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Ergodic Properties of Quotients of Horocycle

Flows on the Poincar�e Upper Half Plane�

Dorothy I. Wallace

Abstract

In this paper we investigate the long term asymptotic properties

of what might be called the induced horocycle 
ow on a compact

quotient of the Poincar�e upper half plane. We �nd that this \
ow"

exhibits chaotic properties in the sense that, in the long term, the

area of the intersection of an open ball propagated forward by the

\
ow," with the original ball, tends to what would be expected if

the intersections were determined in a probabilistic way.

In 1987 Doug McMahon wrote a paper on a phenomenon he named

\Universal Observability," [7]. This property of 
ows on a manifold is

de�ned in terms of the idea of \observability" of a dynamical system. In-

formally, we could say a 
ow is observable by a given function, F, from the

manifold to the real or complex numbers, if the new function given by F

composed with an orbit in the 
ow uniquely determines the orbit. That

is, one can decide which orbit is being \observed" by F from the output

of F along the trajectory of the orbit. Clearly, even with such an informal

description of this property, it is easy to see, for example, that the constant

functions do not observe any 
ow on any manifold with more than one point

in it. For most 
ows familiar to us, it is possible to �nd many non-constant

functions which fail to observe the 
ow. On the other hand, McMahon

found a class of 
ows which were observable for every non-constant func-

tion on the manifold. Such 
ows he calls universally observable.

McMahon's examples draw heavily on the work of Marina Ratner who,

in her papers, [8], shows that horocycle 
ows on certain quotients of the

group SL(2; R) have very dramatic ergodic properties. In particular, for
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the case where the manifold is a compact quotient of SL(2; R) by a nonar-

ithmetic subgroup, it is possible to show that the product 
ow is dense on

the product manifold, as did del Junco and Keane, [2]. This in turn yields

McMahon's result for this class of 
ows. We also know that universal ob-

servability implies an ergodic property somewhat weaker than that of the

product 
ow being dense on the product manifold, [3]. Nonetheless, at this

time McMahon's are the only known examples of universally observable


ows.

It is worth asking why it should be so. There are two major road-

blocks to extending the Ratner-McMahon example in a straightforward

way. First, one might ask about cases where the quotient manifold is not

compact. In this situation, there are always closed horocycles present and

it is known [1] that the presence of even one closed orbit will preclude the

possibility of universal observability. Closed orbits also preclude this phe-

nomenon for geodesic 
ow. The second obstacle concerns the special nature

of the nonarithmetic subgroups of SL(2; R). The proof that \the product


ow is dense on the product manifold" seems deeply intertwined with this

property. This in turn precludes the construction of higher dimensional

examples, because we know that for N greater than 2, nonarithmetic sub-

groups of SL(N;R) do not exist. [6] We have shown, however, that density

of the product 
ow is in some sense a stronger property than is necessary

for universal observability, although no intermediate examples have been

constructed. [3],[9]. In dimension two, all 
ows on all compact manifolds

except the torus were shown to fail to be universally observable [1]. In this

volume, however, DeStefano and Hall show that the torus can have a weak

version of this property. So there are no two dimensional examples of this

phenomenon.

This is perhaps an indication that McMahon's de�nition is too stringent

to capture the properties of 
ows that seem very similar to the universally

observable ones. In fact, the over-riding observation that has been made

by many authors about the geodesic 
ows on these quotient manifolds is

that they display very chaotic behaviour, and this is so by most de�nitions

of chaos. The horocycle 
ows, on the other hand, have zero Lyapunov

exponent yet exhibit \mixing," for certain cases. This paper o�ers a cri-

terion based on comparing with a probabilistic event the long term e�ect

of horocycle 
ows, acting on the characteristic function of a small ball.

The criterion we use is a sort of local, analytic version of \mixing," so our

methods have the potential to extend this type of result to a broad class of

phenomena. Flows on quotients by both the arithmetic and nonarithmetic

CO-compact subgroups behave similarly with respect to this criterion and

it seems as though it would be possible to extend these results to non-

cocompact but co�nite subgroups as well, and in fact also to other sorts of


ows on these same manifolds.
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Lemma 1 Let f(z) = �A be the indicator function of some region A in H

containing i and rotation invariant (i.e. a non-euclidean disk). Let F (z) be

the Poincar�e series
P


2� f(
z) where � is a cocompact, discrete subgroup

of SL(2; R) not containing any elliptic elements. Let �j be the countable

basis of eigenfunctions for � on L2
(�nH). Let

cj = hF; �ji
Then, for volume of A small enough,

X
j

cj = volume(�nH)

Proof: This is an elementary application of the Selberg trace formula

to the SO(2,R)-bi-invariant kernel given by F . In this context, the trace

formula states:

X
j

cj = volume(�nH)f(i)+

X
a

2n(a)ln(a)

a(a� a�1)

Z 1

�1
f(ia2 + x)dx:

For the volume of A small enough the diameter of the noneuclidean sphere

doesn't reach ia2 for the smallest value of a2. So all of the terms in the

last summation above are zero. Because f(i) is 1, we obtain the result.

Lemma 2 Let M be a fundamental region for �nH. Let vol(M) = v and,

as in the lemma, let

F (z) =

1X
j=0

cj�j(z)

where �0(z) =
1p
v
, which is the constant function of L2 norm 1 on M .

Then c0 =
p
v
k

where volA =
1
k
vol(�nH).

Proof:

c0 = hF; �0i

=

Z
M

F (z)
1p
v
d�(z)

=
1p
v

Z
M

F (z)d�(z)

3



D.I. WALLACE

=
1p
v

Z
M

X

2�

f(
z)d�(z):

Switching the sum and integral and doing a change of variables so that

w = 
z we get

=
1p
v

X

2�

Z

�1M

f(w)d�(w)

=
1p
v

Z
H

f(w)d�(w):

Invoking the lemma, we get that

c0 =
1p
v

v

k
=

p
v

k
:

Theorem Let f(z) = the characteristic function of A where, as before, A

is a noneuclidean disk around i of volume volA =
1
k
vol(�nH). Suppose the

spectrum of the Laplace-Beltrami operator on �nH is less than � 1
4
. Let �

be a cocompact, discrete subgroup of SL(2; R) not containing any elliptic

elements, with some fundamental region M containing i. Let

F (z) =
X

2�

f(
z)

and

Ft;�(z) =
X

2�

ft;�(
z) =
X

2�

f(�
z + t)

where for ease of notation we will let �w denote the Mobius transformation

which rotates w through an angle � around i. Then, for t su�ciently large,

the limit as k approaches in�nity of the quantity

1

�

Z �

�=0

Z
M

F (z)Ft;�(z)d�(z) =
1

k2
vol(M)

That is, the average behaviour of the horocycle 
ow on M becomes approx-

imately random.

Proof: Ignoring for a moment the integral in �, we can say that

F (z) =

1X
j=0

cj�j(z);

so Z
M

F (z)Ft;�(z)d�(z)
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=

Z
M

1X
j=0

cj�j(z)Ft;�(z)d�(z):

By Lemma 1, the inside sum converges absolutely so this becomes

=

1X
j=0

cj

Z
M

�j(z)Ft;�(z)d�(z)

= c0

Z
M

1p
v
Ft;�(z)d�(z)

+

1X
j=1

cj

Z
M

�j(z)Ft;�(z)d�(z):

Let us look at the �rst term of this sum. We have

c0

Z
M

1p
v
Ft;�(z)d�(z)

=

p
v

k

1

v

Z
M

X

2�

f(�
z + t)d�(z):

As before, exchange the sum and integral and set w = 
z to get

=
1

k

Z
H

f(�w + t)d�(w);

and since u = �w+ t is an isometry we have, (reinserting the integral in �),

c0
1

�

Z �

�=0

Z
M

1p
v
Ft;�(z)d�(z)

=
1

�

1

k

Z �

�=0

Z
M

f(u)d�(u)d�

=
1

k

v

k
=

v

k2
:

Now we must estimate the remaining terms. We have, for all other j a

contribution of:

1X
j=1

cj
1

�

Z
M

Z
�

�j(z)Ft;�(z)d�d�(z):
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Using the same unwinding argument as before, this sum

=

1X
j=1

cj
1

�

Z
M

Z
�

�j(z)f(�(z) + t)d�d�(z):

Now the inside integral,

Z
�

f(�z + t)d�

is an SO(2)-invariant function of z with compact support and can be ap-

proximated in L2
by an in�nitely di�erentiable function with the same

compact support, g(z; t). We can then invoke Selberg's Lemma (Hejhal,

p.8) to replace the eigenfuction �j with the spherical eigenfuction,

hsj (z) =

Z
�

Im(k�z)
sjd�

where sj(sj � 1)�j(z) = ��j(z).

The contribution of the remaining terms now becomes equal to

=

1X
j=1

cj
1

�

Z
M

hsj (z)

Z
�

f(�(z) + t)d�d�(z):

Letting w = �z and integrating out �, we have that this expression equals

=

1X
j=1

cj

Z
M

hsj (z)f(w + t)d�(w):

Now, sj =
1
2
+ �j for this case (as in Hejhal,4), and hsj (z) is actually

a multiple of an associated Legendre function (see Terras, p. 141). This

means

hsj (z) = P�s(coshr)

for z = kue
�ri. In other words, r is the noneuclidean distance from i to z.

Further,

P�s(coshr) =
1

2�

Z 2�

0

(z +
p
z2 � 1cos(u))�sdu

and we have the asymptotic estimate (from Terras, p.144):

P�s(coshr) � �(irj)p
��( 1

2
+ irj)

(2x)
� 1

2
+irj

+
�(�irj)p
��( 1

2
� irj)

(2x)
� 1

2
�irj :
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In addition, Lebedev (pp. 4-15) gives the estimate:

�(a+ bi) =
p
2�e�

1

2
�jbjjbja� 1

2 (1 + �(a; b))

where, as jbj approaches in�nity, �(a; b) goes to zero uniformly in a strip

around a = 0:

Using these facts we can bound

jP� 1

2
+i�j

(x)j�M(2x)�
1

2

for large enough x. So,

jhsj (z)j�M(2cosh(r)�
1

2

is a uniform bound in the sj . Using this bound we remind the reader that

f(z+t) has support in a disk of volume v
k
at a distance r from i. So we can

choose t large enough that jhsj (z)j�� for any �. Then, our sum containing

all the remaining terms is less than

1X
j=1

cj�
v

k
:

Now, we know from Hejhal (4) that

1X
j=1

cj = N

and is a �nite sum. So, as t approaches in�nity, the contribution from all

of the remaining terms in the series approaches zero. QED
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