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Abstract

This note is concerned with the formulation of a damped second

order system as a �rst order dynamical system on a product space.

This problem comes from the desire to have explicit representations

of the in�nitesimal generator of the �rst order system and, in partic-

ular, of the domain of this operator. This analysis is motivated by

the need to �nd speci�c representations for Riccati operators that

can be used in the development of computational schemes for hy-

perbolic control problems. The approach we take here is based on

a natural factorization of the di�erential operators that de�ne the

second order model.
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1 Introduction and Motivation

In [2]-[4], Burns and King consider feedback control problems for damped

hyperbolic systems. Speci�cally, they are concerned with obtaining inte-

gral representations of the feedback control law for purposes of designing
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reduced order controllers and sensors/actuators. The kernels of these in-

tegral representations are called functional gains. In [4], Burns and King

use information about the spatial support of functional gains to guide the

construction of reduced order controllers for a nonlinear damped elastic

system. In order to use this information, it is important to have both

qualitative and quantitative information about these feedback gains. The

very existence of these kernels is not always obvious and requires careful

analysis of the system and the exact form of the damping model. Indeed,

the damping model greatly impacts these gains (see [2]-[4]). One approach

to modelling second order damped systems is to start with the undamped

equation and then \add" a damping term of the form 
D0 _x(t) to the sec-

ond order system. Very often the damping operator D0 is assumed to have

the form of a fractional power of the structural operator, i.e., D0 = A
�

for 0 � � � 1. This approach leads to formal models that mimic various

damping models such as structural damping (� = 1=2) and Kelvin-Voigt

damping (� = 1). However, in order to turn this formal second order

system into a well-posed dynamical system on an appropriate state space,

one is often faced with having to deal with fractional powers of di�erential

operators leading to pseudo-di�erential operators. In this note we present

several formulations of this problem, one of which makes use of physics

based modelling. In many cases this approach can greatly simplify the

analysis and the resulting �rst order system has an explicit representation

that avoids pseudo-di�erential operators.

2 Abstract Second Order Damped Models

Let H be a Hilbert space. We assume that A is a self-adjoint, strictly

positive operator on H with domain Dom(A) dense in H . Consider the

undamped second order control system

�x(t) +Ax(t) = Bu(t); (2.1)

where B is a compact linear operator. It is well known that in this case,

(2.1) is not stabilizable (for example, see [6]). All elastic systems have some

internal damping and the exact form of this damping is important in the

analysis and solution of control problems for elastic systems. In this paper

we concentrate on the development of explicit state space models for the

uncontrolled systems. The application of these models to control design

will appear in a future paper.

The general mathematical model often used as a prototype for describ-

ing controlled elastic systems with internal damping is obtained by adding

a damping term of the form 
A
� _x(t) to (2.1) producing the abstract equa-

tion

�x(t) +Ax(t) + 
A
� _x(t) = Bu(t); (2.2)
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where

0 < 
; 0 < � � 1:

To write this second order system as a �rst order dynamical system one

�rst de�nes the spaces

V = Dom(A1=2) (2.3)

and

E = Dom(A1=2)�H = V �H; (2.4)

with inner products

hu1; u2iV =
D
A
1=2

u1; A
1=2

u2

E
H

(2.5)

and ��
u1

w1

�
;

�
u2

w2

��
E

=
D
A
1=2

u1; A
1=2

u2

E
H

+ hw1; w2iH

= hu1; u2iV + hw1; w2iH ; (2.6)

respectively.

Let Â� denote the operator de�ned on E by

Â� =

�
0 I

�A �
A�

�

with domain Dom(Â�) de�ned by

Dom(Â�) = Dom(A)�
h
Dom(A1=2) \Dom(A�)

i
:

It is well known (see, [1] and [5]) that the operator Â� is densely de-

�ned and dissipative on E and hence closable. The closure of Â�, denoted

by A�, generates a strongly continuous semigroup on E and the domain,

Dom(A�), is given by

Dom(A�) =

��
u

w

�
2 E j w 2 V; fAu+ 
A

�
wg 2 H

�
: (2.7)

Although (2.7) provides one representation of the domain of A�, other

(more explicit) representations can also be obtained. We proceed to de-

scribe two formulations of this closure based on factorizations of A which

we denote as A�;1 and A�;2. In order to keep this note at a minimal length

and yet present the basic ideas, we restrict ourselves to the case where

1=2 � � � 1. In this case the following result provides a representation

of Dom(A�) in terms of the fractional powers of A. The �rst formulation,

A�;1, is a special case of Theorem 1.1 in [5].
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Theorem 2.1 If 1
2
� � � 1, then Dom(A�) = Dom(A�;1) where

Dom(A�;1) =

��
u

w

�
2 E j u 2 Dom(A3=2��); w 2 V;

fA1��
u+ 
wg 2 Dom(A�)

�
; (2.8)

and if z 2 Dom(A�;1), then

A�;1z = A�;1

�
u

w

�
=

�
w

�A�fA1��
u+ 
wg

�
: (2.9)

Moreover, A�;1 generates an analytic semigroup on E.

One way to view the representation (2.8)-(2.9) is to think of \factoring"

(2.2) so that it is written in the form

�x(t) +A
�fA1��

x(t) + 
 _x(t)g = Bu(t); (2.10)

and then constructing the �rst order system based on this model. However,

this approach does not always capture the true physics of the problem.

In the next section we consider a second factorization and compare the

corresponding �rst order model to the system with A�;1 given by (2.8)-

(2.9).

3 A Symmetric Factorization

Another factorization of (2.2) that seems equally justi�ed, is based on fac-

toring A as A = A
1=2 �A1=2 and writing (2.2) in the form

�x(t) +A
1=2fA1=2

x(t) + 
A
��1=2 _x(t)g = Bu(t): (3.1)

This is a very natural factorization and it leads to a \physics based" for-

mulation of the �rst order model. This form of (2.2) leads us to consider

the operator A�;2 de�ned on E by

Dom(A�;2) =

�
z =

�
u

w

�
2 E j u;w 2 V;

fA1=2
u+ 
A

��1=2
wg 2 V

�
(3.2)

and for z 2 Dom(A�;2),

A�;2z = A�;2

�
u

w

�
=

�
w

�A1=2fA1=2
u+ 
A

��1=2
wg

�
: (3.3)
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At �rst glance it might appear that A�;1 and A�;2 have little in common.

However, the following result establishes the equivalence between A�;1 and

A�;2 for the case where 1=2 � � � 1. Hence, it follows that (3.2)-(3.3)

provides another representation of the closure of Â�.

Theorem 3.1 If 1
2
� � � 1, then A� = A�;1 = A�;2.

Proof: If 1
2
� � � 1, then 0 � � � 1

2
� 1

2
and 1

2
� 3

2
� � � 1. It follows

that

Dom(A3=2��) � Dom(A1=2) � Dom(A��1=2): (3.4)

Let z = [u;w]T 2 Dom(A�;1). We show that z 2 Dom(A�;2) and A�;1z =

A�;2z. Since z = [u;w]T 2 Dom(A�;1), it follows that

u 2 Dom(A3=2��) � Dom(A1=2); w 2 Dom(A1=2) � Dom(A��1=2)

and

fA1��
u+ 
wg 2 Dom(A�):

If y = �A�fA1��
u +
wg 2 H , then A

��
y 2 Dom(A�), where

A
��

y = �fA1��
u+ 
wg

= �A1=2fA1=2��
u+ 
A

�1=2
wg: (3.5)

Also,

� fA1=2��
u+ 
A

�1=2
wg = A

�1=2��
y

= A
��(A�1=2y) 2 Dom(A�): (3.6)

Since

A
1=2��

u = A
��(A1=2

u) 2 Dom(A�);

it follows from (3.6) that 
A�1=2w 2 Dom(A�). Hence,

� fA1=2
u+ 
A

��1=2
wg = �A�fA1=2��

u+ 
A
�1=2

wg

= (A�1=2y) 2 Dom(A1=2); (3.7)

and

�A
1=2fA1=2

u+ 
A
��1=2

wg = y 2 H: (3.8)

Combining (3.4), (3.7) and (3.8), it follows that z 2 Dom(A�;2) and

A�;2z = A�;1z.

Conversely, assume that z = [u;w]T 2 Dom(A�;2). Let

y = �A1=2fA1=2
u+ 
A

��1=2
wg 2 H
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and observe that

A
�1=2

y = �fA1=2
u+ 
A

��1=2
wg

= �A�fA1=2��
u+ 
A

�1=2
wg 2 Dom(A1=2); (3.9)

implies

� fA1=2��
u+ 
A

�1=2
wg = A

�1=2��
y

= A
�1=2(A��y) 2 Dom(A1=2): (3.10)

However, 
A�1=2w 2 Dom(A1=2), so it follows from (3.10) that

A
1=2��

u 2 Dom(A1=2):

Hence,

�A
1=2fA1=2��

u+ 
A
�1=2

wg = �fA1��
u+ 
wg

= (A��y) 2 Dom(A�); (3.11)

and

�A
�fA1��

u+ 
wg = y 2 H: (3.12)

Note that w 2 V = Dom(A1=2) and fA1��
u+ 
wg = A

��
y 2 Dom(A�).

Hence, A1��
u = A

��
y � 
w 2 Dom(A1=2). If ŷ = A

1=2(A1��
u), then

u = A
��1(A�1=2ŷ)

= A
��3=2

ŷ

= A
�(3=2��)

ŷ 2 Dom(A3=2��): (3.13)

Combining (3.4) with (3.11) and (3.12), it follows that z 2 Dom(A�;1) and

that A�;1z = A�;2z. This completes the proof.

This result shows that there are several equivalent representations of the

closure of Â�. Although (2.8)-(2.9) and (3.2)-(3.3) both provide explicit

characterizations of the domain of this closure, both characterizations are

in terms of fractional powers of A. However, the representation (3.2)-(3.3)

can be very useful. For example the following theorem follows from a direct

calculation.

Theorem 3.2 If 1
2
� � � 1, then the Hilbert adjoint [A�;2]

�

is de�ned on

the domain

Dom([A�;2]
�

) =

�
z =

�
u

w

�
2 E j u;w 2 V;

fA1=2
u� 
A

��1=2
wg 2 V

�
(3.14)
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by

[A�;2]
�

z = [A�;2]
�

�
u

w

�
=

�
�w

A
1=2fA1=2

u� 
A
��1=2

wg

�
: (3.15)

Observe that although A�;2 and [A�;2]
�

have a similar structure, they

have di�erent domains. In particular, Dom([A�;2]
�

) 6= Dom(A�;2) and

Dom([A�;2]
�

) \Dom(A�;2) � Dom(A) �Dom(A�). Again, the adjoint is

given in terms of fractional powers of A, and in many cases, these operators

are pseudo-di�erential operators without simple explicit representations.

A third approach to this problem is based on returning to fundamental

physics.

4 A Physics Based Factorization

The factorization (3.1) is a special case of a more general form. If we de�ne

the operators

S = A
1=2

and D = A
��1=2

;

then (3.1) can be written as

�x(t) + S
�fSx(t) + 
D _x(t)g = Bu(t): (4.1)

Observe that S� = S = A
1=2 since A is assumed to be self-adjoint

and positive de�nite. Moreover, the basic spaces given in (2.3) - (2.6) are

de�ned in terms of Dom(S) by

V = Dom(A1=2) = Dom(S); (4.2)

and

E = Dom(S)�H = V �H; (4.3)

with inner products

hu1; u2iV = hSu1; Su2iH (4.4)

and ��
u1

w1

�
;

�
u2

w2

��
E

= hSu1; Su2iH + hw1; w2iH

= hu1; u2iV + hw1; w2iH ; (4.5)

respectively.

However, it is sometimes more useful to use a di�erent factorization.

We illustrate the basic idea by restricting attention to a simple 1D wave

equation. Although the presentation here is focused on this example prob-

lem, the approach can be extended to a wide variety of 2D and 3D problems
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in elasticity. Consider the problem of an undamped vibrating string on the

interval 0 � s � 1 with �xed left end and free right end. If w(t; s) denotes

the displacement of the string and �(t; s) denotes the stress, then the wave

equation becomes
@
2

@t2
w(t; s) �

@

@s
�(t; s) = 0; (4.6)

with displacement boundary condition at s = 0

w(t; 0) = 0; (4.7)

and \natural" boundary condition at s = 1

�(t; 1) = 0: (4.8)

The strain is de�ned by "(t; s) = @

@s
w(t; s) and if one uses the stress-

strain law

�(t; s) = �"(t; s); (4.9)

then the equation (4.6) becomes

@
2

@t2
w(t; s)�

@

@s

�
�
@

@s
w(t; s)

�
= 0: (4.10)

The appropriate boundary conditions are

w(t; 0) = 0; �
@

@s
w(t; 1) = 0: (4.11)

On the other hand, if one uses a dynamic stress-strain law such as

�(t; s) = �"(t; s) + 

@

@t
"(t; s); (4.12)

then the equation (4.6) becomes

@
2

@t2
w(t; s) �

@

@s

�
�
@

@s
w(t; s) + 


@
2

@t@s
w(t; s)

�
= 0: (4.13)

In this case, the appropriate boundary conditions are now

w(t; 0) = 0; �(t; 1) =

�
�
@

@s
w(t; 1) + 


@
2

@t@s
w(t; 1)

�
= 0: (4.14)

The partial di�erential equation in (4.13) with boundary conditions (4.14)

can be written as a second order system in the space of virtual displacements

H = L
2(0; 1). We also introduce the space of deformations (or strains)

� = L
2(0; 1) and de�ne the operator S from H into � on the domain

Dom(S) = H
1
L(0; 1) =

�
w(�) 2 H

1(0; 1) j w(0) = 0
	

(4.15)
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by

[Sw(�)](s) =
d

ds
w(s): (4.16)

Then the adjoint of S is de�ned on � into H by

Dom(S�) = H
1
R
(0; 1) =

�
�(�) 2 H

1(0; 1) j �(1) = 0
	

(4.17)

and for �(�) 2 Dom(S�)

[S��(�)](s) = �
d

ds
�(s): (4.18)

If the damping operator D : H1
L
(0; 1)! L

2(0; 1) is de�ned by D = S, then

the wave equation (4.13) with boundary conditions (4.14) can be written

as

�x(t) + S
�f�Sx(t) + 
D _x(t)g = 0: (4.19)

Observe that we do not distribute S
� through the brackets. In fact,

(4.19) is the proper form of the physics based second order model for Kelvin-

Voigt damping. Moreover, the �rst order form of (4.19) is easily expressed

in terms of the basic operators S and D. To construct the �rst order model

we de�ne the spaces

V = Dom(S) = H
1
L
(0; 1) (4.20)

and

E = V �H = H
1
L
(0; 1)� L

2(0; 1); (4.21)

with inner products

hu1; u2iV = h�Su1; Su2iH (4.22)

and ��
u1

w1

�
;

�
u2

w2

��
E

= h�Su1; Su2iH + hw1; w2iH

= hu1; u2iV + hw1; w2iH ; (4.23)

respectively. Now de�ne A on E = H
1
L
(0; 1)� L

2(0; 1) by

Dom(A) =

�
z =

�
u

w

�
2 E j u;w 2 V;

f�Su+ 
Dwg 2 Dom(S�)

�
; (4.24)

where for z 2 Dom(A),

Az = A

�
u

w

�
=

�
w

�S�f�Su+ 
Dwg

�
: (4.25)
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Note that (4.24) - (4.25) are similar to (3.2) - (3.3) where � = 1. How-

ever, there are two primary di�erences between the operators A and A1;2.

The operator S is not a fractional power of A = S
�

S and S
� 6= S. There-

fore, the operator de�ned by (4.24) - (4.25) is (in general) less \complex"

than A1;2 and yet we still have the following easily established result.

Theorem 4.1 The operator A de�ned by (4.24) - (4.25) generates an an-

alytic semigroup on E = H
1
L
(0; 1)� L

2(0; 1).

The above theorem has been extended to other PDE based models of

elastic systems. Currently, we are working on a framework that applies to

general abstract second order systems of the form (4.19). This framework

has the advantage that the underlying spaces and operators are basic dif-

ferential operators de�ned on standard Sobolev spaces. In addition, the

physics based factorization is the natural choice when developing approxi-

mations (see [1]).

It is interesting to observe that if one starts with the undamped equa-

tion (4.10) with physical boundary conditions (4.11) and simply \adds a

damping term," then it is possible to lose the correct physical boundary

conditions. For example, de�ne A on H = L
2(0; 1) with the domain

Dom(A) =

�
w(�) 2 H

2(0; 1) : w(0) = 0;
d

ds
w(1) = 0

�
(4.26)

by

[Aw(�)](s) = �
d
2

ds2
w(s): (4.27)

The wave equation (4.6) becomes

�x(t) +Ax(t) = 0; (4.28)

and if one adds a damping term with D0 = A
1 (i.e. � = 1), one obtains

the second order system

�x(t) + 
A _x(t) +Ax(t) = 0: (4.29)

Note that (4.29) is actually the abstract form of the damped wave equation

@
2

@t2
w(t; s) �

@

@s

�
�
@

@s
w(t; s) + 


@
2

@t@s
w(t; s)

�
= 0; (4.30)

with boundary conditions

w(t; 0) = 0; �
@

@s
w(t; 1) = 0:

10
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However, the correct physical boundary conditions (given by (4.7) and

(4.8)) should be

w(t; 0) = 0;

�
�
@

@s
w(t; 1) + 


@
2

@t@s
w(t; 1)

�
= 0: (4.31)

Therefore, the system (4.29) is not the abstract form of the physics based

model de�ned by the partial di�erential equation (4.30) with boundary

conditions (4.31). We close by remarking that although (4.29) does not

\capture" the correct physical boundary conditions, that is not to say that

A�;1 de�ned by (2.8)- (2.9) is not important in the study of such systems.

However, it is crucial to understand that this system may not be the ab-

stract form of the physical problem that is under control.

5 Conclusions

In this paper, we present three formulations of the abstract form of damped

second order systems based upon di�erent factorizations of the structural

operator. One form which is based upon the physics is especially useful in

that the underlying operators are di�erential operators with simple explicit

representations. Further, this form captures the physics, speci�cally, the

correct boundary conditions. This formulation has been extended to other

PDE based models of elastic systems. Additionally, we are currently work-

ing on a framework that applies to general abstract second order systems

of the form (4.19). This framework has the advantage that the underlying

spaces and operators are basic di�erential operators de�ned on standard

Sobolev spaces. Moreover, this framework is a natural choice when devel-

oping approximations (see [1]).
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