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Disturbance Rejection by Dynamic Output
Feedback: A Structural Solution*

Michel Malabre Basilio Del-Muro-Cuellar’

Abstract

We propose new structural necessary and sufficient conditions
for the solvability of the Disturbance Rejection problem by dynamic
Output Feedback. They generalize the necessary or sufficient con-
ditions previously given by Commault, Dion and Benahcene. The
structures which appear in our condition are related to the zeros at
infinity and the unstable invariant zeros. We use both geometric and
algebraic tools but with a particular attention to transfer function
formulation.
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1 Introduction

The Disturbance Rejection problem via dynamic Output Feedback (DROF)
has received a lot of contributions. The problems with internal stability
and pole placement have been solved by Willems and Commault [16] and
Imai and Akashi [7] within a geometric approach. Algebraic counterparts
(using transfer function matrices, stable rational fractional or polynomial
fractional approaches) have also been given by Pernebo [15], Ozgiiler and
Eldem [14], Eldem and Ozgiiler [6]. Explicit relations between geometric
and algebraic approaches have been further enhanced in Ozgiiler [13].

For the particular Disturbance Rejection problem via State Feedback
(DRSF), structural necessary and sufficient conditions for the existence
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of solutions have been provided. They rely on some particular structures
of the infinite and finite zeros (see Malabre and Martinez Garcia [9] and
also, for more compact structural solutions, Martinez Garcia et al. [12]
). One major advantage of a structural treatment is that it leads to new
relations between geometric and algebraic approaches and brings more in-
sight into the solvability requirements. As concerns DROF, the paper by
Commault, Dion and Benahcene [5] is the only reference where explicit
structural conditions have been derived. However some of their conditions
are necessary, others are sufficient and, except for some particular situa-
tions, no necessary and sufficient condition is available yet. The aim of
this paper is to propose new necessary and sufficient structural solutions to
the DROF problem, with a natural extension to the DROF problem with
internal stability.

The paper is organized as follows: Section 2 is devoted to the notation
and previous results. The main Section 3 describes our new solvability
conditions, while Section 4 relates them to previously established (partial)
results and illustrates our contributions through a simple example borrowed
from [5].

2 Notation and Background

We shall consider here linear time invariant systems (A, B,C, D, E) de-
scribed by:

#(t) = Az(t) + Bu(t) + Dh(t)
2(t) = Ex(t) (2.1)
y(t) = Cx(t)

where z(t) € X ~ R* is the state, u(t) € U ~ R> is the control input,
h(t) € H ~ R" is the disturbance input, z(t) € Z ~ R< is the output
to be controlled and y(t) € Y = R™ is the measured output. The same
notation is used for maps and their matrix representations in particular
bases A: X - X  B:U—-X,C: X —>)Y, D H—-X and E: X — Z.
We shall denote B the image of B, D the image of D, C the kernel of C'
and & the kernel of E. The letter s will be used for the Laplace variable.

The DROF problem amounts to looking for the existence of a dynamic
compensator, say u(s) = K(s)y(s), in such a way that the closed-loop
transfer function matrix from h(s) to z(s) be identically zero.

The overall transfer function matrix being split as:
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it is well known (see for instance [5]) that the DROF problem is solvable if
and ouly if the following equation:

G(s)X(s)N(s) = H(s) (2.3)

has a proper solution X (s).

Let us now recall some minimal geometric information (see [17] and [2]).
A subspace V of A" is called a Controlled (or (A, B))-Invariant Subspace
if AV C V + B. Given any subspace £ C X, there exists a Supremal
Controlled (or (A, B))-Invariant Subspace contained in £ , noted as V} ,
and given as the limit of the following famous non increasing algorithm:

V=X
2.4
{ VI = LAA=® (V). + B) (2:4)

A subspace S of X is called a Conditioned (or (C,.A))-Invariant Subspace
with respect to C, if A(SNC) C S. Given any subspace M C X, there
exists an Infimal (C,.A) -Invariant Subspace containing M , noted as S,
and given as the limit of the following famous non decreasing algorithm:

"=y
M
{ SUT=ASY N +M (25)

The Supremal Internally Stabilizable Controlled (or (A, B) )-Invariant
Subspace contained in £ , noted VZ fLHL, and the Infimal Externally Sta-
bilizable Conditioned (or (C,.A))-Invariant Subspace containing M , noted
SJC,/LHL, can also be defined (see for instance [2]). We shall say that (2.1)
is stabilizable and/or detectable when (A, B) is a stabilizable pair and/or
(C, A) a detectable pair.

The geometric solvability condition for DROF is (see [16]):
Theorem 1 There exists a solution to the DROF problem if and only if:
Sp C VL. (2.6)

Assuming that (2.1) is stabilizable and detectable, there exists an internally
stable solution to the DROF problem if and only if:

Syl oyl (2.7)

When C := Identity, i.e. for state feedback solutions (DRSF problem),
the subspaces on the left hand sides of (2.6) and (2.7) are simply D . In
that particular case, structural equivalent conditions (without and with
stability requirements) have been proposed. They have been established
with geometric tools in [9], but in order to make the exposition shorter, we
shall just recall here the algebraic counterpart.
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Theorem 2 [9] There exists a solution to the DRSF problem if and only
if s71G(s) and [s71G(s) , H(s)] have the same infinite zero structure. As-
suming that (2.1) is stabilizable, there exists an internally stable solution
to the DRSF problem if and only if s~ G(s) and [s " G(s) , H(s)] have the
same infinite zero structure and the same unstable invariant zero structure.

This result (without stability considerations) can be directly obtained
by formulating the DRSF problem in the following algebraic way: the
DRSF problem is solvable if and only if the following equation:

G(s)Y (s) = H(s) (2.8)

has a strictly proper solution.

The structure at infinity and the structure of finite invariant zeros have
been given various equivalent definitions (see for instance the survey pa-
per [1]). Let us simply recall here that, for a given system e.g. G(s) =
E(sI — A)~!B, they correspond to the so-called infinite and finite elemen-

sI—A B
E 0 ] ’
These definitions obviously also hold true for row or column subsystems,
e.g. for each row of G(s), say GJ(s) (for the i-th row) and for each column
of N(s), say Nf(s) (for the i-th column). In the case of a single input
or a single output subsystem, the infinite zero structure contains only one
integer, the order of the zero at infinity.

Let us also quickly recall the notion of column essential orders (see [4]
for the dual notion of row essential order). Let us denote N;(s) the matrix
N(s) without its ith column. The essential order of the ith column of N(s),
say ng,, is equal to the difference between the sum of the infinite zero orders
of N(s) and the sum of the infinite zero orders of N;(s).

To our best knowledge, the main contributions towards a structural

study of DROF are:

tary divisors of the associated Rosenbrock system matrix

Lemma 3 [5]: Assume that G(s) is full row rank and N(s) is full column
rank. DROF is solvable if G(s) and [G(s),snTer(s),...,S”SGH,;(S)] have
the same infinite zero structure, where n§, denotes the ith column essential
order of N(s), and H{(s) the ith column of H(s).

Lemma 4 [5]: Assume that G(s) is full row rank and N(s) is full column
rank. DROF is solvable only if G(s) and [G(s), s™ H{(s), ..., s H{(s)] have
the same infinite zero structure, where n§ denotes the infinite zero order of
the ith column of N(s), and Hf(s) the ith column of H(s).

These two conditions turn out to be necessary and sufficient [5] when
N(s) is column proper at infinity, i.e., when the infinite structure of N(s)
equals the union of the infinite structures of its columns.

4
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It has to be noted that other necessary conditions have been derived in
[3]. However no explicit “if and only if” structural condition is available
yet. Our objective here is to propose a structural necessary and sufficient
condition for the solvability of DROF, without any restrictive a priori as-
sumption. Moreover, we shall also be able to do that under the additional
internal stability requirement.

3 Main Results

Our first obvious trick amounts to defining an “extended” disturbance ma-
trix, say D’, such that:

D' :=1ID' =S83. (3.9)
With this notation, it is clear that (2.6) is equivalent to:

D' C V. (3.10)
Similarly, let
D" = I1gD" = S (3.11)
It is clear that (2.7) is equivalent to
* U
D" c vt

Thus we directly get, from Theorems 1 and 2 and without needing any
proof, the following structural equivalent:

Theorem 5 Let D' :=I{D' = S}; and let H'(s) := E(s] —A)~'D'. Then
the DROF problem is solvable if and only if s~ *G(s) and [s~'G(s), H'(s)]
have the same infinite zero structure.

Theorem 6 LetD" :=ImD" := ngLHL and let H"(s) := E(s[—-A)~1D".
Under the assumption of stabilizability and detectability, the DROF problem
has an internally stable solution if and only if s~ *G(s) and [s~*G(s), H"(s)]
have the same infinite and unstable invariant zero structures.

In view of equation (2.8), we can reformulate Theorem 5 as follows:

Corollary 7 LetD' :=I{D' = S} and let H'(s) := E(sI—A)"'D’. Then
the DROF problem is solvable if and only if the equation G(s)Y (s) = H'(s)
admits a strictly proper solution Y (s).

At this level of exposition, it is worth pointing out that this new “ex-
plicit” condition is more attractive than the following implicit one, ex-
tracted for instance from [6] or [14]. Starting from (2.3), we can left and

5
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right multiply by some ad-hoc biproper matrices (proper, invertible and
with proper inverse), say B;(s) , in such a way that:

Bi(s)G(5)Bx(s)[B; ' (5)X (s)By ' (5)|B3(s)N(s)Ba(s) = Bu(s)H (s)Ba(s)
with:

Bi(s)G(s)B2(s) = SSnitn—menritian (G(8)) = { (éiag(s_ni) 8 ]

Bs(s)N(s)Ba(s) = SSnith—menittan (N (8)) = { ?)mg(s_ni) 8 ]

and where S ..n_veasitian (o) stands for the Smith McMillan Form at
infinity of the transfer function matrix (the integers appearing as the powers
of s~ on the main diagonal are the orders of the zeros at infinity of (.)).
Then, the existence of a proper solution for (2.3) can be reduced to the fact
that some blocks of By (s)H (s)Ba4(s) must be zero, i.e., By(s)H(s)By(s) =
{ ® 0
0 0
Unfortunately, these conditions rely on the particular transformations
B (s) and By(s). Our conditions require no particular transformation of
the initial data. However, one major drawback of our new formulation
is that the transfer function matrix H'(s) is directly dependent on some
“geometric” information, namely S7.
The following result will show how H'(s) can be directly obtained from
H(s) and N(s) without any geometric intermediary. Let us first consider
the following algorithm:

Vi =X
T 3.12
{ VI = CnA-®(V¢ +D) (312)

which limit is V7", the supremal (A, D)-invariant subspace contained in
C. From the results about “Almost Controllability Subspaces” (see for

] and that diag(s")®diag(s™) is proper.

instance [8] ), each step of 8% (see algorithm (2.5)) can be rewritten as:

S=D+ADNVE)+ AS(DAVE) +---+ A 2(DNVI™). (3.13)
Let us define L; as follows:

Im(DLy) = DN VL°
Im(DL,Ly) =D NVE
. (3.14)
Im(DLyLy -+ Lj) = DN VY.

6
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Note that:

C 0 0 -0

cA CD 0 -0

Vé) — [ Inxn O ]]C]V CA? CAD CD 0

CA? CA"2D CA**D cD
(3.15)
Then from (3.13) and (3.14):

D' :=1I4D' =83 = (3.16)

Im |D:A(DLy):A*(DLyLy): -+ -:AP(DLy Ly --- L) (3.17)

with p € N, the smallest positive integer such that

I —o0

!
sy =8y, (3.18)
We can thus rewrite H'(s), defined by H'(s) := E(sI — A)~'D’ (see
Theorem 5) as follows:
H'(s) = BE(sI — A)™! {DEA(DL1)5A2(DL1L2)E ot AP(DLy Ly - - - L,,)] )

(3.19)
We will use this expression to prove the following intermediary result:

Lemma 8 The DROF problem is solvable if and only if s~ G(s) and
|:81G(S)E <H(s)EsH(s)L1232H(3)L1L22 - isPH(s)Ly Ly . .. Lpﬂ

have the same infinite zero structure, where p and L; are defined in ( 3.18)
and (3.14).

Proof.
only if:

Consider that the DROF problem is solvable, ie., S C Vi From
(3.19), we can rewrite H'(s) as follow:

H'(s) =
[E(s[ —A)IDE(T - A) " CA(DL): - E(JT — A" AV(PLooLe - L)
(3.20)
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For the first term of this expression, we have:

|E(sI— A) 'D=H(s)|

Let us expand H(s) into its Laurent power series:

ED EAD EA?D
'D=—+ + +

52 83

H(s) = E(sI — A) (3.21)

Since S35 C V¢ obviously ED = 0 (remember that D C S and Vi C €)
and then:
E(sI — A)™'AD = sH(s)

and consequently:

| E(sI — A)"'ADL, = sH(s)L |

Let us now consider the third term E(sI — A)~tA?(DL;Ls):
Since InDL; = DN K|VC and A(DNKJVC) C S C V& C & then
EADL; = 0. Now, from (3.21 ):

EA’DL EA3DL
H(s)L, = E(sI—-A)"'DL, = . !y - L.
s s
1 (EA2DL, EA®*DL,
= 5_2 p + 52 —+ -

1 L
= SE(I-4)' DL,

then:
E(sI — A)™'A’DL, = s*H(s)L,

and consequently:

| E(sI — A) "A*DLyLy = s°H(s) Ly Ly |

A similar treatment is possible for each term, until:

|B(sI— A)"APDLiLy ... L, = s"H(s)Li L ... L | (3.22)

Then
H'(s):= E(sI — A)7'D' =

HOREOL R EOLL eaenn ] O
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Finally from Theorem 5 if the DROF problem is solvable then s~'G(s) and

[s7'G(s), H'(s)] =
{slG(s), (H(s)sz(s)LlfszH(s)Llef -+ isPH(S)L1 Ly . .. Lpﬂ

have the same infinite zero structure.
if:

Let us now assume that:
Assumption A:

[s7'G(s)]and {s‘lG(s)EHp(s)} have the same infinite zero structure

where:
H,(s) := {H(s)sz(s)Llfs2H(s)L1L25 -:8PH(8)L1Ly...L,| .

Let -
D1 :=D.

It is obvious that a necessary condition for Assumption A to hold is that
s71G(s) and [s7'G(s), H(s)] = [s7'G(s), E(sI — A)~' D] have the same
infinite zero structure too. Then, from Theorems 2 and 1 (with D, instead
of D): Im Dy C V¥ C € and then ED = 0.

From this follows that:

| H(s) := E(sI — 4) 'D|

ED EAD EA?D EAD EA?’D
= —+— —+ =0+t +—=—+
S S S S S
2
_ 1 (EAD + EA2D +> _lper—aytap
S S S S
thus:
sH(s)L, = E(sI — A)"*ADL,
and
[H(S)ESH(S)L1:| = E(sI — A)~! [DEADLl} .
Let

Dy = {DEADLl] )

9
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Our structural Assumption A also implies that [s7'G(s), E(sI — A)~'D,]
and s~'G(s) have the same infinite zero structure. Then, from Theorems
2 and 1: (with D, instead of D'): Im Dy C V§ C € and then ED = 0 and

E(ADL,) =0.

Then

EDL EADL EA2DL
H(s)L;, = E(sI—A)"'DL, = p LS = 'y 3 L
EA2DL 1 (EA?DL
s s S
1 _
= S—ZE(sI—A) 42D,

and thus:

s2H(s)L1Ly = E(sI — A)"'A’DL, L,

from which follows

{H(s)EsH(s)LlEs2H(s)L1L2} =E(sI — A)! [DfADLlfAZDLlLZ] .

A similar treatment is possible for all intermediary steps until:

{H(s)sz(s)LlfsQH(s)Llef --:sPH(s)L1Ly .. .L,,} =

E(sI — A)~! {DEADL15A2DL1L25 ---iAPDL; ... L,,} :

Let

D, = [DfADLlf ---APDL; . ..L,,] :

Under Assumption A, s~'G(s) and [s_lG(s),lz(sl — A)™' Dy must have

the same infinite zero structure and since Im D), := Sp (see equation (
3.17)), then from Theorems 2 and 1: ImD, = S C V and thus the
DROF problem is solvable. |

We will now conclude this section by showing how L; can be found
directly from the Markov parameters of N(s), without requiring any ge-
ometric intermediary. From the definition of L;, and using (3.15 ), we
have:

Im(DLy) := DNV = DNK]VC = DK]VCD

In(DLyLy) = DAVIE = DA [ Lnwn o]mv{c 0 }

CA CD
10
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cD 0
=D Ijxg O]Ker[CAD CD} (3.24)
!
Im(DLyLy---L,) = DNV
CA cD - 0
=DN[ Iixn 0 --- 0]K]V
CAP=1 CAP=2D ... CD
CcD 0 0
CAD cp - 0
=D [ I;xq 0 --- 0]Ker
CAP=1D CAP=2D ... CD
(3.25)

Let us denote N; the i-th Markov parameter of N(s), i.e.:

CD CAD CA%D Ny N» N.
N(s)i=C(s1-A)ytp =2 L CAD M M N
s s s s s s
(3.26)
We can thus rewrite Lemma 8, without needing any additional proof, in

the following way:

Theorem 9 Let us define G(s), H(s) and N(s) as in (2.2) and L; such

that
Im(L,) = KerN,
Ny 0
Im(Ly L) = [ Iixg O ]Ker { N, N, ]

N, 0o --- 0
Ny N, -+ 0

Im(LyLy---Lp) =] Iyxqg 0 --- 0 ]Ker , .
N, Np_i -+ Ny

where the N;’s are the Markov parameters of N(s) (see (3.26)). The DROF
problem is solvable if and only if there exists some p < n such that:

s 1G(s) and [slG(s)EHp(s)}
have the same infinite zero structure, where

Hy,(s):= |H(s):sH(s)Ly:s>H(s)L1Lo:---:sPH(s)L1 Lo . .. L,,] :

11
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4 Connection with the Previous Structural
Conditions

In this section we show how our structural solution to the DROF problem,
i.e., Theorem 9, is equivalent to that of Commault, Dion and Benahcene [5]
(Lemma 4) in the particular case when the transfer function matrix N(s)
is column proper at infinity. For that, let us recall that (see [4]):

Proposition 10 The matriz N(s) is column proper at infinity, iff:

C
n;

=ni; Vi=1,.,q
where n§ (nf,) denotes the infinite zero order (the essential order) of the
i-th column of N(s) (see Section 2).

From Proposition 10, directly follows that all the non zero columns of
Nj areindependent. The kernel of Ny is thus generated by some elementary
vectors of the basis of H. This means that after some column permutations
we can rewrite Ny in the following way:

N1:|:01"'07‘1 Nl ]
with N monic. Thus:
1
Im L1 = |: 07“1 :| .
From the definition of L;’s (see Theorem 9):
Ny 0
Im(LyLy) = [ Iyxq 0] Ker { N; N, ]

= KerNy N N, *(Im Ny).

Because of Proposition 10:
Im(L,Ly) = KerNy N KerNo

Indeed, all the non zero columns of NV, among the first r; ones are indepen-
dent from those of N; (essentiality). Then Im L; Lo is generated by basis
vectors of H corresponding to the columns of N(s) which infinite zero order
is greater than 2.

We can proceed in the same way for each term and show that under
the assumption that N(s) is column proper at infinity:

Im(L1Ly...L,) = KerNy N KerNa N ...N KerN,.
The structural solvability condition of Theorem 9, namely:

12
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[s7'G(s)]and {s‘lG(s)EHp(s)} have the same infinite zero structure

(4.27)
is obviously equivalent to

[G(s)]and {G(s)szp(s)} have the same infinite zero structure | (4.28)

with:
Hy(s) == {H(s)sz(s)Llfsr"H(s)LlLgf o 8PH(s)L1 Ly ... Ly .

Now, under the assumption that N(s) is column proper at infinity, since
Im(Ly Ly ...Lpy) is generated by elementary vectors of the basis, i.e., the
products H(s)L1Ls ... L; exactly correspond to column selections in H(s),
it is quite direct to show that (4.28) is equivalent to

[G(s)]and [G(S)EH(s)diag(sn?) have the same infinite zero structure,

which is the condition of Lemma 4. Indeed, each column of H(s) appears
in [G(S)Hp(s)] with coefficients s, 5%, ... up to s™ and it is quite clear that
for each column of H(s), say Hf(s),

[G(s)] and {G(s)szf(s)fﬁHg(s)f e fsanf(s)

have the same infinite zero structure

if and only if

[G(s)]and |:G(S)SS”$H1-C(S):| have the same infinite zero structure |.

As a matter of fact, it may be shown rather easily (just using essential-
ity notion in a deeper way) that the structure at infinity of [G(s)szp(s)}
is lower and upper bounded by the structure at infinity of, respectively,

{G(s)fH(s)diag(s”f)] and {G(s)fH(s)diag(s”fe)]. This fully explains the

13
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links between our necessary and sufficient condition and those (only neces-
sary or sufficient) of Commault, Dion and Benahcene [5].

Before concluding, let us illustrate our results on the example extracted
from [5].

Example 1 Let:

—2
SilG(S) - |: 8_2 0_3 :| -
s
The infinite zero structure of s~*G(s) is {2,3}.

11 0
(b 2] e

()
= O
| I

COETCETET B D P R

572 5730 Bs™3 —Bs?

The infinite zero structure of {slG(s)EH(s)sz(s)Ll} is {2,2} ifa # —p

and {2,3} if o = —f3. Then, for this example, it is possible to reject the
disturbance by output feedback if and only if « = —f (see Theorem 9).

5 Concluding Remarks

We have proposed structural necessary and sufficient conditions for the
solvability of the DROF problem. These conditions are similar to (though
more intricate than) the ones previously obtained for the state feedback
case. Theorem 5, for instance, amounts to comparing the structures at
infinity of two “artificial” systems: the one of the “undisturbed” system
and that of a compound system where some “extended” disturbance inputs
are fictitiously handled as control inputs, on the same level as the actual
control u(t). This structural result has been derived in a trivial way from
geometric arguments (Theorems 5 and 6). The main contribution lies in the
way this condition can be directly characterized from the transfer function
matrices G(s), H(s) and N(s) (Theorem 9). It should be interesting having
a similar purely algebraic treatment for the case with internal stability, i.e.,
expressing H''(s) in Theorem 6 without any geometric intermediary.

14
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