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Two-Dimensional Torus�
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Abstract

In this paper, we give the motivation and a brief outline of the

construction of an elementary universally observable 
ow on the two-

dimensional torus, i.e. dynamics which are observable by every con-

tinuous nonconstant real valued function on the state space. The


ow in the construction is C0 but not C1. The ideas involved come

from topological dynamics and small divisor problems.
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1 Introduction

A general question in control theory is whether the solution of a dynamical

system is uniquely determined by a set of measurements of the system. If

this is the case, the system is said to be observable. For an overview of this

problem, see [8] and [2]. To be more precise, let M be a manifold (state

space),

� : M �R!M

a 
ow on M (solution of an autonomous di�erential equation on M) and

let h : M ! R be a continuous function.

De�nition 1.1 We say h observes the 
ow � if

h(�(x; t)) = h(�(y; t))

for all t � 0, then x = y.

�Received November 5, 1996; received in �nal form June 26, 1997. Summary pub-

lished in Volume 8, Number 2, 1998. This paper was presented at the Conference on

Computation and Control V, Bozeman, Montana, August 1996. The paper was accepted

for publication by specail editors John Lund and Kenneth Bowers.
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More concisely, h observes � if the values of h along positive orbits can

be used to distinguish any pair of initial conditions. In order for a 
ow �

to be observed by a particular function h, distinct points of M must have

orbits which separate relative to the level sets of h. One suspects that the

more orbits separate, the greater the number of functions h which observe

the 
ow will be. The extreme case is a 
ow which is observable by every

nonconstant continuous function.

De�nition 1.2 A 
ow � : M�R!M is called universally observable

if it is observed by every nonconstant, continuous real valued function

h : M ! R.

Finding universally observable 
ows is a nontrivial exercise. The only

previously known example was found by D. McMahon [7] and is a class of

three-dimensional manifolds (SL(2,R) modulo a certain type of subgroup),

with horocycle 
ow. This example exhibits strong ergodic and dynamical

properties (see [3]).

After McMahon discovered the example of a universally observable sys-

tem, several others studied the question of existence of other such 
ows.

The results of Byrnes, Dayawansa and Martin [1], DeStefano [4] and Wal-

lace [9] imply that the only possibility for a smooth low dimensional uni-

versally observable system is a 
ow on the torus with orbit structure topo-

logically equivalent to winding lines with constant irrational slope. This

work motivated the construction described below.

Recently, DeStefano and Markley [6] discovered that the notion of a

universally observable 
ow is almost identical to the notion of prime 
ows

in topological dynamics. In fact, if a 
ow is universally observable then it

is prime. So the construction described below has signi�cance in the �eld

of topological dynamics as well.

In this note we outline the construction of a continuous, universally

observable 
ow on the two-dimensional torus T 2 = S1 � S1. The details

of this construction can be found in [5], so here we give only the motiva-

tion and main ideas. Perhaps surprisingly, the techniques involved in the

construction include number theory related to \small divisor" problems.

This construction generates a class of continuous universally observable


ows which are not C1. We end with some questions and conjectures

concerning the existence of smoother universally observable 
ows.

2 Su�cient Conditions

The �rst step is to give more topological conditions on the orbits of a 
ow

which imply that the 
ow is universally observable.
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De�nition 2.1 A 
ow � : M �R!M is said to satisfy Property W if

(i) every orbit is dense in M and (ii) for every x; y 2M with y not on the

orbit of x, the set f(�(x; t); �(y; t)) : t � 0g is dense in M �M .

That property W implies universal observability can be informally seen

as follows: Fix a nonconstant function h : M ! R. If x; y 2 M are on

distinct � orbits then for some t, �(x; t) is as close as we like to where h

assumes its maximum while �(y; t) is as close as we like to where h assumes

its minimum value, so h(�(x; t)) 6= h(�(y; t)).

If x and y are on the same orbit, i.e., y = �(x; t1) for some t1, the

situation is more complicated. The following \folklore" theorem (whose

proof was outlined for us by Nelson Markley) is precisely the necessary

tool.

Lemma 2.2 If � satis�es property W then for any t1 and any x 2M the

set f�(x; nt1) : n = 0; 1; 2; :::g is dense in M .

Now, if x and y are on the same orbit, then y = �(x; t1) for some time t1.

So if h(�(x; s)) = h(�(y; s)) for all s � 0 then

h(�(x; nt1)) = h(�(y; nt1)) = h(�(x; (n + 1)t1))

for n = 0; 1; 2; :::. This implies that h is constant on the set f�(x; nt1) :
n = 0; 1; 2; :::g which by the lemma is dense in M . This contradicts that h

is nonconstant. (For the proof of the lemma see [5]).

3 Ideas of the Construction

We begin with the representation of the two-dimensional torus as the unit

square with sides identi�ed and coordinates (�; �) (See Figure 1). Pick a

rational p1=q1 and consider the 
ow given by

d�

dt
=

p1

q1
d�

dt
= 1:

This 
ow is not universally observable for the following two reasons:

� Orbits are periodic, not dense.

� Orbits move at a constant speed in the �-direction, so two points

starting with the same � coordinate have the same �-coordinate for

all t.
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Fig. 1: Two orbits for p1=q1 = 1=3.

The �rst problem can be �xed by rotating the vectors in the vector

�eld slightly so that their slope is irrational. To �x the second problem,

the speeds of the orbits must be adjusted (without changing the slope) so

that di�erent orbits move with di�erent speeds in the �-direction.

We deal with the second problem �rst. We adjust the speeds of the

orbits (i.e., change the length of the vectors in the vector �eld) so that the

time required for a point (�; 0) to cross to � = 1 is given by a piecewise

linear, saw tooth function with period 1=q1 as in Figure 2 below.

Let �s1 be the slope of this function, so its maximum value is 1 +

s1=(2q1) and its minimum value is 1. With this adjustment to the speeds,

two orbits which are a small distance � apart separate in the �-direction

by � � s1 � t in time t. Hence, by taking t large, two points on di�erent

orbits can be made to separate in the �-directions (i.e. lap each other on the

torus) as far as we like. (Note that in the detailed construction, certain sine

functions are used instead of a saw tooth function for technical reasons.)

Now we adjust the slopes of the vectors (without changing their lengths).

We choose a new rational p2=q2 very close to p1=q1. We do this by consid-

ering continued fraction expansions. For example, if p1=q1 = 1=a1 for any

positive integer a1, then let

p2

q2
=

1

a1 +
1
a2

where a2 is a large positive integer. Now rotate each vector in the vector

�eld so that it has the direction of (p2=q2; 1).
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Fig. 2: Crossing times for (�; 0).

This adjustment gives a 
ow for which the orbits have much longer

period and are much \more dense" than the previous 
ow. However, it

introduces some problems. As shown in Figure 3, the orbits now cover

much more of the torus, so points move slowly on part of their orbits and

more quickly on other parts (i.e., the \crossing time" from � = 0 to � = 1

changes along the orbit). This means that we do not have the option of

waiting for arbitrarily large times t for points to separate. In fact, we can

only assume that the relative speeds of two orbits is maintained for time t

with 0 � t � q2=8. Therefore we must restrict attention to pairs of orbits

at least � = 1=q2 apart. For these orbits, in the allowed time we obtain a

separation in the �-direction by at least (1=q2)� s1 � (q2=8) = s1=8.

Now repeat the process. That is, �rst adjust the lengths of the vector

�elds giving a crossing time which is a piecewise linear function with slope

s2 and period 1=q2 (see Figure 4). Now adjust the slope to be a new rational

p3=q3, and so forth.

At the nth stage, two orbits at least 1=qn+1 apart separate in the �-

direction by at least sn=8 in time qn+1=8 where sn is the slope of the nth

adjustment of the crossing times. As long as the sn's tend to in�nity as n

tends to in�nity, orbits in the limit 
ow will separate arbitrarily far in the

�-direction. The limit of the slopes of the orbits (limit of the pn=qn) has

in�nite continued fraction, hence, is irrational. So the limit 
ow satis�es

property W.
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Figure 3: Two orbits for p2=q2.
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Figure 4: Crossing times for the second stage.
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4 Four Details

The outline above generates many questions. In this section we deal with

four major details of the construction. The fourth (convergence of the

sequence of 
ows constructed above) is the most important and interesting.

1) Can the nth step be done independently of the previous steps? At

the nth 
ow, the crossing time function is the sum of all the previous

adjustments. Can the terms in the crossing time function with period 1=qj

for j < n be ignored at the nth step?

The answer is yes, provided that qn is su�ciently large with respect to

qj for j < n. The period 1=qj oscillations of the crossing time will average

out to almost a constant over an orbit for the 
ow with slope pn=qn.

2) For the nth 
ow, for each x there is a strip of excluded points, i.e., points

y which are so close to the orbit of x that in the time available, the orbits

of x and y do not separate in the �-direction. Do these excluded strips

intersect to just the orbit or x?

The answer is yes. For the nth 
ow, the excluded strip has width in

the �-direction of 1=qn+1 and length in the �-direction of qn. Hence, the

intersection of the nth and n+ 1st strips for a point x consists of a single

strip of width 1=qn+2 and length qn. Intersection with subsequent strips

yields a narrower and narrower strip of bounded length around the �rst

segment of the orbit of x, so the intersection of all the strips from some n

on is contained in the orbit of x.

3) For the nth 
ow, points on di�erent orbits can have the same crossing

time (see Figure 5). Do these orbits separate in the �-direction?

The answer is yes. Once we have progressed to the n+ 1st 
ow, these

two orbits have period qn+1. Hence, as time t increases, the intersection

points of these orbits with the line � = 0 slowly migrate along the � axis.

At some time less than qn+1, they are in a position where the crossing

times are such that the arguments above apply and they separate in the

�-direction.

4) Does this sequence of 
ows converge?

The answer is yes, but just barely. For the nth 
ow, we increase the

crossing time by at most sn=(2�qn). We must have the sn tending to in�nity

as n increases so that orbits separate arbitrarily far in the �-direction. We

can arrange, by choosing the rationals pn=qn, that the qn tend to in�nity

rapidly as n increases (this involves choosing the an's in the continued

fraction expansion to be increasing rapidly). Hence, �sn=(2qn) can be

made to converge and the sequence of 
ows converges in the sup norm.
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Figure 5: Two points (�1; 0) and (�2; 0) can have the same crossing time.

However, because the slopes sn blow up, �sn de�nitely diverges. Hence

the limit is not C1.

Note that in the full construction, smooth functions are used and the

resulting crossing time function converges uniformly. However, the outline

above more clearly illustrates the motivation and main ideas involved.

5 Comments and Questions

An immediate questions is:

Do there exist Ck universally observable 
ows on the two torus for k > 0?

It is not uncommon in constructions of this type that the di�erentiabil-

ity of the result can be traded against the number theory properties of the

limiting slope. Preliminary calculations indicate that if the limiting slope

has nice number theoretic properties (bounded entries in the continued

fraction expansion) then the resulting 
ow could never be Ck for k � 3.

For our example, there is another obstruction to di�erentiability. For

each 
ow we must choose a width for the excluded strips (orbits which

are too close together to separate in the allowed time). If these strips are

chosen wider, then the slope of the change in crossing time can be reduced.

However, if the width of the strip is chosen too wide the intersection of

in�nitely many of them is more than just a single orbit.

It may be possible to constuct more di�erentiable 
ows on the torus for

which almost every pair of initial conditions can be distinguished by any
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nonconstant continuous function. We suspect that there is an upper bound

(perhaps only C0) to truely universally observable 
ows on the two torus.
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