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On Observer Design for Interconnected
Systems*

Gildas Besancon Hassan Hammouri

Abstract

Following previous results on reduced observer design for non-
linear systems [1], this paper proposes Lyapunov-based conditions
for observer design for interconnected systems. Examples of systems
admitting observers with partial correction are provided, as well as
systems with full correction. The results are illustrated an induction
motor.
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1 Introduction

There is no systematic method to design an observer for a given nonlinear
control system, but several designs are available according to the specific
characteristics of the considered nonlinear system. If a system does not
completely satisfy any of the known properties, it may satisfy some of
them partly. In other words, it may be seen as an interconnection between
several subsystems, where each of these subsystems satisfies some required
properties for an observer to be computable. The idea is then to design an
observer for the whole system, from separate designs for each subsystem,
and consequently, the problem becomes analogous, to some extent, to the
so-called separation principle for observer-based control: in that case, a
controller is designed assuming that all states are available, and separately,
an observer is designed assuming that the control is known. For linear
systems, the achieved controller based on the estimates of the states given
by the achieved observer is proved to be still stabilizing. However, this is
no longer guaranteed for general nonlinear systems.

*Received January 6, 1997; received in final form August 21, 1997. Summary ap-
peared in Volume 8, Number 3, 1998.



G. BESANCON AND H. HAMMOURI

Our present problem is quite similar, but dealing with observer design
only: for the sake of simplicity we only consider the case of two intercon-
nected subsystems of the following general form:

fi(z1,m2,u)
(@4 7 f2,(lx?’xl’“) (1.1)
_ 1(71) I
b <h2<x2>> B (y)
with z; €e R" ,u e R™,y; € R" ,ny +ns =n,m + 12 = p.

The idea is then to design an observer for the whole system from the
“separate” synthesis of observers for each subsystem (2.2) below, assuming
that for each of these separate designs, the states from the other subsystem
are available.

Notice that as in the observer-based control, the observer resulting from
such a design is not always stable, as illustrated by examples in the paper.
Notice also that two situations may occur: either the convergence rate of
the resulting observer can be arbitrarily fast, which happens when both of
the separate synthesis allow arbitrary rate of convergence (observer with
full correction), or the rate of convergence of the complete observer admits
an upper bound, which occurs when one of the separate designs has a con-
vergence rate imposed by the subsystem (observer with partial correction).
In particular this second case extends previous results on reduced observer
design [1].

Following these ideas, section 2 gives general Lyapunov-like sufficient
conditions for such separate designs to be possible, highlighting the two
situations which can occur, and as an illustration, section 3 proposes an
observer design corresponding to the second situation for a newly consid-
ered class of systems. Section 4 then provides examples of systems for
which observers can be designed with arbitrary convergence speed, and
section 5 finally proposes some observer designs for an induction motor as
an illustrative example of the methodology proposed in this paper. Some
general conclusions are given in section 6.

Ty

2 General Problem Statement

2.1 Observer for strongly interconnected systems

By strongly interconnected systems, we mean systems of the following form:

&1 = fi(z1,z2,u)
Ty fz(l“z;ﬂ?l;u) (21)

- G-
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OBSERVER DESIGN FOR INTERCONNECTED SYSTEMS

where fi; and fo are C* functions w.r.t. their arguments.

We assume that the states x; remain in some open sets X; C IR™ and
that w C U C R™,y; € R", with ny +ns =n,m + 172 = p.

By considering models of physical processes, we can assume that inputs
are bounded borelian functions and belong to some set U C L (IR, U)
(the space of all bounded borelian functions taking their values in U),
and we denote by X; := AC(IR", IR™) the spaces of absolutely continuous
functions from IR* into IR™, for i =1, 2.

In the sequel, when i will be an index describing {1, 2}, 7 will denote
the complementary index in {1,2} (i.e. {i,7} = {1,2}). Let us then define
two subsystems (X;),7 = 1,2 as follows:

NS o= filwi v, u)
(Ez){ yi = hi(z) (22)

where the input (vg,w) is in A7 x U.
Consider also two systems (O;), for i = 1,2 defined by:

VB = Sl s ) + Rilgi m)(hi(z) - gi)
(Ol){ gi — Gi(ziaviau;gi) . (23)

Their inputs are u,v; and y;, k; and G; are smooth functions w.r.t. their
arguments, and the state variable (z;, g;) belongs to (IR™ x@&;) where &; is
a subset of IR™ (for some integer 7;), which is positively invariant by the
second equation of (2.3).

In general, if for i= 1,2, each system (O;) is an asymptotic observer for
(X;), the following interconnected system

J1(Z1, 22,u) + k1 (g1, 1) (ha(21) — y1)

I = 1
Py = Lo, &1, ka(g2, Z2)(h2(Z2) — y2)
0) & = LlEndLu)tk 24
©) g = G1(%1, %2, u,G1) @4
Gy = Ga(@2,%1,u,02)

is not necessarily an observer for (¥).

Counter-example 2.1 Consider the following simple example for (X):

T11 = @12 +uT2

T2 = 0

Ta1 = T2 +uTi2 (2.5)
:i?gz - 0

) = (211, 3321)T

Clearly here, each subsystem (X;) { &i1 = Ti2 + wvg, &2 = 0, y; = x4 is
linear and observable, and thus admits an observer for any input.
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However, one can see that for the constant input uw = 1, any initial state
20 = (0,29,,0,29,)7 s.t. 295 = —x9, # 0 ezactly gives the same output
as the initial state 0 = (0,0,0,0)%. Consequently, since the observer only
uses information from the input and the output, there is no interconnected
observer of the form (2.4) which can distinguish z° from Q for system (2.5)
with input w = 1, i.e. we cannot obtain an observer for the whole system
from separate observer designs achieved for each subsystem (¥;).

Our purpose in this paper is thus to give sufficient conditions which
ensure the convergence of the interconnected observer (O). In other words,
the problem addressed is the following one:

If for i = 1,2, (O;) of equation (2.3) is an asymptotic observer
for (£;) of equation (2.2) (in the sense that for any initial state
zi, we have z;(t) — z;(t) — 0 as t — oo for any v € U and
v; € A;), then which conditions ensure that (O) of equation
(2.4) is an asymptotic observer for (X) of equation (2.1) for
any w € U and any initial state (z1,22)?

We can remark here that if the convergence of (O;) is not guaranteed for
any v; € AC(IR™, X;), then the problem cannot be solved, since there may
exist u € U such that (O) does not converge (counter-example 2.2 below).

In order to formulate a solution to the considered problem, we first set
e; := z; — x;, and for any u € U,v; € X; we define the following system
(where k;"(t) denotes gain k;(g;, z;) defined in (2.3)):

éi = fi(zi,v,u) — filzi — ei, vy, u)
(Elwee)y +ki* () (hi(zi) — hi(zi — €:))
: zi = filzi,vp,w) + k7 () (hi(2zi) — hi(zi — €3))
gi = Gi(ziavfauagi)

(2.6)

We also recall that a function v(¢, ) is said to be a positive definite function
wrt. e if Vi > 0, w(t,e) > ¢(]le]]) for some strictly increasing positive
function ¢ such that p(0) =0 and lim o(|le|) = +oo.

llef|—o0
We now formalize our initial assumption by the following condition
(which just means that (O;) is an observer for (%;)):

(H1) For i = 1,2, and for any signal v € U,v; € AC(IR",R™), and
any initial values (z9,¢?) € R™ x @;, there exist two positive def-
0200 220 g0
inite functions V;“""*"% (t,e;) and W;"""""% (¢;) (only denoted by
Vi(t,e;), Wi(e;) in the sequel) such that:

SVt ex(t)) < ~Wiei(0), @7
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OBSERVER DESIGN FOR INTERCONNECTED SYSTEMS

for every trajectory | z;(t) | of (Ei(u’vi)) such that z;(0) = 22, ¢;(0) =

g;-

We then introduce the required assumptions for the interconnection
between (O;) and (O;) to be an observer:

(H2) For i = 1,2, and for any u € U,v; € AC(IR',IR™), functions
Vi(t,e;), Wi(e;) associated to u,vs, 2, g9 satisfy:

(i) Va; € Xi;Ve; € R™;Vt > 0,

Wa i e+ Vit e0) fulas + s vnlt), ult)) — filas,vilt), u(t))

ot 6&'
+k;7 () (hi(wi + e;) — hi(x;:))] < —Wile;)
(i) Vz; € X;;Va; € R™;Ve; € R™;Ve; € R™;Vt > 0,

|25, otitas, o+ xu() it

6&'
S Q; \/m\/ma

for some constant a; > 0

(111) a1+ o < 2.

Remark 2.1 Condition (i) of (H2) is stronger than (H1) since inequal-
ity (2.7) of (H1) coincides with the one in condition (H2)-(i), only along
trajectories. For this reason, in the sequel we only need assumption (H2).

The above assumptions provide the following result:

Proposition 2.1 If assumption (H2) is satisfied, then system (O) de-
scribed by (2.4) is an asymptotic observer for system (X) described by (2.1).

Proof: Set e¢; := &; — x;, for i =1 to 2, and define the following systems:

¢ = fi(@i,&r,u) = filZi — e, 87 — eg,u) (2.8)

() (hi(&:) — hal@: — €3))
(E)) & = fildi dnu) + RO (ha(E:) — hi(@s — 1) (2.9)
g = Gi(& &0, ). (2.10)

Given 21(0), 22(0), 91(0), §2(0), equation (2.8) becomes a time-varying non-
linear equation. We then define V; by function V; obtained with v;(.) =
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Z7(.), and we show that V :=V; + Vs is a Lyapunov function for equations
(2.8) for i = 1,2. To that end, note that:

éi = fi(i, 8,u)  —fi(ws, @5, 0) + k77 () (ha(@:) — ha(2:))
+fi(zi, 27, u) — fi(xs, 27, ).

Hence
5 oV; av; ) A
Vit,e;) = W(taei) + %(taei)[fi(xi + ei, B, u) — fi(wi, T1,u)
) () (hi(@) — ha(@:)))]
ov;

+a_ei(t:ei)[fi($i,$z + ez, u) — fi(zi, T, u)]

< —Wiled) + asy/ Wilei)y/ Waler)
where W; is defined by W; for v;(.) = &;(.). It follows that:
VoS X (- Wile) + ain/Wile) Wien)

—51 = 2 (i (o) + )7

(2.11)

IN

which ends the proof. 0

Now, coming back to the assumption of convergence of (O;) for any
v; € AC(IR", X7), we can show its importance on the following example:

Counter-example 2.2 Consider the system defined by:

j?l = —r1+u

. _ 0 Ir1 — % _

= (0 0 ) T2 = Alay)as (2.12)
Y1 = hl(iL“) = 0

Y2 = hz(ﬂ?) = CZL“Q = (]. 0)332

and the associate subsystems:
(21) Ci?l =—r tu, y = 0, (22) Ci?z = A(’Ul)ﬂfz, Y2 = C:UQ. (213)

We then design the following observers:

ON{ & = —i1+u (2.14)
A _ 0 'Ul_% A 1T A o

)¢ " = (0 0 ) STONCR =) (g5
S = —8S—AT(v1)S — SA(v1) + CTC,
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where (O1) is an exponential observer for (X1) which works for every w, and
(O2) is an exponential observer for (L2) which works for every regularly
persistent input vy [2].

Clearly, functions Vi(e1) :=e? and Va(t,ez) := el Ssey are appropriate
positive definite functions for (H1) and (H2), except that (O2) does not
converge for any vi. In particular, (O2) does not converge for any input
vy such that vi(t) exponentially tends to % as t tends to infinity.

Hence
.%,'1 = —I1+4u
~ _ 0 Zﬁl - % A 1 ~T A
S = —05—AT(#)S —SA(&)+CTC

_1
does not converge for u = 5.

Remark 2.2 If functions V; and W; are quadratically bounded (B ||es||* <
Vi(t,e;), Wi(e;) < Bizlleil|?), then the convergence is exponential.

In view of the proof, the method can be easily extended to more than
two subsystems, provided that the Lyapunov functions associated to each
observer satisfy interconnected conditions like in (H2), allowing to choose
their sum as a Lyapunov function for the whole system, and to bound its
time derivative by some positive definite expression.

Finally, notice that if the subdivisions of the considered system (X) do
not appear in first approach, coordinates transformations or/and output
transformations can be tried to make appropriate subsystems to appear.
This is what was inspected for instance in the case of cascade intercon-
nections [3, 4, 5] for arbitrarily fast observation, or some cases of reduced
order observation [1].

2.2 Observer for weakly interconnected systems

These systems take the following form:

; fl(xlau)
()] 2 = Sleeny) (2.17)

y _ hl (:Ul)
h2 (:Uz)
Denoting by (X}) the resulting subsystems as defined by (2.2), assumptions

for the existence of an observer for (£') based on observers for (X}) as in
(2.4) can be weakened in the following way:

Ty
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(H1’) We assume that (¥]) admits an observer of the form:
A = filzne) + k(g 20)(ha(z1) —yn)
(Ol) { gl — Gl (Zl,u,g1) (218)

and that for every w € U and every admissible trajectory x;(t) of
(27) associated to u,we have tlim e1(t) =0 (with e; := z; — x1) and
—00

+oo
| el < +oc. 2.19)

Note that this condition (2.19) is indispensable (see counter-example
2.3 below), and is satisfied as soon as (O]) is an exponential observer.

(H2’) 3¢ > 0; Vu € Us Vs € Xo, || fole2, 21, 0) — folwz, o, )| < cllar — at].

Remark 2.3 Since fo is of class C*°, (H2’) is always satisfied if
X1,X5,U are bounded sets.

(H3%) (X%) admits an observer:

(o;){ B Bl b)) w)

in the sense that, by considering the associate system (Sz(u’vl)) defined
by (2.6), for any signal u € U,v; € A.C(IRT,R™), any initial value
29,99, there exist positive definite functions v(¢,e2) and w(ez) such
that for every trajectory of (£{*")) such that z5(0) = 29, g2(0) = %

Lolt,ex(1)) < ~wles(r)).

(H4’) For any u € U,v; € A.C(IR",IR™), there exists a positive definite
function w(e), satisfying, together with v(¢,e), w(e), the following:
(1) Vo € Xz,@z S Rn2,t >0,

00y s O

_(t, 62) + ey

e (t,e2)[fo(z2 + e2,v1(t),u(t)) — fa(w2,v1(t), u(t))

+ky' () (ha (72 + €2) — ha(22))] < —w(ez)
(i) Yes € R™,t > 0; v(t,ez) > w(es)
(iii) Ve, € R™\B(0,7),t > 0; ‘g—;(t,eg(t))H < M1+w(t,ex(t))) for
some constants A,7 > 0 and B(0,r) := {ez : ||e2]| < r}.

8
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Note that condition (iii) is satisfied e.g. by quadratic functions z” R(t)x
for some symmetric positive definite R(t).

Remark 2.4 As in the previous subsection, we can remark that condition
(H4’)-(i) contains in particular condition (H3’), i.e., the fact that (O}) is
an asymptotic observer for (X} ).

Proposition 2.2 Under assumptions (H1’), (H2’) and (H/’), system (2.21)
below is an asymptotic observer for (¥') described by (2.17):

& = fi@,w) + k(g 0) (b (81) = ha(a))

Ty = [fa@1,22,u) + k2(g2, 22)(h2(82) — ha(22)) (2.21)
gl = Gi(21,u,01) '
QQ = Gg(iﬁz,:ﬁl,u,gl).

Remark 2.5 By remark 2.8, assumption (H2’) can be dropped if the input
u(.) and the unknown trajectory are bounded.

Proof: We must prove convergence of (O4). with notation k;* of (2.6):

€2 fo(zs + €2,21 +e1,u) — fo(zz, m1,u) + k5 (8)(ha(@2) = ha(z2))
= fa(@2 + e, 81, u) — fo(wz, 81, u) + k3 (¢) (22, €2, 1)
+ o2, 21 + €1, u) — fo(zs, 21, 0)

(2.22)
and we consider functions 9(es,t),w(ez), w(ez) defined by v(es,t), w(ez),
w(ez) with v1(.) = Z1(.). Then, by condition (H4’)-(i),

ot ez) = 9, %,
2T 0t Bey 6i (2.23)
. 0
< —w(eg)-l-aT(fz(:Cz,:m +e1,u) — fo(zr, 21, u)).
2
By (H2’), it results

. 07
(t, e0) < —id(es) + ca—v||el|| (2.24)
€2

and by (H4’)-(iii), for ||es| > r,

0(t, e2) < —(es) + eA(1 + B(t, e2))

lex]] < eA(1 +9(t, e2))lea]-

By integrating this inequality, we get
o0
Log(1 +(t, e2)) gcA/ lea (r)ldr
0

and using condition (2.19) of (H1’) we conclude that ey is bounded.

9
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Going back to equation (2.24), it follows
0(t,es) < —tb(es) + yller]| for some v > 0,

and we can then prove convergence of ey to zero: let (p;); be a sequence
of real numbers such that p; > p;+1 > ... > 0 and lim;_,.p; = 0, and set
B(0, pi) == {ea : w(e2) < pi}-

Choose po such that B(0, po) contains the bounded domain of es, and
for i > 0, set n; = inf{w(e2);ea € B(0,p;)\B(0, pi+1)}- Since |le1 ()|
tends to zero, there exists #p > 0 such that v|lei(t)|| < % for t > t.

Hence, as long as ey € B(0,p0)\B(0,p1), and t > ), we have o(t,ey) <

—% < 0. As a result 0(t,es) decreases, until e lies into B(0,p1) at

a time tg, and by construction, cannot go out B(0,p;). By induction,
for i > 1, if es(t) € B(0,p)\B(0, pi+1), then 3¢; > t;1 such that for
t >t vllei(®)] < % In a similar way as in the first step, o(¢,ez) <

—% < 0 as long as ex € B(0, p;)\B(0, pi4+1). Thus 9(t,e2) decreases un-

til es lies into B(0, pi+1)\B(0, pi+2) at time t;. As above, we have V¢ >
t;, e2(t) € B(0, pi+1). Since t; — oo and B(0, p;)\B(0, pi+1) —i—oeo {0}, we
get e2 =400 0. O

The importance of condition (2.19) can be illustrated by the following:

Counter-example 2.3 Consider the system:

: S:Ul _2(1}—15)371
(E)q &2 = —gpr2tm (2.25)
Y = (07 O)T

(24) and (£4) clearly admit the following respective observers

1 1

(O1) & = gps (O2) 2 = T 4(1+1)

22 + V1

for any v;.
Moreover (H2’) is clearly satisfied, and dynamics of ez := 2o — xo admit

v(t,e2) := (1 + t)eS as a Lyapunov function such that (Hj’) is satisfied.

However e (t) = % and thus condition (2.19) is not verified.

It can then be easily checked that the interconnected system

X _ _# ~
T TmeT (2.26)
Ty = _—4(1+t) Ty + T

is not an observer for (¥'), since ||Z2(t) — z2(t)]| —t—o0 0.

10
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Notice again that with stronger conditions, one can ensure arbitrary ex-
ponential convergence (as in [5] for block-state affine systems for instance):

Proposition 2.3 If (O]) is an exponential observer for (¥Y), (H2’) is
satisfied, and (H4’) is replaced by the assumption that for any u € U,v; €
AC(IRT,R™), there exist real numbers v1,v2,a, o > 0 such that for any
B > Bo, v(t,ea) satisfies:

(i) Condition (H4’)-(i) where w(ez2) is replaced by Bu(t,es).

(i1) 1ille2ll* < v(t,e2) < yallez]l®.

(iii) Ve, € R™ t > 0 < afjes]].

Ov

R t .
‘ 682 ( 762)
Then system (2.21) is an exponential observer for (X.).

For the proof, just remark that equation (2.24) in the proof of proposition
2.2 still holds with w(ez) replaced by B9(t, e2), and that new conditions (ii)
and (iii) leads to:

0(t,ez) < —Bo(t, e3) + 61/0(t, e2)||er]| for some 6 > 0.
Dividing this equation by /0(t,es), and using the assumption of expo-
nential convergence of (O}) (i.e., |le1(t)]| < pre~¢, for some p1,¢ > 0), it
follows d
pn o(t,ea) < —B\/0(t,e) + be L.

By integrating this equation, it finally results in

§ _
0(t,es) < pge_gt + 5 2<e_<t, for some pa,6 > 0

which allows us to conclude.
In particular, the convergence of the resulting full observer can be given
an arbitrary exponential rate as soon as this is the case for (O}).

3 Observer with Partial Correction for a Class of Non-
linear Systems

On the basis of propositions of section 2, this section presents an observer
for a class of systems extending previous results of [1]. The basic idea in
[1] can be summarized as follows:

Given a nonlinear system:

T = f(a:,u)
{5 )

11
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with z € R", f € C*® wot. (x,u), y € IRP, let us consider a change of
coordinates z = T'(z) = ?) with z; = h(z).
2

System (3.1) then becomes:

a = filz, 22,u)
22 = fQ(ZQ,Zl,u) (32)
Y = Zi.

Assume that system:
(B2) 22 = folze,v1,u), wu €U C L2(IRT,U),v; € AC(RT,R") (3.3)
satisfies the following condition:

Y(u,v1) €U x AC(IRT,IRP); V23 # 25, ||25(t) — 29(t)|| —=¢—00 0, (3.4)

where z9(t) and z3(t) are resp. trajectories of (X5) associated to (u,v:)

with 22(0) = 29,22(0) = 2. Then the system:

A

Zy = fa(%2,9,u)
.’f? — T—l Y (35)
Zo

is an asymptotic observer for (¥). In [1], sufficient conditions are given
in order to ensure condition (3.4) in the case when fa(z2,21,u) = Asze +
P2(u, 2).

In this section, using proposition 2.1, we extend this kind of result to a
class of systems of the form (3.2), where z; is not fully measured, but can
be estimated by an observer, while z, still satisfies a condition like (3.4).
Provided indeed, that the rate of convergence of the estimation of z; can be
chosen high enough, then an observer can be obtained for the whole system
as in previous section. As long as 2z, does not contain any measure (the
output function hy of previous section vanishes), this situation corresponds
to a whole observer for which the convergence speed cannot be arbitrarily
chosen.

Here we discuss such properties for a system of the following form:

6 = A& +e6,6u), & € R ue R
(X & = A+, &,u), & e R™ (3.6)
y = C&,y€R,
with
&1 0 _1 ) 0
= . 7A = ) R

& ' ! 0 ... 0 1

§1ny 0 ... 0 0

12
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C=(10...0),
p11(&11,u)

P1(81, €2,u) = ‘p1n1—1(€11,:..€1n1—1’u)

Ping (51 ) 527 U,)
Moreover, we will need the following assumptions:

Assumption 1 ¢ and p2 are global Lipschitz functions w.r.t. & (resp.
w.r.t. &) locally uniformly w.r.t. w and globally uniformly w.r.t. & (resp.
locally uniformly w.r.t. v and globally uniformly w.r.t. & ), and denote by
K1,k (Tesp. Ry,Rq) their corresponding constants.

This assumption can be omitted as soon as the state (& (t),&2(t)) lies in a
compact set (one can indeed, as in [6], prolongate nonlinearities g, p2 out-
side a compact set to make them global Lipschitz). Moreover, considering
the following subsystem:

& = A&+ ei(&,o,u),
(251){ yl = Clglf 1(1)21,11)26 AC(IRT,IR™) x U, (3.7)

assumption 1—together with the structure of Ay, C, p;—ensures the exis-
tence of a high gain observer for (3.7) of the following form [6]:

s R R . R
(0)4 & = A6 + ﬁl(ﬁl,vmu) - SoTCT(Cfl ) (3.8)
0 = 0S¢+ A;So+ SpAy —C*HC.

Assumption 2 There exist symmetric positive definite matrices P, Q) s.t.

PA, + ATpP = — d
2 + Ay @ an Mrran P

> Ka, (39)

where Apin (T€SP. Amaz) denotes the smallest (resp. largest) eigenvalue,
and Ro is the Lipschitz constant of o w.r.t. & (of assumption 1).

This “Thau-like” condition [7] ensures that states of the following subsys-
tem:

(L&) & = Asly +pa(&2,01,u), (vi,u) € AC(RY,IR™) xU  (3.10)
can be estimated by an “uncorrected” copy of its dynamics as follows:
(O¢,) 52 = Azéz + @2(52,”1,“)- (3.11)
Now we state the following:

13
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Theorem 3.1 If assumptions I and 2 hold, then the following system:

Q = 605)+ A{So + SgA, —CTC
(O¢) §A1 = Alél + @1(51;52;“) - S;lcT(Cél -¥) (3.12)
£y = Axlo+ (&2, 61,u)

is an asymptotic observer for system (3.6). Moreover, the rate of decay
of the estimation error can be chosen to be as fast as the one imposed
by sub-observer (3.11) of subsystem (3.10) (this is what we call “partial”
correction,).

Proof: The proof can be achieved by choosing appropriate candidate Lya-
punov functions V; and V5 in order to check assumption (H2) and apply
result of proposition 2.1.

Take 8 > 1 and set e; = 51 — & and ey = ég —&,. Then we get:

{él = (Al_SgquQ)el +<P1(€1752,U)—<P1(§1,§2,U) (3.13)
éa = Ases+ pa(&,&,u) — p2(€2,&1,u). -

In the sequel, we will denote by e;; the jth component of e;, for 1 < j <m;
and i = 1,2, and we set:

=t 0 ... 0
—2 . : ‘
ro)=| Y O | e =T, and ey = 2 (319)
: . .0 !
o ... 0 &m™
1
A simple calculation shows that 7'(6)5:7(0) = 559 where S = Sp |9=1
(see e.g. [8]).
Now, take P, @ satisfying (3.9), and define Vi, V5 by:
1
Vl(el) = 56{5961 = elTT(H)SlT(H)el = 8{5’161 (315)
el Pe
Va(es) = ;,mlz = eI Pes. (3.16)

Obviously, V7 and V5 are positive definite, and to achieve the proof of
theorem 3.1 we only need to show that V; and V5 satisfy assumption (H2).
e Let us first check condition (H2)-(i) for Vi, Va:

For Vi: here, the left-hand side of the inequality in (H2)-(i) becomes

oV; N
3—61[(141 — §,1CTO)er + p1(&1,v2,u) — 1(&1,v2, 1))
= 2eTSIT(0)[(Ar — S, *CTC)er + 1 (€1, v2,u) — 1(&1,v2,0)).

(3.17)
14
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On the one hand, using the triangular structure of ¢; and the Lipschitz
condition of assumption 1, we get:

IT(8) 1 (Er,v2,u) — @1 (Ex,v2, w)]|

n1

1 0y 1
= (O lgrenitr, v, u) - puiler, o0, 0’ (3.18)
i=1
L I€12 1
< (Z o2 llew:lI?)2 (with ey; = (e11,...e1:)”, k1 of assumpt.1)
i=1

< mikller]] (from the definition of the e1;’s),
and, on the other hand, a simple calculation gives:
T)(A - S, cte)yr®)~"' =6(A, — S;tCT0). (3.19)
Hence using (3.18) and (3.19), we obtain:

gz (A1 = S, " CTCer + o1&, 02,0) = (61,03, w)]
= 2¢7516(A1 — S, CTC)er + 2¢7 S1T(0)(1(61, 02, w) — p1(€1,v2,w))
(from (3.17) and (3.19))
< 02e7(S14; — CTC)ey + 26111 M nae (S1)]€1||* (using eq.(3.18))
Amaz (51)
)‘mm(sl)
(since 267 S1Arer = e (S141 + AT S1)er = eT(=51 + CTC)e;  (3.20)

and |le1|* < )\mm(sl)Vl)

—0Vi — 0T CT Cey + 2k1m4 1%}

—(0 — p1)Vi, with puy = 2/<;1n1)\"‘LESI; (independent of 6).

By taking 8 > p;, it results that (H2)-(i) holds for V1,
with Wy = (6 — p1)V1 (using notation Wi of (H2)).

For V5: in the same way, we have

A%
a—[A2€2 + 2(&2,v1,u) — p2(&,v1, )]
2 .
= ez—nlegP[Aze2 +¢2(&2,v1,u) — @2(&2, v1,u)] (3.21)

= _631(962 + 252 03; ((,02(52,1)1, ) - ()02(5277)17“)) (See P7Q752)

—)\min(Q)“52“2 + 2"02>\max(P)||82”2 (R2 as in assumption 2)
(Amzn(Q) - 2R2Ama$(P))

— o (D) Vo i= —p2Va with ps > 0 (by (3.9)),

IN

IN

15
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which gives condition (H2)-(i) for Vs, with Wy = pusVs.

e We then check condition (H2)-(ii) for V1 and Va:
For V;: using now the Lipschitz condition w.r.t. & and again the structure
of ¢y, it results:

||%[so1<al,§z, )= o1 (60, &0, 0]

= |2e1 51T (8 )[@1(51,52,U) — 161, &2, ulll (3.22)

< ||25151|||0n1 [o1n, (€1, €2,1) = Prny (&1, &, w)]| (by structure of ¢1)
< 2 mae(S1)lle1l|R1lle2|l  (R1 = Lipschitz constant of ¢1 w.r.t. &)

2Amaz(S1)R
maz 1 1 / /V2 ||61||2_>\

B \/)\mzn Sl) mzn(
= w127/ Viv/Va, with pi2 >0 (independent of 8)

\Z
—m el < 52 km)

—e /W1 /W2 e

9 .
ond thus 572 o1 61,60,0) = 160,20 € —
12

12
(0 — pa) 2
For Vs: using the Lipschitz constant ko of ps w.r.t. & (see assumption
1) we obtain:

condition (H2)-(ii) for V; is satisfied, with oy =

||%(<Pz(§z;§1; > o260, E1,0))|

_” gP (902(627617 ) 902(62761771’))”
S2)\maw( )||62|| = les (3.23)

< 2k2Amaz (P )||52||||51|| (using the definition of the £1;’s)

2"’92)\maw \/_\/_

B \/)\mm Sl) mzn(
= po1\/Va/Vi with  po; >0 (independent of 6)

H21
(0 — pa) 2
e Finally, choosing 8 > u1 + % gives o + a2 < 2, ie., (H2)-(iii),

and by proposition 2.1, (3.12) is an asymptotic observer for (3.6). More
precisely, with V' = V; + V5 and using results of (3.20)-(3.23) (where the

from which condition (H2)-(ii) follows for V5, with as =

16
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v;’s are specialized to &;), we obtain:

V < —(0 = 1)Vi + (a2 + o1 )WV Vs — paVa,
: (3.24)
where p1, pt12, pi21, 2 > 0 are independent of 6.

(pa2 + p21)?
. 4(p2 —m)

V < —nV, i.e., exponential convergence, and the upper bound on 7, i.e.
the maximal rate of convergence of the observer, is clearly - by equation
(3.21) - the one imposed by sub-observer (3.11) for subsystem (3.10).

Then, for any 0 < 7 < p2, choosing 6 > + p1 + 7, ensures

Notice that if n; = 1, we are brought to a particular case of the form
(3.2) with property (3.4), characterized in [1].
Remarking that the high-gain design of the form (3.8) can be obviously

€11
extended to multi-output systems (3.7) with & = o &ieRY, y €
£1n1
0 Id, 0
R, A= | . C = (Id, 0...0) and vs,u) =
0 ... 0 Id, ( ) and 21 (v )
0O ... O 0

VY11 (511, U)

: , v1; € IR”, Id, denoting the v x v identity
<,01n1—1(§11, ST U)

P1in,g (61; V2, u)
matrix, we can in the same way extend observer (3.12) to systems (3.6),

where the subsystem (3.7) has several outputs and satisfy the above struc-
ture. This remark will be of particular interest in section 5.

4 Examples of Observers with Full Correction and Ar-
bitrary Rate of Convergence

4.1 Cascade block-state affine systems

In the case of cascade structure (or weak interconnection), conditions for
the existence of a transformation into a block state affine form (4.1) below,
together with the existence of a corresponding observer are given in [5].

T = A (u,yl):cl + Bl(u,yl), T, € Bnl, To € IR™
(Ela) T2 = A2y(1u7y2axl)(§12xj- B2(uay2axl)7 :I;lnl +ne=mn (41)
o= (m)=(En) =(5):

17
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where A; and B; are C* functions w.r.t. their arguments.
Let us define the following subsystems:

(Za1) &1 = Ai(u,y1)z1 + Bi(u, 1), y1 = Cy (4.2)
(X%2) Ty = Az (u,y2,v1)72 + Ba(u,y2,v1), y2 = Cxy (4.3)

and denote by x(t,u,z") the solution of system (4.1) at time ¢ starting at 2,
under control u, and m; the projection of IR" onto IR™ : = = il — T
2
Now consider, as in [5], the class of inputs u s.t.

(ua yl)? (ua Y2, (X(ta U, wO))

are “rich enough” (i.e., regularly persistent [5]) respectively for systems (4.2)
and (4.3) and s.t. for any initial condition x in a compact set, x(¢,u,z)
remains bounded. Then for any A > 0, there exist 6;,6> such that the
following system:

B = Ai(u,g0)@ + Bi(u,m) — Sipt CF (Crdn — 1)

Sio, = 01519, — Af (u,y1)S16, — S160, A1 (u, 1) + CL C (4.4)
By = Az(u,y2,81)F2 + Ba(u,y2, &1) — S5y, CF (Caiez — y2) '
Sap, = =059, — AL (u,ya,81)S20, — S20,A2(u, y2,81) + CL Cs

is an observer for (4.1), satisfying || — z|| < Ape~*!. This is what we call
full correction with arbitrary rate of convergence.

This result is proved in [5], but we can here check that conditions of
proposition 2.2 are indeed satisfied: By considering regularly persistent
inputs for (4.1), (H1’) is satisfied since (4.2) admits the following observer
for 6, large enough [2]:

) { 5{1 = Ai(u,1)T1 + Bi(u,y1) — SfollclT(Clﬁ - 1)
VL S, = —01S1, — AT (4,91)S16, — S19, Ar(u, 1) + CTC
(4.5)
Here we are in a case where remark 2.3 applies and thus condition (H2’) is
satisfied. In the same way as above, (H3’) also holds, with

(OI) {352 = A2(uay2avl)§"2 +B2(uay2avl) _52_0120211(02'%2 _y2)
2 820, = —02529, — AL (u,y2,01)S1 — S29,As(u, y2,v1) + CT Co
(4.6)

and v(t,es) := e Syp, €.

Regular persistence of the inputs ensure that for 6, large enough,
Tlle2l]? < v(t,e2) < yalle2||?, for some 1,72 > 0 [5], and thus (H4’) is
also satisfied (and even its modified version of proposition 2.3).

18
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4.2 Example of high gain observer design

If we now consider the case of two subsystems of the form (3.7) as considered
in section 3, then the interconnection between them given hereafter can be
subject to a high gain observer design with arbitrary convergence speed.

£y = Az + (T, z2,u)
Ty = Aswa+ (w2, 1,u) (4.7)

_ Cix;
y - CQLL'Q
with A;, C; in the form of A;, C in (3.6) and ¥;(z;, 77, u)T = (Vi (zi1, u), ...,

77ZJZ'(’rLi71)(:I;i17 - - Li(n;—1)> U), Pin; (xia Lz, U)), {Z',Z} = {17 2} 1/)1 and ¢2 sat-
isfy assumption 1 of section 3.
An observer is then given by

5?1 = Az +¢1(£1,£2,u)—5f(}1101T(01:%1 - Y1) (4.8)
Ty = AsZo+ 1/}2(532,:%1,111) — 52_0120211(025%2 - yl) ‘
with Sig,, S20, given by
61519, + S19, A1 + AT Sy, —CTCy = 0 (4.9)
62529, + Sag, Ao + AL Soy, —CTC, = 0 '

for some 61,05 > 0, and VA > 0, 364,65 s.t. ||§3 - .’L'” < )\oe_M.

This, obviously, is a particular case of multi-output uniformly

observable systems, for which high-gain observers have been proposed
in [8]. But here, we propose it as an illustrative example of conditions of
proposition 2.1:

We first define subsystems (¥1) and (X2) as follows:

(X1) @1 = A1z + (21, v2,u), y1=Ciay (4.10)
(22) T9 = Asxe + 7,[12(;1)2,1)1,”), Y2 = Chxs. ’
Then:

e Condition (H1) clearly holds with:

, 2 = A+ 0i(Ei,v5u) — Si_9ilciT(Ciji — )
(0s) { 0 = 0:Si + S Ai + AzTSi@i — CiTCi (4.11)
and V;(e;) = eI T(0;)S:,T(6;)e; using notations (3.14).

e Easy computations then show that (H2)-(i) is satisfied with W;(e;) =
0;Vi(e;), that (H2)-(ii) follows from computations similar to those
in the proof of theorem 3.1 (see equation (3.22)) and that (H2)-(iii)
results from appropriate choice of 61, 65.
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5 Illustrative Example

In order to put into relief how to use the approach proposed in this pa-
per to design observers, let us consider the widely-studied example of an
induction motor. Here is considered a classical two-phase equivalent Park
representation of the motor, in a framework linked to the rotor, and usually
denoted («, ), with stator currents (I ), stator fluxes (®,) and rotor speed
(€2) as the state variables and stator voltages as the control variables. Since
modeling is not the main purpose here, and since there are many references
on induction motors (including full thesis such as [9], and very recent de-
tailed papers such as [10]), we will not insist on that question. Just remark
that denoting by €2 the speed of the motor, we only consider the case of a
resistant torque of the form I',..; = Ko+ K1), with the constraint that K
and K are assumed to be known.

In the sequel, X will denote the state, X; the vector of currents, X5
the vector of fluxes and X3 the speed.

5.1 Observer Design with Stator Currents Measure-
ments

In a first approach, we will only consider stator currents as measured out-
puts, and show that the system then falls in the case of section 3.

From classical models, a representation w.r.t. our chosen state variables
can indeed be derived using electrical and mechanical equations, as follows:

—alds + pHX3 | cldy —b.p/HX.

. (X B 2TD 3 | 2 p 3 X, B
w\x,) = x, )7
—R,Ids 0

X; = —Bx;— 80+ EXTHX); B = (b.Idy, Idy)";
Y = X;€ IR?
(5.1)
where a,b,c, R;,.J,p are constant known parameters of the motor, Id,
0 -1

stands for the 2 x 2 identity matrix, and H := 1 0

Denoting by hi, he the output functions, and f the drift of the system,
we can define the following change of coordinates (where Ly stands for Lie
derivative along f):

i = h(X), &3 = Lj(hi(X))

b2 = m(X), G = LX), & = X O
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In these new coordinates, the system takes the following form

5:1 = A&+ p1(&,&,u)

& = A+ 9a(&2,61) (5.3)
y = C&
with A; = <g Igh), C= (I 0), pr(Er,u) = <@1(bgd§:u)> and

K
A= -

Using remarks at the end of section 3, and checking that assumptions
of theorem 3.1 are satisfied, a high gain observer can be designed for the
subsystem in &, and a complete observer is then derived as follows:

0 = —65 - AT'Sy — SeA +CTC
& = Al + o1&, 6,u) - S, CT(C4 —y) (5.4)
& = Abr+pa(br, &)

Note that whatever 6 is, the convergence rate is in this case bounded by

K
the one imposed by &, that is —21 Which is unfortunately in general

slower than electrical time constants. Using the following numerical values
(in appropriate units) - corresponding to a motor with nominal power of
37 EW atts,
a=60.72, b=501.3, c=807.1
R, =0.07, J=041 p=2 (5.5)
Ky =149.7 K; =0.002
simulation results are given on figure 1, for § = 500.

This result illustrates the method, but is not really satisfactory, be-
cause the “uncorrected” estimation is quite slow (here increasing 6 does
not improve convergence speed).

Now if we consider the same system, with one more measurement, cor-
responding to an additional state (the rotor position, e.g. as in [11]), the
speed estimation can then be also corrected, with arbitrary rate of conver-
gence, as shown in next subsection.

5.2 Observer design with rotor position as additional
measurement

Considering the rotor angular position measured, the system then becomes

X X
4 <X;> = A(X3) (X;> + Bu
X = —Eix;— K 4 pXTHY, (5.6)
Xy = X;
(] = (x{, X"
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with A(X3) and B as before (eq. (5.1)), and X4 denoting the additional
state.
If we perform the same change of coordinates, as in previous subsection,

with now z; = &, 291 = X4 and z9y := X3, the system takes the
same form as (4.7), with A;,¢; = ¢; as in previous subsection, and
01 0
Ay = , T, T1,U) = as in previous subsec-
2 <0 0) Ya(w2, w1, u) <p2(:62,x1)> (o2 b

tion).

Under this form, a complete observer of the form (4.8) can be obtained
from the synthesis of two high gain observers, one for each subsystem, with
arbitrary speed of convergence.

Simulation results are given in figure 2 with 8, = 2000,6>, = 1000.
Note that with these new state and output, the whole system falls into the
multi-output uniformly observable case as first studied in [§].

Finally, notice that, with this new measurement, the observer can be
extended to the estimation of the constant load Ky since extending the
model with Ko = 0 and taking 23 := X5 does not change the structure
(4.7).
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6 Conclusion

In this paper we have derived conditions for observer design based on sep-
arate subdesigns. The conditions provided cover cases of partial correction
in state estimation, which is a generalization of reduced observer design for
nonlinear systems of former study [1], and full correction, as in previously
proposed designs (block state affine cascade systems or multi-output “high
gain” observable systems). Such a method is in principle very rich, but
maybe as difficult to apply in a very general case as observer-based con-
trol, as underlined in the introduction. Nevertheless, it can be a starting
point for developments of new synthesis of observers for nonlinear systems.
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