), subject to the linear system (2.17). The

state weighting operator for the LQR problem is

Q =

�
Qv 0

0 QT

�

with Qv = qvIL2(
1); QT = qT IL2(
) and qv ; qT positive constants. The

operators IL2(
1); IL2(
) denote the identity operators in L2(
1) and L2(
),

respectively. The control weighting operator is given by R = quIU , where

IU denotes the identity operator on U and qu is a positive constant.

Since (2.17) is a stable system, an optimal control exists and it is given

in feedback form

uopt(t) = �R�1B�Pzopt(t) = �Kzopt(t); (2.19)

where P is a non-negative de�nite solution to the algebraic Riccati equation

(ARE)

hPx;A�yiH + hAx; PyiH � hR�1B�Px;B�PyiU + hQx; yiH = 0; (2.20)

for all x; y in D(A). Moreover, the feedback operator K = R�1B�P is a

bounded linear operator from H to U .

We are interested in the question of whether or not the feedback operator

K can be represented by

[K�(t; :; :)](�) = hh(�; :; :); �(t; :; :)iH ; 8� 2 H; � 2 � (2.21)

for some kernel h 2 L2(�;
1) � L2(�;
). If so, K is a Hilbert-Schmidt

operator and the optimal control u is given by

u(t; �) = �[Kz(t; :; :)](�)

= �

Z

1

hv(�; r)v(t; r)rdr

�

Z



hT (�; r; ')T (t; r; ')rdrd': (2.22)

Here, � 2 �, z(t; r; ') = [v(t; r) T (t; r; ')]
T
2 H , and

h(�; r; ') = [hv(�; r) hT (�; r; ')]
T
2 L2(�;
1)� L2(�;
).

We use numerical methods to investigate this issue. Note that the repre-

sentation (2.21)-(2.22) might be valid even if h is not in L2(�;
1)�L2(�;
).

In that case, the operator K is not Hilbert-Schmidt.
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3 Numerical Results

We consider a �nite element scheme to discretized the space. Here we give

a brief description of the approximating problem; for more details we refer

to [8].

Since the velocity depends only on the radius r and the temperature de-

pends on the pair (r; '), we consider one-dimensional and two-dimensional

�nite elements to approximate v and T , respectively. Bilinear sector ele-

ments in 
 were used for temperature interpolation and quadratic elements

with uniform meshes on 
1 for velocity. Let nr � 3, ns � 3 denote the

number of subdivisions in the radial and angular direction, respectively, and

let N = (nr; ns). We denote by V N the �nite dimensional approximating

space, V N � V . The approximate system in V N is given by

_zN(t) = ANzN(t)+fN (zN (t))+BNuN(t); t > 0; zN(0) = zN0 (3.23)

where zN 2 V N and AN , fN and BN are the approximate operators for

A;B and f , respectively, obtained by using the interpolating functions on

V N .

The approximate LQR problem is to minimize the quadratic cost de�ned

by

JN (uN) =

Z
1

0

�Z



(zN)TQNzNrdrd' +

Z
�

(uN )TRNuNd'

�
dt (3.24)

over all controls uN 2 L2([0;1);UN), subject to the �nite dimensional

linear system (3.23). Let IN
v
; IN
T
; IN
U

be appropriate matrices associated

with the identity operators IL2(
1); IL2(
) and IL2(�), respectively. The

state weighting operator for the approximate LQR problem is

QN =

�
QN
v

0

0 QN

T

�
; QN

v = qvI
N

v ; QN

T = qT I
N

T ;

and the control weighting operator is RN = quI
N

U
with qv; qT and qu positive

constants.

Let PN : V N ! V N be the approximate Riccati operator and KN the

corresponding approximate feedback operator. For eachN , the approximate

feedback operator is given by KN =
�
RN

�
�1 �

BN
�
�

PN : V N ! UN , for

the �nite dimensional control problem, where UN is the approximating �nite

dimensional control space, UN � U = L2(�). By the Riesz Representation

Theorem, we have

[KNzN(t; :; :)](�) = hhN (�; :; :); zN (t; :; :)iH 8zN 2 V N ; � 2 � (3.25)

where hN 2 L2(��
N
1 )� L2(��
N ). Let

zN(t; r; ') = [vN (t; r) TN(t; r; ')]T 2 V N
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and

hN(�; r; ') = (hNv (�; r); h
N

T (�; r; '))
T 2 L2(�� 
N

1 )� L2(�� 
N ):

The approximate optimal control has the form

uN(t; �) = �[KNzN(t; :; :)](�)

= �

Z

N
1

hN
v
(�; r)vN (t; r)rdr �

Z

N

hN
T
(�; r; ')TN (t; r; ')rdrd':

(3.26)

It can be shown [8] that for this �nite element approximation scheme

one has that

kPN � Pk
L(H) ! 0 as N !1

and

kKN �Kk
L(H) ! 0 as N !1:

However, it is not known if the approximate functional gains hN (�; r; ')

converge to a functional gain h(�; r; '). In particular, the existence of a

function h(�; r; ') is not proven.

For simulation we consider a pipe with the same dimensions as the one

used by Wang, Singer and Bau in their experiments [9]. We assume that

water is owing in a pipe having inner radius r1 = 1:1975in (36:5cm) outer

radius r2 = 1:2959in (39:5cm).

We have solved the approximate LQR problem with di�erent values of

qv ; qT and qu. The results presented here correspond to qv = 1000; qT = 50

and qu = 10�4. We noticed that the functional gains for the approximate

LQR problem have similar shapes for controls applied at the inner or outer

boundary. Here, we show the results obtained by applying a control to the

outer boundary r = r2, only.

The kernel hNv depends on two variables, � 2 [0; 2�) and r 2 (r1; r2).

After multiplying hN
v

by vN (r) and integrating along (r1; r2), we obtain

the contribution of the velocity vN (t) to the control uN(t; �). Thus, we

can think of hNv (�; r) as a weight for the velocity. Analogously, hN
T
(�; r; �)

may be viewed as a weight for the temperature �eld. In this case, since

hN
T

depends on three variables, we have �xed � to be � = � for plotting

purpose. However, similar plots are obtained for any � 2 [0; 2�). The runs

were based on ns = 5nr, with nr = 6; 8; 10; 12.

Figures 3.2-3.3 show the functional gains hNv (�; r) h
N

T
(�; r; �), respec-

tively, for r 2 [r1; r2]. The plots provide numerical evidence to support the

conjecture that functions ĥv(�; r) and ĥT (�; r; ') exist and have nonzero

support. Moreover, we see that ĥv(�; r) and ĥT (�; r; ') (if they exist) are

pointwise limits of hN
v
(�; r) and hN

T
(�; r; '), respectively. It is interesting to

8
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Figure 3.2: hN
v
(�; r); r 2 (r1; r2); N = (nr; 5nr); nr = 6; 8; 10; 12.
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Figure 3.3: hN
T
(�; r; �); r 2 (r1; r2); N = (nr; 5nr); nr = 6; 8; 10; 12.
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Figure 3.4: hNv (�; r), r 2 (r1; r2), N = (nr; 5nr), nr = 6; 8; 10; 12.
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Figure 3.5: hN
T
(�; r; '), r 2 (r1; r2), ' 2 [0; 2�), N = (nr; 5nr),

nr = 6; 8; 10; 12.
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note that the supports of the kernels hN are concentrated near the bound-

ary �2 = fr2g� [0; 2�). Hence they are almost local in space, and thus the

limit, if it exists, would be almost local in space.

Figure 3.4 shows hN
v
(�; r) with (�; r) 2 int(�2�
1). The label s on one

of the axis correspond to the variable �. Finally, in Figure 3.5 we plot the

functional gains hN
T
(�; r; '), with (r; ') 2 int(
). In this graph the label s

corresponds to the variable '. Note that a singularity may to appear in the

limit at ' = �. For di�erent values of � we obtain similar plots, where the

\peak" occurs at ' = �.

4 Conclusion

As in the case of the 2D heat equation [3], numerical results here show that

hN (�; r; ') has a nonzero compact support. Moreover, most of the support

of hN (�; r; ') is concentrated near the boundary � where the control is

applied. Also, the kernels hN
T
(�; r; �) become singular as r ! 1:2959 = r2.

This is true, even when di�erent values of the parameters qv ; qT and r are

considered. However, the shape of the functional gains change slightly with

these parameters.

Although the question of existence of a kernel satisfying (2.21)-(2.22)

still remains open, our simulations suggest the existence of a pointwise

limit ĥ(�; r; ') = (ĥv(�; r); ĥT (�; r; '))
T of the functional gains hN (�; r; ')

on int(� � 
1) � int(� � 
). In particular, we note that the numerical

limit ĥ(�; r; ') seems to de�ne a function with nonzero support having a

singularity at (�; r2; �).

Finally, although these numerical experiments provide considerable in-

sight into the problem, we still need to develop a theoretical basis for an-

swering the questions of existence and regularity.
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